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Abstract: The objective of this paper is to provide an overview of the recent developments 

in muscle physiology and biochemistry in general, and with respect to chronic obstructive 

pulmonary disease (COPD) specifically. As a way of illustration, we have presented data on 

the remodeling that occurs in vastus lateralis in two patients with COPD (COPD #1, forced 

expiratory volume in one second/forced vital capacity [FEV
1
/FVC] = 63%; COPD #2, FEV

1
/

FVC = 41%) exhibiting differences in muscle wasting as compared to healthy controls (CON; 

FEV
1
/FVC = 111 ± 2.2%, n = 4). Type I fibers percentages were lower in both COPD #1 (16.7) 

and COPD #2 (24.9) compared to CON (57.3 ± 5.2). Cross sectional area of the type I fibers of 

the patients ranged between 65%–68% of CON and for the type II subtypes (IIA, IIAX, IIX) 

between 74% and 89% (COPD #1) and 17%–32% (COPD #2). A lower number of capillary 

contacts were observed for all fiber types in COPD #1 but not COPD #2. Lower concentra-

tions of adenosine triphosphate (ATP) (24%–26%) and phosphocreatine (18%–20%), but not 

lactate occurred in COPD. In contrast to COPD #1, who displayed normal glucose transporter 

content, GLUT1 and GLUT4 were only 71% and 54%, respectively of CON in COPD #2. Lower 

monocarboxylate contents were found for MCT1 in both COPD #1 (63%) and COPD #2 (41%) 

and for MCT4 (78%) in COPD #1. Maximal oxidative enzyme activities (V
max

) for COPD #2 

ranged between 37% (succinic dehydrogenase) and 70% (cytochrome C oxidase) of CON. 

For the cytosolic enzymes, V
max

 ranged between 89% (hexokinase) to 31% (pyruvate kinase) 

of CON. Depressions were also observed in V
max

 of the Na+-K+-ATPase for COPD #1 (66% 

of CON) but not COPD #2 (92% of CON) while V
max

 of the Ca2+-ATPase was near normal in 

COPD #1 (84% CON). It is concluded that disturbances can occur in muscle to a wide range 

of excitation, contraction and metabolic processes in COPD.

Keywords: vastus lateralis, fiber types, area, capillarization, metabolism, enzymatic pathways, 

excitation-contraction processes, glucose and monocarboxylate transporters

Introduction
It has become clear that the clinical management of patients with chronic obstructive 

pulmonary disease (COPD) in addition to treating the symptoms occurring as a direct 

result of the disease itself must also address some of the side effects of the disease. 

One side effect is the profound disability in exercise tolerance that occurs. It is now 

recognized that muscle dysfunction itself can be represent at least part of the etiology 

of the failure of COPD patients to perform many daily tasks of living.1,2

Efficient and effective therapeutic rehabilitation strategies depend on understand-

ing the mechanisms underlying the cause of the inability of the muscle to generate 

desired force responses. With this knowledge, dedicated protocols can be designed 
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Characterization of the potential of the muscle cell to 

perform contractile activity depends on an analysis of both 

of the excitation and contraction processes (E–C processes) 

in addition to the organization of the metabolic pathways that 

generate the energy for the E–C processes to perform their 

functions. Key elements in the E–C processes amenable to 

measurement in humans have typically involved the processes 

and proteins involved in cation cycling, namely the transport 

of Na+ and K+ across the sarcolemma and t-tubule and the 

uptake and release of Ca2+ by the sarcoplasmic reticulum 

(SR). The Na+-K+-ATPase and the SR Ca2+-ATPase are the 

critical enzymes involved in the active transport of these 

cations and consequently measurement of their properties 

is essential. Typically, in muscle homogenates, the measure-

ments include the catalytic activities of the enzymes involved, 

the protein and the isoform abundance. In the case of the SR, 

Ca2+-release and Ca2+-uptake can also be assessed.

Our studies appear to be among the first to examine 

selected properties in the vastus lateralis (VL) E–C processes 

in COPD. We have found that the maximal catalytic activities 

(V
max

) of both enzymes were depressed which occurred in 

association with alterations of the subunit isoforms.5,6

Although measurements of the catalytic activity of the 

myosin ATPase have not been reported in COPD, measure-

ments of the fiber types and subtypes have been published. 

It is well established that in COPD, the muscle contains a 

higher percentage of type II and a lower percentage of type I 

fibers,7 the magnitude of the change in fiber types dependent 

on disease severity.8,9 The determination of fiber types is 

based on the myosin isoforms and specifically the heavy chain 

isoforms which contain the ATPase.10 Interestingly, a well 

established effect of COPD is a reduction of muscle mass.11 

Given that the contractile proteins represent the majority of 

muscle protein, changes in one or more of the contractile 

proteins would be expected in COPD.

The primary function of the metabolic pathways is to 

supply the adenosine triphosphate (ATP) required by the 

ATPases to perform their unique functions. Consequently, 

it is possible that contractile failure may occur secondary to 

disturbances in energy homeostasis, mediated by deficiencies 

in metabolic pathway potential. The metabolic pathways and 

segments include high energy phosphate transfer, glycolysis, 

and oxidative phosphorylation.

The success of the metabolic pathways in responding 

to the demands for ATP, both at rest and during increased 

contractile activity, is based on the ability to protect phos-

phorylation potential12 which is determined primarily by the 

concentrations of ATP and PCr. Characterization of metabolic 

to improve specific outcomes, assuming that the disease 

does not prevent the appropriate cellular remodeling that 

is required. However, in general, clinical practice has not 

evolved to a state where specific functional deficits are 

identified and related to specific cellular abnormalities. 

There are several reasons for this, not the least of which is 

the incomplete knowledge of the recent advances that have 

been made in muscle physiology and biochemistry. Much 

progress has been made in the development of analytical 

protocols for the characterization of specific proteins and 

processes in the muscle cell and their role in mechanical 

behavior. Many of these properties can be assessed on 

relatively small amounts of tissue easily obtained by muscle 

biopsy. These techniques have been employed to determine 

the cellular abnormalities in a variety of disease states 

including COPD. However, in the case of COPD, relatively 

few studies have been published and as a result there is an 

inadequate understanding of the specific cellular alterations 

that occur in patients.2–4 Although it is recognized that in 

COPD the ability to generate an expected peak force and/or 

to engage to repetitive activity are compromised,2 studies 

have generally not measured the appropriate contractile 

properties responsible for these abnormalities.

In this review, we have several objectives. One major 

objective is to provide an overview, consistent with current 

knowledge, of the cellular processes regulating contractile 

behavior and the role of specific proteins and protein isoforms 

in mediating the functional properties of the processes. In 

addition, we summarize the literature on muscle and COPD, 

identifying areas where there is little or no published data. 

Finally, we provide information on specific analytical pro-

tocols that can be employed to provide a comprehensive 

assessment of muscle in COPD. To enhance clinical interest, 

we have supplemented the review with the results of two 

male COPD patients, differing in amount of lean body mass 

to illustrate via the detailed characterization performed, the 

differences in both the type and magnitude of the muscle 

abnormalities present.

It is well established that the loss of lean body mass 

(cachexia) frequently accompanying COPD compromises 

muscle force-generating potential as a result of f iber 

atrophy.2–4 Although the loss of muscle mass is undoubt-

edly important in the functional deficit that occurs, changes 

within the muscle fiber also appear important. In general, 

characterization of muscle in COPD has generally failed to 

address this aspect. In the following sections, a brief overview 

is provided of the relevant components involved with insight 

into the measurement of specific properties.
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pathway potentials in muscle in COPD patients represent the 

most popular area of publication to date.

At the level of the organization of the metabolic path-

ways, it is commonly assumed that the potential for oxida-

tive phosphorylation has been compromised in COPD.2,3 

However, at least in the locomotor muscles, this assumption 

is based on the measurement of relatively few enzymes with 

reductions in the maximal activity of citrate synthase, an 

enzyme of the CAC, cited as primary evidence.13 Similarly, 

of the few studies which have concluded that the glycolytic 

potential is not affected in COPD, the same problem applies, 

namely the measurement of relatively few enzymes.14–16 

These assumptions are further compounded by the fact that 

not all studies in this area report similar effects of COPD.16,17 

In recent work from our group, in which we have measured a 

broad range of enzymes, we have found that both the poten-

tial for β-oxidation and oxidative phosphorylation (based on 

cytochrome oxidase) were depressed while the potential for 

glucose phosphorylation was increased.18

Since the flux rate in the metabolic pathways can also 

be limited by the availability of substrates such as CHO and 

accumulation of metabolic byproducts, it is important that 

measurement be made of the processes which control these 

properties. Glucose transport into the muscle, as an example, 

is facilitated by a family of glucose transporters (GLUT) 

of which GLUT1 and GLUT4 are primarily expressed in 

skeletal muscle.19 Similarly, the diffusion of the byproducts 

H+ and lactate is facilitated by monocarboxylate transporters 

(MCT) in which MCT1 and MCT4 predominate in skeletal 

muscle.20 In what appears to be the first study measuring these 

properties in skeletal muscle, we have found that the principal 

transporters, namely GLUT4 and MCT4, were depressed in 

the vastus lateralis of COPD patients.21

Histochemistry provides an opportunity to determine if 

the changes observed in muscle of COPD patients are spe-

cific to different fiber types. Curiously, relatively few studies 

have addressed this area and those that used histochemistry 

measured relatively few properties. An association between 

properties of the E–C-coupling processes and the potential 

of the metabolic pathways and segments in skeletal muscle 

of COPD patients would be expected. It is well established 

that the expression of these properties is correlated in the vari-

ous fiber types and subtypes.22 The most consistent finding 

published to date is that in the VL, COPD is accompanied by 

a decrease in type I and an increase in type II fiber percent-

ages.8 If the increase in type II fibers in COPD represents 

a simple transformation from type I fibers as proposed,2,3 it 

would be expected that the E–C-coupling processes would 

be altered accordingly, resulting in a more emphasized SR as 

an example. Similarly, the potential high-energy phosphate 

transfer and glycolysis should be increased and the oxidative 

potential decreased. Alternatively, if COPD acts directly on 

the E–C-coupling processes and the metabolic pathways, as 

suspected, possibly as a result of the accumulation of reactive 

oxygen species (ROS),23 reductions may occur regardless of 

the fiber-type shifts. Moreover; since cachexia is known to be 

prevalent in COPD, resulting in a loss of lean body mass,24 

it is possible that the areas of the different fiber types may 

be affected.

Histochemistry also provides the opportunity to assess 

the perfusion potential of the different fiber types. Given 

that the functional integrity of the metabolic pathways is 

also dependent on the supply of substrates such as O
2
 from 

the circulation, measurements of capillary density of the 

muscle fibers in conjunction with fiber areas is a desirable 

addition.25

In this review, for purposes of illustration, we have pro-

vided a comprehensive assessment of both the E–C-coupling 

processes and the metabolic pathways in COPD. We have 

concentrated on the muscle characteristics of two male 

patients differing in COPD severity and in cachexia severity 

on whom we had sufficient tissue from the VL to perform 

an extensive array of measurements using techniques modi-

fied for the measurement of properties on small amounts of 

tissue. Our guiding hypothesis was that in the COPD patients 

compared to healthy controls, a higher percentage of type II 

and a lower percentage of type I fibers would be observed 

in conjunction with a lower cross sectional area and lower 

capillarization of the fiber types. These differences would 

be accompanied by a lower oxidative potential and a higher 

potential for high-energy phosphate transfer and glycolysis. 

In addition, it is proposed that the catalytic potential of the 

Ca2+-ATPase as well a the capacity for Ca2+-uptake and Ca2+-

release would be higher in COPD. In contrast, the capacity for 

Na+-K+-ATPase activity would be lower in COPD compared 

to controls.

This work was part of a much larger project investigat-

ing skeletal muscle in COPD in which we have published a 

number of papers dealing with metabolic organization,18 the 

sarcoplasmic reticulum,5 the Na+-K+-ATPase,6 energetic and 

transporters status21 and muscle fiber type characteristics.26

Methods
Participants
In this report, we have selected two male patients with 

advanced COPD and compared the characteristics of the 
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vastus lateralis muscle with four healthy male control (CON) 

subjects. The two patients with COPD recruited from a list 

of patients who had participated in previous research studies 

at the Respiratoty Investigation Unit at Queen’s University 

(Canada). Healthy volunteers were recruited from the local 

community primarily by newspaper advertisements. Informed 

consent was obtained from all participants and ethics approval 

was obtained from the University and Hospital Health 

Sciences Human Research Ethics Board.

As can be observed in Table 1, the patients were both 

aged 66 years and weighed between 63.9 (COPD #1) and 

44.6 kg (COPD #2). Comparable values for CON were age, 

64.8 ± 3.6 years and 80.9 ± 8.3 kg, respectively. The body 

mass index (BMI; kg/m2) was 23.8 and 15.3 for COPD #1 

and COPD #2 which compared to 25.7 ± 2.1 for CON. The 

forced expiratory volume in one second/forced vital capacity 

(FEV
1
/FVC; %) ranged between 62.7 and 40.7 for the COPD 

patients compared to 111 ± 2.2 for CON. As expected, arterial 

O
2
 saturation (SaO

2
, %), diffusing capacity (D

LCO,
 % pred) 

was depressed in both COPD #1 and COPD #2 compared 

to CON.

In terms of medication, COPD #1 was on Combivent 

(short-acting β
2
-agonist + short-acting anticholinergic), 

Advair (long-acting β
2
-agonist + inhaled corticosteroid) 

and Spiriva (long-acting anticholinergic). For COPD #2, 

the medications included Ventolin (short-acting β-agonist), 

Flovent (inhaled corticosteroid) and Atrovent. None of the 

CON subjects were on any of these medications. COPD #1 

had smoked for 47 pack-years, while COPD #2 had smoked 

for 45 pack-years. Both COPD patients were on supplemental 

O
2
, either continuously (COPD #2) or continuously during 

the day (COPD #1). Information describing the inclusion and 

exclusion criteria for both the COPD and CON volunteers 

have been reported previously.5,18

Peak oxygen consumption ( VO peak2 ), measured during 

cycle ergometry, was 7.3, 5.7, and 30.5 ± 3.1 ml.kg-1.min for 

COPD #1, COPD #2 and CON, respectively (Table 1). For 

the COPD patients, these values were only 33% (COPD #1) 

and 20% (COPD #2) of predicted. Dynamic knee extension 

torque measured by computerized isokinetic dynameter 

(Cybex International, Medway, MA, USA) was also severely 

depressed in COPD with values of 39.8 and 19.2 Nm 

measured for COPD #1 and COPD #2, respectively. For 

CON, the maximal torque was 152 ± 16 Nm.

Additional details for test protocols appear in earlier 

papers.5,6,18,21

Tissue sampling
Tissue was obtained from the vastus lateralis on the 

dominant side using the needle biopsy technique.27 With 

this technique, the sampling site is identified (mid thigh), 

a small incision made after local freezing (lidocaine), and 

the tissue harvested using two to three separate biopsies. 

The biopsies were performed rapidly in succession, using 

fresh sterilized needles, by trained personnel. The needle 

containing the tissue from the first biopsy was rapidly 

plunged into liquid N
2
 and subsequently removed without 

thawing and stored at -80 °C until analyses. This tissue was 

used for the measurement of the substrate, glycogen and 

the labile high energy phosphagen compounds and related 

metabolites and the glycolytic intermediates. The tissue 

obtained from the additional biopsies was extracted from the 

needle, a section isolated and a homogenate prepared before 

freezing and storage at -80 °C. The remaining tissue was 

frozen in liquid N
2
 and stored at the same low temperature 

and a section prepared for histochemistry prior to freezing 

and storage.

Analytical protocols
The extensive array of properties was measured on different 

days during separate analytical sessions. For the measure-

ment of a given property, all samples, both CON and COPD, 

were assessed during the same analytical session.

Table 1 Anthropometric, pulmonary function and exercise 
characteristics of control and two patients with chronic obstruc-
tive pulmonary disease

Con COPD #1 COPD #2

Age (yr) 64.8 ± 3.6 66 66

Weight (kg) 80.9 ± 8.3 63.9 44.6

Height (cm) 177 ± 1.5 164 171

Body mass index (kg/m2) 25.7 ± 2.1 23.8 15.3

FEV1 (L) 3.36 ± 9.2 0.49 0.54

FEV1 (% predicted) 110 ± 2.2 20 19

FEV1/FVC (%) 111 ± 2.2 62.7 40.7

DLco (% predicted) 124 ± 17 53.4 28.8

PaO2 (mmHg) 82.7 ± 1.2 NA 45.1

PaCo2 (mmHg) 43.7 ± 2.0 NA 46.6

SaO2 (%) 95.6 ± 0.26 92 82.2

VO2peak (ml.kg-1 min) 30.5 ± 3.1 7.3 5.7

Maximal torque (Nm) 152 ± 16 39.8 19.2

Notes:  Values are x SE± . For Con, n = 4.
Abbreviations: Con, control; COPD #1 and COPD #2, two chronic obstructive 
pulmonary disease patients; FEV1, forced expiratory volume in one second; FVC, 
forced vital capacity; DLco, diffusing capacity of the lung for carbon monoxide; PaO2, 
arterial oxygen tension; PaCo2, arterial carbon dioxide tension; SaO2, arterial oxygen 
saturation; V

.
O2peak, peak oxygen consumption during progressive exercise; maximal 

torque, maximal knee extention torque generated at 30° s; NA, not available.
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The measurements performed included the labile 

metabolic compounds, a range of enzymes, GLUT and MCT 

isoforms, SR-related properties and the properties of the 

Na+-K+-ATPase (Table 2). These measurements were also 

complemented by the assessment of fiber-type related prop-

erties using histochemistry. Since all analytical techniques 

covering the properties assessed have been reported in detail 

in previous studies from this project, descriptions are kept 

to a minimum.

Histochemistry
We have used histochemistry to assess the distribution of the 

various fiber types and subtypes and to determine the cross-

sectional areas (CSA) and the number of capillaries in contact 

(CC) with fiber classification. These measurements were also 

complemented by determinations of both the maximal activity 

of succinate dehydrogenase (SDH) and the Ca2+-ATPase 

in fiber-specific types using microphotometric techniques. 

In brief, the histochemical procedures involved making serial 

slices of the muscle sample mounted in cross section in a 

cryostat (-20 °C) and measuring the specific properties in suc-

cessive sections. The first property assessed was the fiber type 

distribution using the procedures of Staron and colleagues,28 

which permitted identifying the distribution of type I, IC, IIC, 

IIA, IIAX, and IIX. Identification was based on the pH lability 

of the myofibrillar ATPase reaction,28,29 which is determined by 

the heavy chain isoform (HC) content, of which the ATPase 

is part of. For CON, an average of 216 ± 29 fibers were and 

for COPD #1 and COPD #2, the numbers were 150 and 213, 

respectively. Capillary contacts (CC) per fiber was permitted 

by using a lectin (ulex europaeus I) technique which allowed 

visualization of the capillaries.30 The activity of SDH was 

based on the determinations of the optical density (OD units) 

using the nitro blue tetrazolium as the reaction indicator.31 

Similarly, the SR Ca2+-ATPase activity was measured using 

similar microphotometric techniques according to the proce-

dures of van Der Laarse32 as modified in our laboratory.33 The 

OD was obtained using an image analysis system (Image-Pro; 

Media Cybernetics, Silver Spring, MD, USA). Where possible 

25 fibers of each type were assessed for these properties.

The fibers stained for SDH were also used to obtain the 

CSA of a similar number of fibers of each type, using a 

video monitor digitizing tablet. The CSA measurements in 

combination with the CC allowed calculation of the ratio of 

CC to CSA (µm2⋅10−3).

By using serial sections we were able to select a subgroup 

of specific fibers of each type and to measure all the proper-

ties in this sample of fibers.

Enzyme activities
To characterize the enzymatic pathways and segments we 

have measured the maximal activities (V
max

) of a wide range 

of enzymes which consisted of five from the mitochondria and 

five from the cytosol. The mitochondrial enzymes selected 

included three from the citric acid cycle (CAC), namely citrate 

synthase (CS), SDH, and malate dehydrogenase (MDH), one 

to represent β-oxidation, 3-hydroxyacyl-CoA dehydrogenase 

(HADH) and a complex of the electron transport system 

(ETC), cytochrome C oxidase (COX). The cytosolic enzymes 

were selected to represent glucose oxidation, hexokinase 

(HEX), glycogenolysis, phosphorylase (PHOSPH), glycolysis, 

phosphfructokinase (PFK), pyruvate kinase (PK), lactate dehy-

drogenase (LDH), high-energy phosphate transfer, and creatine 

phosphokinase (CPK). Multiple enzymes were selected from 

specific pathways to determine if they all responded in the same 

way with COPD. It has been assumed in studies investigating 

muscle in COPD that since the enzymes in a given pathway 

are in constant proportion to each other in the healthy subject,34 

that a single enzyme can be used to represent a pathway. This 

may not be so in unhealthy subjects.

With the exception of COX, all enzymes were measured 

fluorometrically at 24–25 °C in homogenates according to 

previously published procedures.35,36 With the exception of 

SDH and PFK, which were measured on fresh homogenates, 

prepared just prior to assay, all other enzymes were measured 

on homogenates that had been frozen after preparation. 

A spectrophotometric assay (30 °C) was used to measure 

COX which was based on the disappearance of reduced 

cytochrome C aborbance.

Enzyme activities were expressed per unit protein which 

was assessed by the use of the Lowry method as modified 

by Schacterle and Pollock.37 Samples from both CON and 

COPD for a given enzyme were measured in duplicate and 

during the same analytical session.

Metabolism
To evaluate the metabolic status of the muscle, the concen-

trations of the adenine nucleotides (ATP, ADP, and AMP) 

were measured by high-performance liquid chromatography 

(HPLC) as described previously,38 and the total adenine 

nucleotide pool (TAN) was calculated. Measurements of 

inosine monophosphate (IMP) was also measured with 

HPLC techniques. These properties were complemented 

by fluorometric-based measurements of glycogen, the 

glycolytic metabolites, pyruvate (Pyr) and lactate (Lac) and 

the high-energy compound, creatine phosphate (PCr) and its 

metabolite, creatine (Cr). The measurements of PCr and 
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Table 2 Summary of muscle characteristics studied in two patients with chronic obstructive pulmonary disease, techniques employed 
and properties assessed

Characteristic Patients Technique Properties

COPD #1 COPD #2

Fiber types
  Distribution * * Myofibrillar ATPase28,29 Fiber Types (%)

  Size * * Digitizing tablet53 Cross sectional area (µm2)

  Capillarization * * Lectin technique30 Number of capillaries (CC)

  Oxidative potential * * Microphotometry31 SDH activity (Vmax)

  Cation transport * * Microphotometry32,33 Ca2+-ATPase activity (Vmax)

Metabolic pathways (Vmax)
  CS, SDH, MDH * Fluorometric35,36 Citric acid cycle

  COX * Spectrophotometric18 Electron transport system

  HADH * Fluorometric35,36 Fat oxidation

  HEX * Fluorometric35,36 Glucose oxidation

  PHOSPH * Fluorometric35,36 Glycogenolysis

  PFK, PK, LDH * Fluorometric35,36 Glycolysis

  CPK * Fluorometric35,36 High-energy phosphate 
transfer

Metabolic status 
(Concentration)
  ATP,  ADP,  AMP,  IMP,  TAN * * HPLC38 Energy charge

  PCr, Cr, TCr * * Fluorometry21 Energy charge

  Pyruvate, lactate * * Fluorometry21 Glycolytic metabolites

  Glycogen * * Fluorometry21 Carbohydrate substrate

Transporters (Content)
  GLUT1, GLUT4 * * Electrophoresis/Western blotting39 Glucose transport

  MCT1, MCT4 * * Electrophoresis/Western blotting39 Lactate transport

Cation transport

  Na+ -K+-ATPase

  V max * * Spectrophotometric (3–0-MFPase)40,41 Maximal activity

  Content * * Scintillation (3H-Ouabain binding)42 Enzyme content

  Ca2+-ATPase (SR)

  V max, Ca50, ηH
* Spectrophotometric44,45 Maximal activity; 

Ca2+-sensitivity

  Ca2+-uptake * Spectrophotometric44,45 Ca2+-uptake

  Ca2+-release * Spectrophotometric44,45 Ca2+-release

Notes: The characteristics assessed included both the processes involved in the production of energy and the utilization of energy by the muscle cell. Metabolic status is a 
measure of the energetic state of the cell as assessed by the high-energy phosphate compounds. Metabolic pathway potential is based on the maximal activity (Vmax) of repre-
sentative enzymes. For the transporter potential, the content of two isoforms of glucose and lactate were measured. For cation transport, the maximal activity (Vmax) of both 
the enzymes involved in sarcolemma and t-tubule transport of Na+/K+ was measured (Na+-K+-ATPase) as well as the sarcoplasmic reticulum (SR) Ca2+-uptake (Ca2+-ATPase). 
The SR Ca2+-ATPase was also supplemented by measures of Ca2+-release and Ca2+-uptake. Selected fiber type characteristics were assessed by histochemistry. See Methods 
for further details.
Abbreviations: CS, citrate synthase; SDH, succinic dehydrogenase; MDH, malate dehydrogenase; COX, cytochrome c oxidase; HADH-3, hydroxyacyl-CoA dehydrogenase; 
HEX, hexokinase; PHOSPH, phosphorylase; PFK, phosphofructokinase; PK, pyruvate kinase; LDH, lactate dehydrogenase; CPK, creatine phosphokinase;  ATP, adenosine 
triphosphate;  ADP, adenosine diphosphate;  AMP, adenosine monophosphate; IMP, inosine monophosphate;  TAN, total adenine nucleotide; PCr, phosphocreatine; Cr, creatine; 
TCr, total creatine; GLUT1, glucose transporter isoform 1; GLUT4, glucose transporter isoform 4; MCT1, monocarboxylate transporter isoform 1; MCT4, monocarboxylate 
transporter 4; Ca50, calcium concentration necessary to elicit 50%  Vmax; nH, Hill coefficient obtained by using the relationship between Ca2+ concentration and Ca2+-ATPase 
activity; SR, sarcoplasmic reticulum.

Cr enabled total creatine (TCr) to be determined. We have 

also estimated the concentration of both free ADP (ADP
f
) 

and free AMP (AMP
f
) which is based on the near-equilibrium 

properties of the CPK and adenylate kinase reactions. 

Details including the constants and assumed concentrations 

and regression equation appear in an earlier publication.21 

It should be noted that given the labile nature of the measured 

metabolites that extraction occurred on freeze-dried tissue. 

All properties were performed in duplicate and expressed 

per unit dry weight tissue.
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Transporters
The transporters measured were for glucose, GLUT1 and 

GLUT4, and for the monocarboxylates, MCT1 and MCT4. 

All transporters were assessed using electrophoresis and 

Western blotting techniques as described previously.39 

Isoform detection was performed with an enhanced che-

miluminescence procedure and the blots analyzed with a 

bioimaging system. For GLUT1 and GLUT4, the anti-GLUT 

polyclonal antisera was CBL242 and CB243, respectively, 

obtained from Chemicon International (Temecula, CA, 

USA). For MCT1 and MCT4, the antisera was AB3538P and 

AB3316P, respectively diluted 1:400 and also obtained from 

Chemicon International. All samples were run in duplicate on 

separate gels with CON and COPD samples matched. Protein 

was measured by Bio-Rad assay (Bio-Rad Laboratories, Her-

cules, CA, USA). Values for COPD were calculated relative 

to CON which was set at 100%. The values were expressed 

relative to α-actin content (used to match for protein loading) 

and normalized to CON values.

Na+-K+-ATPase
Two properties were measured for this enzyme, namely the 

maximal catalytic activity (V
max

) and the maximal content 

(β
max

). The determination of V
max

 is based on the use of an 

artificial substrate, namely 3-O-methylfluorsecein phosphate 

(3-O-MFP) which is used as a substitute for the aspartylphos-

phate intermediate of the enzyme.40 The catalytic activity is, 

in effect, determined as the measurement of the K+-stimulated 

3-O-methylfluorescein phosphatase (3-O-MFP-ase), based on 

an assay originally developed by Nørgaard and colleagues40 

and subsequently modified to produce a clear V
max

.41 Enzyme 

activity, using the average of three trials, was based on the 

slope of the reaction before and after the addition of KCl using 

fluorescence spectroscopy. Protein content of the samples was 

based on previously established techniques.37

For the measurement of enzyme content (β
max

), the 

vanadate-facilitated [3H] ouabain binding technique was 

used.42 A complete description of this assay, including 

details of the incubation buffer, corrections employed and 

procedural details appear in earlier publications.43 This assay 

was conducted on two tissue samples, each weighing between 

2 and 8 mg, and β
max

 expressed per unit wet weight.

SR properties
To characterize the SR, we have measured the catalytic proper-

ties of the Ca2+-ATPase, namely the maximal activity (V
max

), 

the free Ca2+ [Ca2+
f
] needed to elicit 50% V

max
 (Ca

50
), and the 

Hill coefficient (nH), defined as the slope of the relationship 

between Ca2+-ATPase activity and [Ca2+]
f
. These measurements 

were also supplemented by determinations of Ca2+-uptake and 

Ca2+-release. By measuring V
max

, with and without the Ca2+-

ionophore, A-23187, we were able to calculate the ionophore 

ratio which provides an indirect measure of the integrity of the 

SR membrane for Ca2+.44 The coupling ratio, determined by the 

ratio of Ca2-uptake to V
max

, provides an index of the energetic 

efficiency of Ca2+-sequestration into the SR.44

Enzyme activity was measured at 37 °C using a 

spectrophotometric method44 as modified by our group.45 

In this assay, the Ca2+-dependent activity of the enzyme is 

obtained by subtracting the Ca2+-independent activity or basal 

activity. The basal activity is obtained using cyclopiazonic 

acid, which completely inhibits the Ca2+-ATPase activity.46 

The Ca2+-uptake and Ca2+-release was measured during the 

same assay as described.45 With our protocol, we observed 

two phases of Ca2+-release which we labeled phase I and 

phase II.45 Phase I represents the initial fast phase of release 

while phase II is a slower more delayed phase.45 It should be 

noted that, unlike the Ca2+-ATPase which can be measured 

on frozen tissue with minimal loss of activity, Ca2+-uptake 

and Ca2+-release must be measured on homogenates prepared 

on fresh tissue which can then be stored.

To measure the level of [Ca2+]
f
, which these assays 

depend on, dual-wavelength spectrofluorometry and the 

Ca2+-fluorescent dye, indo-1 was employed. Additional details 

appear in earlier publications from our laboratory.45 Where 

possible all measurements were performed in duplicate 

and care was taken to ensure that CON and COPD samples 

were matched in a given analytical session. As in previous 

measurements, the values were expressed per unit protein 

with protein assessed as described.37

Results
Histochemistry
Clear differences were observed in the distribution of the fiber 

types and subtypes between the healthy, control participants 

and the two COPD patients (Table 3). The COPD patients 

displayed a pronounced lower percentage of type I fibers. The 

increase in the type II fiber percentage observed in COPD 

was distributed in both the type IIA and the type IIAX for 

both patients. Type IIX fibers were noted to be elevated in 

COPD #1 but not COPD #2. The percent of the type IC and 

type IIC only ranged between 0.5% to 3% in CON. Type IC 

fibers was observed to increase to 6.7% in COPD #1 while 

no type IIC fibers were detected in COPD #2.

Differences were also noted between the healthy 

and diseased subjects in the areas of the different fiber 
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types (Figure 1). In the case of the type I f ibers, the 

area was between 35% to 38% lower in COPD. For the 

type II f iber types, clear differences existed between 

the COPD patients. For COPD #1, areas ranged between 

89% (IIA), 83% (IIAX), to 74% (IIX) of CON. Such was 

note the case for COPD #2 where the areas were only 17% 

(IIA) and 32% (11AX and IIX) of CON. The capillary 

counts also suggested a heterogenous response between the 

COPD patients. In general, the capillary counts were better 

protected in COPD #2 compared to COPD #1. Compared to 

CON, the capillary counts in type I were lower by 59% and 

increased by 28% in COPD #1 and COPD #2, respectively. 

For the type II subtypes, comparative reductions were 56% 

and 30% for IIA, 39% and 0% for IIAX, and 68% and 9% 

for IIX in COPD #1 and COPD #2, respectively.

A contrasting profile also existed for the capillary-to-fiber 

area ratio properties in the two COPD volunteers. For 

COPD #1, the ratio was lower than CON regardless of fiber 

type, with observed differences of 61%, 48%, 72%, and 41% 

observed for I, IIA, IIAX, and IIX, respectively. In contrast, 

for COPD #2, the capillary-to-fiber area ratio was 1.8-, 4-, 

3.2-, and 2.8-fold higher of CON for I, IIA, IIAX, and IIX, 

respectively as a result of the severe atrophy that occured.

We have also measured the activity of SDH and the 

Ca2+-ATPase in fiber-specific types of CON and COPD 

(Table 3). In general, SDH activity was not substantially 

different between the COPD individuals and the CON. For 

COPD #2, there was a trend for the activities to be higher 

in most fiber types as indicated by the approximately 20% 

to 23% higher activity observed in the type I, IIA, and IIAX 

fibers. In contrast to SDH activity, Ca2+-ATPase2+ activity 

was clearly depressed in COPD #2 compared to CON, the 

magnitude of the decrease depending on the fiber type 

(Table 3). For this patient, the decrease observed was most 

pronounced for the type I and type IIA fibers, representing 

30% and 52% of CON, respectively. For the type IIAX and 

type IIX fibers, the decreases were only 17% and 8% of 

CON, respectively.

Biochemistry
Transporters
The relative levels of GLUT1 and GLUT4 were well 

protected in COPD #1, but not in COPD #2 (Figure 2). 

In COPD #2, GLUT1 and GLUT4 were 71% and 54% of 

CON, respectively. In contrast to the GLUT in COPD #1, 

both MCT1 and MCT4 were subnormal which in the case of 

MCT1 was 37% and in the case of MCT4 was 22%. A 59% 

lower MCT1 content was also observed for COPD #2. 

Unfortunately, no values are available for MCT4 for this 

patient.

Enzymes
Both the mitochondrial and the cytosolic enzyme 

activities were all lower in COPD #2 compared to CON 

(Figures 3A, 3B). For the enzymes of the CAC, CS, SDH, 

and MDH were reduced by 47%, 63%, and 49%, respectively. 

Table 3 Selected histochemical properties in tissue obtained from the vastus lateralis muscle of two patients with chronic obstructive 
pulmonary disease and healthy controls

Fiber type

I IC IIC IIA IIAX IIX

Distribution (%)

  CON 57.3 ± 5.2 0.50 ± 0.23 3.0 ± 2.4 27.9 ± 0.44 3.1 ± 1.7 8.2 ± 4.3

  COPD #1 16.7 6.7 2.7 37.3 11.3 25.3

  COPD #2 24.9 0.5 0.0 49.3 17.8 7.5

SDH (OD units)

  CON 0.16 ± 0.02 0.14 ± 0.04 0.15 ± 0.05 0.14 ± 0.03

  COPD #1 0.18 0.16 0.14 0.12

  COPD #2 0.21 0.17 0.18 0.13

Ca2+-ATPase (OD units)

  CON 0.10 ± 0.02 0.31 ± 0.04 0.29 ± 0.04 0.36 ± 0.07

  COPD #1 0.13 0.30 0.30 0.37

  COPD #2 0.07 0.15 0.24 0.33

Notes: Values are x SE± . For CON, n = 4.
Abbreviations: CON, control; COPD #1 and COPD #2, two chronic obstructive lung disease patients. Distribution, % distribution of different fiber types; SDH, succinic 
dehydrogenase activity; Ca2+-ATPase, Ca2+-ATPase activity.
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Substrate and metabolites
COPD was accompanied by reductions in phosphorylation 

potential as indicated by the lower concentrations of the 

high-energy phosphagen compounds (Table 4). For ATP, the 

reductions ranged between 22% to 24% for the two patients 

while reductions in TAN ranged between 17% and 22% in the 

COPD patients. For COPD #2, there was an approximately 

threefold higher IMP concentration than CON. For COPD #1, 

IMP appeared normal. Comparable reductions of between 

17% and 20% in the COPD participants were observed for 

PCr (Table 4). Only in COPD #2 was there a suggestion 

that TCr was reduced (13%) as well. Overall phosphoryla-

tion potential was 80% and 83% of CON for COPD #1 and 

COPD #2, respectively. With regards to the endogenous 

carbohydrate substrate, glycogen, COPD #1 appeared able 

to maintain and even increase (19%) storage while COPD #2 

showed a substantial reduction (24%). Lactate concentration 

was within a normal range for both patients.

Cation cycling
Measurements were performed on the Na+-K+-ATPase for 

determinations of maximal activity (V
max

) and maximal 

content (β
max

) (Table 5). For V
max

, a reduction of 34% was 

observed in COPD #1 while the V
max

 for COPD #2 was the 

normal range (92%). Both patients displayed changes in β
max

 

with COPD #1 and COPD #2 with values approximately 

20% lower and higher, respectively.

For Ca2+-ATPase, V
max

 was modestly lower (16%) as was 

the Ca2+-uptake (14%) for COPD #1 (Table 5). Interestingly, 

for this patient differences were clearly evident in the Ca2+-

sensitivity of the enzyme with Ca
50

 and η
H
 being higher and 

lower, respectively in the disease state. Only small differ-

ences (9%) observed in the ionophore ratio and no difference 

in the coupling ratio. There was a suggestion of a reduced 

Ca2+-uptake for phase I (18%) but not phase II (5%).

Discussion
In this study, our primary aim was to provide a current review 

of the advances that have occurred in muscle physiology and 

biochemistry, both with regards to the proteins and processes 

regulating contractile function and the analytical techniques 

available for measurement. To highlight clinical relevance, we 

have provided the most comprehensive and integrated pro-

file of a wide range of muscle properties ever performed on 

COPD patients. To contrast the different effects of COPD on 

muscle, we have selected two COPD patients with advanced 

COPD disease but differing in the degree of cachexia. Dual 

energy X-ray (DEXA) to measure body composition26 was 
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Figure 1 Fiber-specific histochemical properties in tissue obtained from vastus lateralis 
muscle in healthy volunteers and two patients with advanced chronic obstructive 
pulmonary disease.
Notes: For CON, values are means ± SE (n = 4).
Abbreviations: CON, control; COPD #1 and COPD #2, two chronic obstructive pul-
monary disease patients; I, IIA, IIAX, IIX, fiber types and subtypes; CSA, cross-sectional 
area; capillary counts, number of capillaries ± around a fiber; capillary contacts/CSA, 
number of capillaries around a fiber divided by the CSA; SE, standard error.

This compared to a 30% lower activity for COX, the ETC 

complex measured. For the cytosolic enzymes, the greatest 

reduction in activity was observed for PHOS (63%) and 

PK (69%) followed by PFK (31%), CPK (32%), LDH 

(17%), and HEX (11%). Protein concentration (mg/g) was 

206 ± 4.9 for CON and 153 for COPD #2, a difference of 

26%. No tissue was available for the enzyme measurements 

in COPD #1.
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applied to confirm differences between COPD #1 and COPD 

#2 in lean body mass. Our objective was to address both the 

processes involved in ATP production (metabolic pathways) 

and the processes involved in ATP utilization with emphasis 

on cation cycling.

To-date, studies designed to identify the underlying 

mechanisms involved in muscle weakness and fatigue so 

prevalent in COPD have almost exclusively concluded that 

disproportionate increases in lactate during contractile activity 

is due, at least in part, to deficiencies in oxidative potential. 

In general, these conclusions have been based on the lower 

V
max

 of a single enzyme of the CAC. It is our hypothesis, that 

identification of mechanisms for muscle mechanical failure 

and abnormal metabolic response must include a broader 

range of measurements, including those involved in cation 

cycling and substrate and metabolic by-product transport. 

Our findings using two patients clearly indicate that this is 

the case. A critical issue relates to the mechanisms underlying 

the different phenotype observed in the vastus lateralis in the 

COPD patients. Such mechanisms must be able to account 

both for the properties that are common to both patients and the 

properties that were differentially expressed. In the following 

sections, we categorize and review the properties affected.

Histochemistry
A common and expected response was the large increase 

in the percentage of the fast-twitch, type II fibers and the 

decrease in the slow-twitch, type I fiber percent observed in 

both patients in this study and our earlier study.26 The change 

in the fiber type profile in COPD which has been observed 

many times previously2,4 has been attributed to a simple 

transformation of fiber types.3 Since the histochemical iden-

tification of the different fiber types is based on the myosin 

heavy chain isoforms,48 the shift would have to involve both 

the isolated expression of a single isoform, namely HCIIA or 

HCIIX in the case of the IIA and IIX fibers, respectively or the 

co-expression of more than one isoform such as IIA and IIX 

in hybrid fibers (IIAX). In addition, the expression of the 

HCI isoform would have to be either partially (IC, IIC) or 

completely inhibited (IIA, IIX, IIAX). Although, such a 

transformation is possible particularly in conditions such as 

spinal cord injury,49 it has not been observed, at least to a com-

parable extent, in physiological settings, involving profound 

reductions in contractile activity50 or hypoxic environments.51 

Another possible explanation to account for the alteration in 

fiber type distribution in COPD is a selective apoptosis of the 

type I fiber pool. There is increasing evidence to indicate that 

apoptosis does occur, particularly in severe COPD23 and that 

the type I fibers may be selectively targeted.23 However, in 

multinucleated cells such as the myocyte, apoptosis appears 

to induce only atrophy.23

Atrophy was pronounced in the type I fibers in both 

patients to a similar degree. However, only in COPD #2 was 

a predominant atrophy found in the type II fiber subtypes. 

This patient also had the lowest body weight and BMI, 

which appears to be primarily determined by the atrophy that 

occurs.2 Muscle atrophy has also been reported in previous 

studies, however the fiber population affected appears in 

dispute since one study has reported only a selected effect 

on the less oxidative type II subtypes (IIAX and IIX)52 while 

another study has found that the type I and the more oxida-

tive fibers (IIA and IIAX) are selectively affected.53 Our 

study suggests that the fiber-type specific pool affected may 

depend on the amount of muscle wasting that occurs. It is 

also possible that the effect on specific fiber types may be 

affected by gender.26

It is clear that increased capillarization of the muscle 

fiber was not an adaptive response to advanced COPD since 

no increase in the number of capillaries was observed in 

either patient. Muscle wasting was related to a protective 

effect since COPD #2 who had the lowest BMI, with the 

exception of type IIA, maintained a normal number of cap-

illaries per fiber while COPD #1, the patient with a normal 

BMI, displayed a pronounced reduction in capillaries in all 

fiber types and subtypes. The results observed for COPD 

#2 are generally consistent with an earlier study which also 

reported lower capillarity in the different fiber pools.53 The 

ratio of the CC per unit CSA, a structural index of perfusion 
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Figure 2 Relative contents of glucose and monocarboxylate transporters in healthy 
volunteers and two patients with advanced chronic obstructive pulmonary disease.
Notes: For CON, values are means ± SE.
Abreviations: % Standard, percent change first calculated against a standard and 
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potential,25 was compromised in COPD #1 and increased in 

COPD #2 by primarily different mechanisms. In COPD #1, 

the increase was mediated primarily by the disproportionate 

reductions in the number of capillaries while in COPD #2, the 

improved response occurred basically as a result of the more 

pronounced reduction in CSA. The latter response is typical 

to that observed during altitude acclimatization where fiber 

atrophy is present without changes in angiogenesis.51

Biochemistry
The most common defect observed in the muscle of COPD 

patients is a lower activity of CS13,14,16,54 and in isolated stud-

ies, SDH,16 which has been used to support a diagnosis of a 

reduced potential for oxidative phosphorylation.3 Moreover, 

not all studies have reported reductions in CS with COPD.55 

For COPD #2, the patient with the low BMI, it is clear that 

not only is CS reduced, but the reduction extends to all of 

the other CAC and ETS enzymes and complexes studied. 

Moreover, unlike earlier studies which have not reported 

differences between the healthy and COPD groups in the 

limited number of cytosolic enzyme activities,14,54 we found 

that in this patient the regulatory enzymes of glycogenolysis 

and glycolysis, namely PHOS and PFK, were substantially 

lower. However, the reductions did not extend to all cytosolic 

enzymes since HEX and LDH were normal, indicating a 

preserved capacity for glucose phosphorylation and lactate 

oxidation. These differences contradict an earlier study which 

has found elevations in PFK and possibly LDH in patients 

with severe COPD.16 Interestingly in this study, BMI was 

protected. The protection of muscle mass and fiber CSA 

may be important in the changes observed in the cytosolic 

enzymes since many are bound to the myofibrillar proteins,56 

which undergo the degradation. Unfortunately, the lack of tis-

sue prevented enzyme measurements in COPD #1. Given the 

fact that the activity of SDH, measured microphotometry, was 

normal in this patient, it is possible that oxidative potential 

was not compromised. In a related study from this project, 

among the mitochondrial and cytosolic enzymes examined, 

alterations in V
max

 in only COX and HADH (reductions) and 

HEX (increase) were observed in moderate to severe COPD 

patients.18 It appears that multiple factors, including disease 

severity, may alter the individual enzyme response and the 

potential of the metabolic pathways and segments.

A unique feature of the current study was the measure-

ment of the glucose and monocarboxylate transporters, only 

previously measured in muscle of COPD patients in a recent 

study from our group.21 In this earlier study, we have reported 

that GLUT4 and MCT4 were depressed while GLUT1 and 

MCT1 were normal. These results indicate that abnormali-

ties in the content of the transporters may also contribute to 

the disturbances in the metabolic responses to contractile 

activity. In COPD #2, the patient with the low BMI, the 

ability to transport glucose across the cell membrane, both 

during exercise and recovery, would be expected to be 

compromised given the much lower content of GLUT1 and 

GLUT4.19 Moreover, the reduced level of MCT1, the minor 

isoform primarily involved in facilitating lactate into the cell57 

would be expected to impair the distribution of lactate and H+ 

to other tissues. No measurements are available for MCT4, 

the principal isoform, which functions to transport lactate 

and H+ out of the cell where it is generated.57 In COPD #1, 

both MCT1 and MCT4 were depressed with the greatest 

reduction observed for MCT1. In this patient, the potential 

for glucose transport was unaffected, given the normal levels 

of both GLUT1 and GLUT4.

Figure 3 Maximal activities of mitochondrial A) and cytosolic B) enzymes in vastus 
lateralis muscle of healthy volunteers and a patient with advanced chronic obstruc-
tive pulmonary disease.
Notes: For CON, Values are means ± SE (n = 4).
Abbreviations: CON, control; COPD #2, patient with chronic obstructive pul-
monary disease. Vmax, maximal enzymatic activity; CS, citrate synthase; SDH, succinic 
dehydrogenase; MDH, malate dehydrogenase; COX, cytochrome c oxidase; HADH, 
3-hydroxyacyl-CoA dehydrogenase; HEX, hexokinase; PHOS, phosphorylase; PFK, 
phosphofructokinase; PK, pyruvate kinase; LDH, lactate dehydrogenase; CPK, creatine 
phosphokinase; SE, standard error.
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It is apparent that even with the depression in both the 

glucose and monocarboxylate transporters in COPD #2, 

glycogen and lactate concentrations in resting muscle were 

only modestly reduced (glycogen) or unaffected (lactate). 

In COPD #2, a modest supercompensation in glycogen 

was observed accompanied by modest elevations in resting 

lactate. It is emphasized that the transporters represent but 

one among many factors governing regulation.19,20

Since muscle contractility is intimately dependent on the 

viability of the E–C coupling processes, we have also mea-

sured several properties regulating cation exchange across 

the sarcolemma and t-tubule and the SR. The V
max

 of the 

Na+-K+-ATPase, which regulates the active transport of Na+ 

and K+, was normal in COPD #2 and reduced in COPD #1. 

The lower V
max

 in COPD #1 could be explained by the lower 

Na+-K+-ATPase content. The reason for the different response 

pattern between the patients is not clear. However, the greater 

atrophy observed in the type fiber subtypes in COPD #2 may 

have some influence. Since this cation pump is distributed 

in both in the sarcolemma and t-tubule and the cytosol,58 the 

greater loss of myofibrillar protein with atrophy could result 

in an apparent increase in pump concentration since we have 

expressed our results relative to total protein content. Chronic 

hypoxia is known to depress the content of the pump59 which 

could be important given the arterial hypoxemia that exists 

in COPD. However, this would not appear to explain the 

different responses observed since the patients were gener-

ally comparable in pulmonary function. The lower catalytic 

activity of the Na+-K+-ATPase observed in COPD #1 may 

provide a rationale for the impaired membrane excitability 

previously shown to occur in COPD.60 Moderate to severe 

COPD also is accompanied by a reduction in muscle V
max

, 

due possibly to isoform shifts since the content of enzyme 

was unchanged.6

We have reported that disturbances in SR calcium cycling 

in muscle may accompany COPD given the depression in 

Ca2+-uptake observed which appears to be mediated by the 

lower V
max

 of the Ca2+-ATPase.5 The reduction in Ca2+-uptake 

was not accompanied by disturbances in the two phases of 

Ca2+-release. Perhaps of greater significance than the modest 

reductions in Ca2+-uptake observed was the changes that 

occurred in the Ca2+-sensitivity of the enzyme.5 The reduction 

in Ca2+-sensitivity, as indicated by both the Ca
50

 and the η
H
, 

could have important functional implications since to obtain a 

given catalytic activity and consequently a given Ca2+-uptake, 

elevations in Ca2+ or changes in second messenger regulation 

would appear necessary.61 The change in the Ca2+-sensitivity 

of the enzyme suggests that structural alterations may have 

occurred to the enzyme61,62 and/ or alterations in regulatory 

behavior.47 Membrane integrity and the efficiency of Ca2+-

cycling, as measured by the ionophore ratio and coupling 

ratio were normal. Essentially, the same changes in the SR 

occurred in COPD #1. In COPD #2, no biochemical mea-

surements of the SR were possible. However, based on the 

microphotometric assessments, a pronounced depression in 

V
max

 of the enzyme is clearly indicated based on the lower 

activity measured, particularly in the type I and type IIA 

fibers. It is possible that the depression in the Ca2-ATPase 

may be even more depressed in COPD #2 than COPD #1 

since an earlier report has found that the severity is related to 

a lower BMI.63 Since precise regulation in Ca2+
f
 is important 

in defending against fatigue during contractile activity,64 it is 

conceivable that the SR could be implicated in the failure of 

muscle in COPD patients to function normally.

A critical condition in the ability of muscle to maintain 

normal function is the protection of energy homeostasis. 

Maintenance of normal muscle energy levels is particularly 

challenging in COPD where oxygen availability to the 

muscle cell may be compromised.12 Energy homeostasis 

is dependent in part, on the phosphorylation potential, 

represented as the sum of the concentrations of the adenine 

nucleotides and the phosphocreatine. Both COPD patients 

displayed an inability to maintain a normal phosphorylation 

Table 4 The concentration of high-energy phosphates and 
metabolites, glycogen and lactate in vastus lateralis muscle of 
healthy control subjects and two patients with chronic obstructive 
pulmonary disease

CON COPD #1 COPD #2

Glycogen  
(mmol (glucose/units. kg -1.d.w))

261 ± 26 310 198

ATP (mmol. kg-1d.w.) 22.1 ± 0.54 17.3 16.9

ADP 3.34 ± 0.19 2.60 4.32

AMP 0.08 ± 0.01 0.034 0.156

TAN 25.5 ± 0.71 19.9 21.3

IMP 0.10 ± 0.03 0.07 0.32

PCr 83.8 ± 4.1 66.9 69.0

Cr 49.6 ± 2.5 60.2 46.2

TCr 133 ± 1.8 127 115

PP 109 ± 3.6 86.8 90.3

Lactate 1.5 ± 0.05 2.0 1.5

Notes: Values are x SE± . For CON, n = 4.  With the exception of glycogen, the units 
for all properties are mmol. kg-1 d.w.
Abbreviations: CON, control; COPD #1 and COPD #2, two chronic obstruc-
tive lung disease patients; ADP, adenosine diphosphate; AMP, adenosine monophate; 
TAN, total adenine nucleotide; IMP, inosine monophosphate; PCr, phosphocreatine; 
Cr, creatine; TC, total creatine; PP, phosphorylation potential.
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potential, a finding that we have reported previously in 

patients with moderate to severe COPD.21 The pool size of 

both the adenine nucleotides and total creatine were reduced, 

possibly as a consequence of the degradation to IMP and 

inosine with subsequent loss from the cell.65 A similar 

response has been previously reported in COPD.66,67 Given 

the relatively low ATP demands that occur in muscle at 

rest, it is curious that normal phosphorylation potentials 

cannot be maintained. It has been suggested that the pri-

mary problem occurs a result of mitochondrial dysfunction 

which results in a reduction in the P/O ratios and loss of 

efficiency.23 The reserves of the endogenous substrate, 

glycogen, would appear not to be a factor since glycogen 

was within the normal ranges in both patients.

Perspectives and significance
In summary, in this paper we have provided an overview 

of the current state of knowledge on the factors regulating 

contractile behavior in the muscle cell. We also provide a 

brief review of what is known regarding the abnormalities 

that occur in muscle in COPD, an area that merits deeper 

investigation, given the weakness and fatigue that accom-

panies COPD. To promote clinical interest, we present the 

results obtained from two case studies in which an extensive 

profile of muscle properties was obtained. As a practical 

benefit, aimed at facilitating the inclusion of muscle-based 

assessment into clinical practice, we provide information on 

tissue sampling and on the analytical techniques employed 

for the measurement of specific properties. It is emphasized 

that the results of the two case studies are for purposes of 

illustration only. Conclusions regarding the type and mag-

nitude of specific muscle abnormalities, both with regard to 

disease severity and associated side effects, such as cachexia, 

depend on the completion of many more studies with much 

larger sample sizes. It is also emphasized that given the 

limited amount of tissue available, some of the analytical 

profiles completed within each of the muscle characteristics 

addressed is by necessity incomplete. Regardless, based on 

the measurements completed, it is inviting to speculate on the 

potential implications of the abnormalities that were observed 

in the COPD patients with regard to weakness and fatigue.

Weakness and fatigue are general terms, used to broadly 

indicate deficiencies in neuromuscular function. The term 

“weakness” has been defined as a persistent disturbance in 

force-generating capacity while “fatigue” is a loss in the 

capability to generate an expected force when provoked by 

repetitive contractions.64 It is important to emphasize that dur-

ing voluntary effort, the origin of weakness and fatigue may 

be central (neural) as a result of an inability to fully activate 

the motoneuron pool, both within and between synergistic 

muscles, peripheral (muscle) as a consequence of intrinsic 

abnormalities in the muscle fiber itself or a combination of 

both central and peripheral. At present, the locus of weakness 

and fatigue in COPD has been given little attention.

The characterization of weakness and fatigue may also be 

task-dependent, influenced by the specific demands imposed 

on the neural and muscular components. Tasks may be gener-

ally subdivided into those which are conducted at constant 

muscle length (isometric) and into those in which movement 

or velocity is involved (dynamic). From a muscle perspective, 

the intrinsic properties of the excitation and contraction 

processes in the cell represent the primary determinants of 

mechanical behavior.

Given the abnormalities observed in the two COPD 

patients included in this paper several effects on weak-

ness and fatigue should occur. The shift in the fiber types 

towards a greater proportion of type II fibers accompanied 

Table 5 A comparison between healthy controls and two patients 
with chronic obstructive pulmonary disease on selected proper-
ties of the sarcoplasmic reticulum and the Na+-K+-ATPase in tissue 
obtained from the vastus lateralis muscle

CON COPD #1 COPD #2

SR

Ca2+-ATPase

Vmax (µmol.g pro-1.min-1) 175 ± 13 147 NA

Ca50 (nM) 883 ± 51 1445 NA

nH 2.17 ± 0.05 153 NA

Lonophore ratio 3.3 ± 1.3 3.7 NA

Ca2+-uptake (µmol.g pro-1.min-1) 5.04 ± 1.2 4.32 NA

Coupling ratio 0.029 ± 0.01 0.029 NA

Ca2+-release (µmol.g pro-1.min-1)

Phase 1 20 ± 0.26 16.4 NA

Phase 2 5.39 ± 1.7 5.11 NA

Na+-K+-ATPase

βmax (pmol.g wet wt-1) 283 ± 36 228 336

Vmax (nmol.mg pro-1.h -1) 93.1 ± 8.0 61.9 85.9

Notes: Values are x SE± . For CON, n = 4 for Na+-K+-ATPase and n = 2 for SR.
Abbreviations: CON, control; COPD #1 and COPD #2, two chronic obstructive 
pulmonary disease patients; SR, sarcoplasmic reticulum;   Vmax, maximal catalytic activity; 
Ca50, Ca2+ concentration needed to elicit 50% maximal Ca2+-ATPase activity; nH, Hill 
coefficient, as determined from Hill plots using the relationship between free Ca2+ 
concentration and Ca2+-ATPase activity and the section of the curve that corresponds 
to 10%–90% maximal Ca2+-ATPase activity; lonophore ratio, ratio between Vmax 
determined with and without the Ca2+-ionophore, A-23187; Coupling ratio, ratio of 
Ca2+-uptake to Vmax; Ca2+-release, calculated as a fast (Phase 1) and slow phase (Phase 2); 
βmax, maximal enzyme content as measured by the[3H] oubain binding procedure;   Vmax, 
maximal catalytic activity as measured by the 3-O-methyl fluorescein phosphatase 
(3-O-MFPase) assay; NA, not available.
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by a reduction in type I fibers, would be expected to promote 

tasks performed at high velocity as a result of the increase in 

the fast myosin heavy chain isoforms.10 However, the muscle 

atrophy observed would compromise force-generating capac-

ity both during isometric and dynamic contractions.10 The 

resulting weakness would in itself promote a more rapid 

fatigue compared to healthy individuals during repetitive 

tasks performed at a given absolute requirement.

To preserve contractile function during submaximal 

repetitive activity, the muscle cell must be able to respond to 

each of the neural impulses by generating an action potential 

and conducting the action potential on the surface of the 

fiber and into the interior of the fiber by the sarcolemma amd 

t-tubule, respectively. During submaximal contractions, the 

impulse frequency could be in the range of 10–20 Hz. The 

integrity of the action potentials depends on re-establishing 

the resting membrane potential between each excitation, 

a condition which depends on the active transport of Na+ 

and K+, and the restoration of the transmembrane gradients 

for each cation. This function is, in large part, determined by 

the catalytic activity of the Na+-K+-ATPase.58 It is clear that 

in COPD #1, the maximal catalytic activity was depressed, 

a condition that could result in an inability to generate repeti-

tive action potentials. If such was the case, communication 

with the SR would be compromised, Ca2+-release reduced, 

Ca2+-induced myofibrillar activation disrupted and fatigue 

accelerated.61

Intrinsic alterations at the level of the SR itself may 

also alter the mechanical response to sustained activity. For 

COPD #1, on whom we have been able to measure several 

SR properties, it is clear that abnormalities exist, particularly 

with the Ca2+-uptake function of the SR. The reduction in 

Ca2+-uptake observed in this patient would be expected to 

promote reductions in the relaxation rate in the fiber after 

a contraction, which could, depending on the activation 

level, result in a reduction in Ca2+-release. Reductions in 

Ca2+-release, leading to a depression in the concentration of 

cytosolic-free Ca2+, have been identified as a primary cause 

of fatigue during submaximal activity characterized by a rela-

tively low frequency of activation (low frequency fatigue).64 

In addition to the reduction in Ca2+-uptake observed in this 

patient, abnormalities were also found in the regulatory 

behavior of the enzyme. The loss of Ca2+-sensitivity, as an 

example, unless compensated for, would have important 

implications to the cytosolic-free Ca2+ needed to achieve a 

desired Ca2+-uptake.

The alterations in energy-producing machinery within 

the cell observed in the patients may also impact on tasks 

requiring sustained activity. At rest, the energy charge in the 

cell in both patients is only modestly impaired. Consequently, 

given the relatively small requirements of a brief contraction 

on the high-energy phosphagens, it would not be expected 

that force-generating capacity would be affected. However, 

during repetitive activity, ATP must be regenerated from the 

aerobic and glycolytic metabolic pathways, the contribution 

of each depending on the demands of the task.65 A failure 

of the metabolic pathways to respond with increases in flux 

rate commensurate with increases in ATP utilization could 

result in a reduction in energy charge with accumulation 

of metabolic byproducts.12 The accumulation of selected 

metabolic byproducts, such as inorganic phosphate and ADP, 

could impair one or more of the excitation and contraction 

processes, resulting in an inability to translate a neural com-

mand in a desired force response. It is also important that 

the contribution of the aerobic pathway in ATP re-synthesis 

using carbohydrate as a substrate be optimized in order to 

increase efficiency and minimize the disruptions mediated 

with byproduct accumulation such as hydrogen ion.12 The 

apparent reduction in oxidative potential in COPD #2 could 

compromise the contribution of this pathway, necessitating 

a greater activation of glycolysis, which may be problematic 

given the reduced potential also observed in this pathway in 

this patient.

The reduced level of both the glucose and lactate 

transporters observed in COPD #2 could also impair the 

availability of the substrate, glucose, into the cell,19 which 

is needed for glycolysis, and the removal of lactate from the 

cell.20 Both are factors that could contribute to fatigue.21

As an added complication there is accumulating evidence 

to suggest that in diseases such as CHF and COPD, there 

are disturbances in ROS, either as a result of a more rapid 

production of ROS and/or a loss of antioxidant defence 

mechanisms.35 Repetitive contractile activity is known to 

increase ROS concentration and even in healthy humans 

to contribute to the inactivation that occurs to the cation 

pumps.45,58 It is possible that premature fatigue observed in 

COPD may also be related to ROS accumulation.

We emphasize that implications that we have provided 

regarding the effects of the abnormalities observed in the 

two patients are based on speculation only. However, they 

do provide a basis for beginning to predict the potential out-

comes on weakness and fatigue in COPD. The assessment 

of many more cellular properties are possible and, indeed 

necessary, in order to gain a more definitive extrapolation of 

the mechanical defects induced. The technology and protocol 

for the measurement of weakness and fatigue in response to 
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standardized tasks in COPD have been published and are 

relatively easy to administer. Much progress can be expected 

in the clinical application in this area in the future.
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