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As the most common type of renal cell carcinoma (RCC), the renal clear cell carcinoma
(ccRCC) is highly malignant and insensitive to chemotherapy or radiotherapy. Although
systemic immunotherapies have been successfully applied to ccRCC in recent years,
screening for patients who can benefit most from these therapies is still essential and
challenging due to immunological heterogeneity of ccRCC patients. To this end, we
implemented a series of deep investigation on the expression and clinic data of ccRCC
from The Cancer Genome Atlas (TCGA) International Consortium for Cancer Genomics
(ICGC). We identified a total of 946 immune-related genes that were differentially
expressed. Among them, five independent genes, including SHC1, WNT5A, NRP1,
TGFA, and IL4R, were significantly associated with survival and used to construct the
immune-related prognostic differential gene signature (IRPDGs). Then the ccRCC patients
were categorized into high-risk and low-risk subgroups based on the median risk score of
the IRPDGs. IRPDGs subgroups displays distinct genomic and immunological
characteristics. Known immunotherapy-related genes show different mutation burden,
wherein the mutation rate of VHL was higher than 40% in the two IRPDGs subgroups, and
SETD2 and BAP1 mutations differed most between two groups with higher frequency in
the high-risk subgroup. Moreover, IRPDGs subgroups had different abundance in tumor-
infiltrating immune cells (TIICs) with distinct immunotherapy efficacy. Plasma cells,
regulatory cells (Tregs), follicular helper T cells (Tfh), and M0 macrophages were
enriched in the high-risk group with a higher tumor immune dysfunction and rejection
(TIDE) score. In contrast, the low-risk group had abundant M1 macrophages, mast cell
resting and dendritic cell resting infiltrates with lower TIDE score and benefited more from
immune checkpoint inhibitors (ICI) treatment. Compared with other biomarkers, such as
TIDE and tumor inflammatory signatures (TIS), IRPDGs demonstrated to be a better
biomarker for assessing the prognosis of ccRCC and the efficacy of ICI treatment with the
promise in screening precise patients for specific immunotherapies.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
malignancies in humans. It is divided into renal papillary cell
carcinoma, renal clear cell carcinoma (ccRCC), and chromophobe
renal cell carcinoma. ccRCC is the most common type, accounting
for over 80% of renal cancers (1). ccRCC is highly malignant and
insensitive to chemotherapy or radiotherapy. At present, surgical
resection is an effective treatment for early limited ccRCC.
However, approximately 25% to 50% of primary patients
experience recurrence five years after nephrectomy, and one-
third of patients develop metastases; the overall 5-year survival
rate is only 14% (1–3). ccRCC has distinct immunological features,
such as a high degree of immune infiltration, relatively low
mutational load, and relative sensitivity to anti-angiogenic
therapy and immunotherapy (4).

Systemic immunotherapy has been successfully applied to
ccRCC in recent years and has shown great benefits. Cytokine-
based immunotherapy, including interleukin 2 (IL-2) and
recombinant human interferon-alpha 2a (IFN-a2a), is the first
approved immunotherapy for renal cell carcinoma. The
combined results of several studies have shown an overall
objective response rate (ORR) of 14% in IL-2-treated ccRCC
patients, with 5% having complete response (CR) and 9% partial
response (PR) (5). IFN-a2a treatment has an ORR of 7.5%–10%
in patients with advanced ccRCC (6, 7). The ORR of both
cytokine treatments is generally low and is accompanied by
significant toxicity to multiple major organs (2). Moore et al.
discovered that the Von Hippel-Lindau (VHL) gene is mutated
in more than 80% of renal cell carcinomas owing to promoter
methylation, resulting in VHL protein dysfunction, which in
turn induces hypoxia-inducible factor (HIF) activation and leads
to abnormal expression of downstream vascular endothelial
growth factor (VEGF) (8–10). After this discovery, tyrosine
kinase inhibitors (TKIs), such as sunitinib and cabozantinib,
which target the VEGF pathway and neovascularization, have
been progressively used in ccRCC. The ORR of sunitinib
monotherapy was 27%; however, previous studies have
reported grade 3 or higher adverse reactions in 65%–70.6% of
patients (11–13). Although the efficacy of TKIs over previous
cytokine therapy has been confirmed, most patients with ccRCC
develop drug resistance within one year (14).

The advent of immune checkpoint inhibitors (ICI) has solved
the problems of low response rate and high toxicity in both
cytokine and TKI treatments, and they are now the primary
treatment option for ccRCC in clinical settings. Previous studies
have demonstrated that immune checkpoints are involved in
regulating cytotoxic T lymphocyte (CTL) activation and effector
function to maintain autoimmune tolerance, and tumor cells evade
the body’s immunosurveillance in this way (15). ICI therapy
achieves the antitumor effect by reactivating the immune
response effect of CTL. ICIs currently used in the treatment of
ccRCC mainly include pembrolizumab and nivolumab (PD-1
suppressants); avelumab and atezolizumab (PD-L1 suppressants);
and ipilimumab (CTLA-4 suppressant). The ORR improves to
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20%–42% with ICI monotherapy (13, 16–18). With the approval of
TKIs and ICI in combination for ccRCC, multiple phase-III trials
have provided many combination options of ICI and TKIs for
clinical first- and second-line immunotherapy, with an ORR of
39.1%–71%. However, previous studies have reported that more
than 90% of patients receiving the combination treatment of TKI
and ICI had adverse events, of which 46%–82.4% had grade 3 or
higher adverse events (13, 19–25). Although the ORR of ICI
monotherapy is not satisfactory, the combination of ICI and
TKIs improves the ORR to some extent, but also increases toxicity.

Screening for patients who can benefit most from these
therapies is essential. Several studies have found that many
factors, including tumor microenvironment (TME), influence
the efficacy of ICI treatment (26, 27). Tumor-infiltrating
immune cells (TIICs) in the TME of ccRCC play a key role in
both pro- and anti-tumor processes, and are closely associated
with clinical regression and response to immunotherapy (8, 10, 28,
29). According to Gulati et al., the TME of ccRCC is extremely
heterogeneous. Patients with the same degree of progression may
show different treatment responses and prognoses when receiving
immunotherapy (30). Thus, there is a need to elucidate the
interactions of various TIICs in the TME and to screen patients
who are more suitable for immunotherapy. Current clinical
treatment options usually rely on the International Metastatic
Kidney Cancer Database (IMDC) or Memorial Sloan-Kettering
Cancer Center (MSKCC) criteria (31, 32). The prognosis of ccRCC
is primarily based on pathological staging (33); however, the
current pathological staging system is inadequate to identify
patients who are prone to adverse effects and low response rate
when receiving ICI therapy. To advance the individualization of
immunotherapy, it is urgent to discover new potential biomarkers
to predict clinical response to ICI and prognosis.

In this study, we collected KIRC-mRNA data and related
clinical information for ccRCC from TCGA. We initially
screened 24 immune-related hub genes by applying WGCNA
and univariate Cox regression analysis. Then, we constructed an
independent immune-related prognostic differential gene
signature (IRPDGs) containing five genes using multivariate
Cox regression analysis. Data from ICGC were used for
external validation. We defined high- and low-risk subgroups
of the IRPDGs based on the median risk score and used gene set
enrichment analysis (GSEA) to explore important signaling
pathways and potential molecular mechanisms enriched in the
IRPDGs subgroups. We also downloaded the corresponding
mutation data in TCGA for a comprehensive analysis of
somatic mutations. We used the deconvolution algorithm
CIBERSORT (34) and single sample genes set enrichment
analysis (ssGSEA) to analyze the relative infiltration abundance
of 22 different TIICs and 29 immune-associated functional
indicators in different subgroups. Receiver operating
characteristic (ROC) analysis was performed to further assess
the prognostic value of the IRPDGs. Compared with other
biomarkers such as tumor immune dysfunction and rejection
(TIDE) and 18-gene tumor inflammatory signatures (TIS), the
IRPDGs demonstrated significant advantages in predicting the
May 2022 | Volume 13 | Article 890150
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prognosis of patients treated with immunotherapy. The
workflow for this study is shown in Figure 1.
MATERIALS AND METHODS

Patients and Data
We downloaded RNA-sequencing data and detailed clinical
information for ccRCC from TCGA (https://portal.gdc.cancer.
gov/), which contains 539 cancer samples and 72 paracancerous
samples. A total of 91 specimens were obtained from the ICGC
database (https://dcc.icgc.org/releases) for external validation.
Perl language (version 5.30.2) was used to extract clinical
information. The list of immune-related genes was obtained
from the Immport (https://www.Immport.org/home/) and the
InnateDB (https://www.innateDBdb.com/) databases.

Search for Immune-Related Hub Genes
The DEGs were screened from 539 ccRCC samples and 72
paracancerous samples with the LIMMA package (p-value
< 0.05, |log2FC| > 1), and were intersected with the
downloaded list of the immune-related genes to obtain
immune-related DEGs. The Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) were used
to explore the major pathways enriched in immune-related hub
genes. We used WGCNA (35) to identify hub genes. We first
calculated Pearson correlation coefficients, constructed a
similarity matrix using the expression data, and converted the
similarity matrix into a neighborhood matrix with a soft
threshold of 3; we then built TOM matrix based on the
neighborhood matrix, clustered genes with a distance of 1
Frontiers in Immunology | www.frontiersin.org 3
−TOM, and identified and constructed different gene modules
for visualization. Seven modules were obtained, and the top two
modules (brown and green modules) with the most significant
correlations were chosen. We filtered the top 40 core genes in the
two modules by using CytoHuba (36). Finally, the best cutoff
values of the core genes were calculated by the R package, and a
total of 24 immune-related hub genes closely related to ccRCC
survival were screened for further analysis.

Construction and Validation of IRPDGs
Five genes independently and significantly associated with
ccRCC prognosis were screened from 24 hub genes by
multivariate Cox regression analysis. The IRPDGs was defined
as the result of multiplying the expression value of each gene
separately by the sum of the weights in the Cox model. Different
subgroups of IRPDGs were defined according to the median risk
score. The IGCG data (n = 91) were used for validation. Kaplan–
Meier survival analysis with log-rank tests was performed to
assess the prognostic power of the IRPDGs (P < 0.05).

Molecular Profiling in the
IRPDGs Subgroups
The GSEA was used to reveal important signaling pathways and
potential molecular mechanisms enriched in different subgroups.
A reference genome (c2.Cp.kegg.v7.4.Symbols.Gmt) was taken to
compare immunophenotypes between the IRPDGs subgroups
(with p < 0.05 and FDR < 0.25 as cutoff values). We downloaded
mutation information associated with ccRCC from TCGA, and
the Maftools package in the R software was used to
comprehensively analyze somatic mutations between the
IRPDGs subgroups.
FIGURE 1 | Workflow of the study.
May 2022 | Volume 13 | Article 890150
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Assessment of Immune Characteristics
and Immunotherapy
Based on ccRCC gene expression profiles, the abundance of 22
TIICs in different subgroups was quantified by using CIBERSORT
(https://CIBERSORT.stanford). We used the GSVA package for
ssGSEA of the enrichment levels of 29 immune-related functional
indicators. Using the “survival ROC” R-package for survival
analyses, we calculated areas under the curve (AUC) at different
cutoff time points. To further explore the value of the IRPDGs in
prognosis, we analyzed differences in TIDE score, microsatellite
instability (MSI), T-cell dysfunction, and T-cell rejection effects in
the IRPDGs subgroups. We compared the prognostic ability of the
IRPDGs, TIDE, and TIS. The TIDE score was calculated online
(http://tide.dfci.atherard.edu/), and the TIS score was defined as the
mean of the log2-scaled normalized expression of 18 marker
genes (37).

Statistical Analysis
R program was used in most of our research. Pearson correlation
tests were used to analyze the characteristics of immune-related
hub genes. Differences between variables were analyzed using
independent t-tests and chi-square tests. The prognostic value of
the IRPDGs compared with clinicopathological features of
ccRCC was assessed by the K–M survival and Cox regression
analysis. Two-tailed P < 0.05 was considered significant.
RESULTS

Screening of Immune-Related Hub Genes
We screened a total of 9459 DEGs from the TCGA cohort (539
cancer samples, 72 paracancerous samples). The list of the immune-
related genes was obtained from InnateDB and ImmPort databases.
We obtained 946 immune-related DEGs by taking intersections
(Figures 2A, B). Then, we performed functional enrichment
analysis and identified 2137 GOs and 87 KEGG-related pathways
(Figures 2C, D). Circle diagrams and specific tabular data are
shown in Figure S1 and Table S1. Candidate genes (n = 946) were
then subjected to WGCNA. Logarithm log(K) had nodes with
connectivity K and negatively correlated with logarithm log(P(K))
of node probabilities, with a correlation coefficient greater than 0.9.
Based on the relationship between soft-threshold power and average
connectivity, the optimal power for scale-free network-based
networks was determined as 3. Seven modules were finally settled.
Based on Pearson correlation coefficients between the modules and
sample features, brown and green modules closely related to ccRCC
were selected, and the top 40 core genes were identified for a follow-
up study by CytoHuba (Figures 2E–G). The Kaplan–Meier survival
analysis and univariate Cox analyses identified 24 immune-related
hub genes that were closely associated with RCC survival
(Figure 3A, Figure S2).

Construction of the IRPDGs and Clinical
Variability Analysis
Multivariate Cox regression analysis of the 24 immune-related hub
genes finally identified 5 independent prognostic genes (SHC1,
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WNT5A, NRP1, TGFA, IL4R) that significantly affected ccRCC
survival (Figure 3B). We then constructed prognostic models for the
IRPDGs with the following formula: IRPDGs = expression value of
SHC1 * (0.12) + expression value of WNT5A * (0.37) + expression
value of NRP1 * (−0.12) + expression value of TGFA * (−0.06) +
expression value of IL4R * (0.12). The high-risk versus low-risk
IRPDGs subgroups were defined based on the median risk score as
risk threshold. The results showed that patients in the low-risk
subgroup had a better prognosis than those in the high-risk
subgroup (P < 0.001, log-rank test) (Figure 3C). Using ICGC data
as external validation yielded results consistent with those of the
TCGA dataset, both with P-values < 0.05 (Figure 3D).

The univariate Cox regression analysis including clinical and
pathological information showed that age, IRPDGs, grade, and stage
were high-risk factors associated with ccRCC prognosis. Further
multivariate Cox analysis revealed that the IRPDGs remained an
independent prognostic marker after adjusting for other factors
(Figures 4A, B). The distribution of clinicopathological
characteristics of the TCGA patient cohort across the IRPDGs
subgroups is shown in Figure 4C, with detailed results in Table S3.
Figures 4D, E specifically demonstrate the significant differences in
the distribution of tumor stage and grade between the two
risk subgroups.

Molecular Characterization in the
IRPDGs Subgroups
Molecular pathways and potential mechanisms enriched in the
IRPDGs subgroups were identified by the GSEA. Pathways related
to arachidonic acid metabolism and cytokine–cytokine interactions
were enriched in the IRPDGs-high subgroup, while citrate–
tricarboxylic acid (TCA) cycle and neuroactive ligand-receptor
interaction pathways were enriched in the IRPDGs-low subgroup
(Figures 5A, B). The detailed results of the GSEA are presented in
Table S2. To further explore the immunological properties, we
analyzed the somatic mutations between the subgroups. The
number of mutations was higher overall in the high-risk subgroup
than in the low-risk subgroup of the IRPDGs.Of these, the frequency
of missense mutations was the highest, followed by shift deletions
andnonsensemutations.Figures5C,D shows the top20geneswith
the highest mutation rate in both subgroups. The mutation rate in
VHL was higher than 40% in both subgroups. BAP1 and SETD2
mutation rates differed most between the two subgroups and were
mostly seen in the high-risk subgroup.

Immunological Characteristics Among the
IRPDGs Subgroups
The CIBERSORT is an analysis tool developed in Java and R for
characterizing cell composition from tissue gene expression
profiles. It uses a deconvolution algorithm to estimate the
abundance of member cell types in mixed cell populations
based on gene expression data (34). Here, we use CIBERSORT
to explore the proportion of various TIICs in the different
IRPDGs subgroups. The high-risk subgroup was mainly rich in
Tfh, Tregs, plasma cells, and M0 macrophages; the low-risk
subgroup had more M1 macrophages, dendritic cells resting, and
mast cells resting (Figure 6A). The ssGSEA was applied to
May 2022 | Volume 13 | Article 890150
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explore indicators of immune function involved in the two risk
subgroups. The results showed that the IRPDGs-high subgroup
was more enriched in CD8+ T cells, cytolytic activity, promotion
of inflammogenesis, T cell co-inhibition, and costimulation, and
type I IFN responses; in contrast, the IRPDGs-low subgroup was
enriched in mast cells and functions related to type II IFN
responses (Figure 6B). We then explored the value of the
abovementioned differential TIICs for prognosis and found
that patients with higher expression scores for mast cells
resting and dendritic cells resting had a better prognosis, while
Frontiers in Immunology | www.frontiersin.org 5
those with high expression scores for plasma cells, follicular
helper T cells, Tregs, and M0 macrophages had a worse
prognosis. This was consistent with the prognostic model
results that the low-risk subgroup of IRPDGs had a better
prognosis (Figures 6C–H).

Survival Analysis Between the
IRPDGs Subgroups
Immunotherapy efficacy between the subgroups of IRPDGs was
assessed using TIDE. A higher TIDE score is associated with
A B

D

E F

G

C

FIGURE 2 | Screening and functional enrichment analysis of immune-related differentially expressed genes (DEGs), with identification of hub genes. (A) Volcano plot
of ccRCC differentially expressed genes. (B) Heatmap of immune-related DEGs. (C) Gene Ontology (GO) enrichment analysis of immune-related DEGs. (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of immune-related DEGs. (E) Gene dendrograms and color distribution were obtained from
WGCNA. (F) Gene modules with different survival relevance were obtained by WGCNA. (G) Determination of the optimal soft threshold in WGCNA.
May 2022 | Volume 13 | Article 890150
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poorer ICI therapy outcomes and poorer patient survival (38).
Calculation of TIDE score for the IRPDGs subgroups showed
higher TIDE scores in the high-risk subgroup than in the low-
risk subgroup. This means that patients with low IRPDGs scores
have a greater benefit from immunotherapy. In addition, the
IRPDGs-low subgroup had a higher MSI and lower T-cell
rejection and T-cell dysfunction, with p-values less than 0.05
for all of the outcomes (Figures 7A–D). Using the ROC analysis
to evaluate the model for predicting disease progression, we
showed that our model was able to predict the survival rates of
ccRCC patients at 1, 2, and 3 years with good accuracy and that
the predictive value of the IRPDGs for overall survival (OS) was
significantly better than that of TIDE or TIS. The AUC for
IRPDGs, TIDE, and TIS was 0.741, 0.543, and 0.516, respectively
(Figures 7E, F).
DISCUSSION

Considering that ccRCC is an immunogenic and vascularized
tumor (27), ICI therapy has shown great potential and has been
approved by the US Food and Drug Administration (FDA) as the
standard treatment for patients with early and advanced
metastatic ccRCC (4, 8). However, the ORR to ICI therapy
remains low, with only a small proportion of patients
Frontiers in Immunology | www.frontiersin.org 6
achieving long-term, sustained outcomes after the treatment.
The combination of ICIs and TKIs is now increasingly studied
and is superior to ICI monotherapy in terms of OS and ORR, but
it is also associated with greater toxicity. Screening patients with
potentially greater benefit from immunotherapy is necessary.
The TME consists of tumor cells and other nonmalignant cells,
including the surrounding TIICs, fibroblasts, and stromal cells
(39, 40). Among them, TIICs regulate tumor development at
different stages (41). We have knowledge from previous studies
that ccRCC patients treated with ICI show different treatment
responses probably due to the heterogeneity of TME (30).
Therefore, an in-depth investigation of the interaction
mechanisms and biological functions of TIICs in the TME can
help to optimize current immunotherapy. Given the limited
assessment tools available, new biomarkers that effectively
predict the clinical response and prognosis of ICI therapy are
urgently needed to achieve precision immunotherapy.

A total of 946 immune-related DEGs were identified in our
study. The final IRPDGs was constructed based on the five
independent prognostically significantly associated genes and
was validated in the ICGC dataset. After adjusting for clinical
and pathological variables, the IRPDGs remained an independent
prognostic factor. The five genes used to construct the IRPDGs
were WNT5A, NRP1, TGFA, SHC1, and IL4R. The Wnt family
member 5A (WNT5A) is a classical noncanonical WNT ligand
A B

DC

FIGURE 3 | Construction of IRPDGs and prognosis of different IRPDGs subgroups. (A) Univariate Cox analysis of 24 immune-related hub genes. (B) Five genes are
independently and significantly associated with ccRCC prognosis. (C) K–M survival analysis of the IRPDGs subgroups in the TCGA cohort. (D) K–M survival analysis
of the IRPDGs subgroups in the ICGC cohort.
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that belongs to a large family of WNT cysteine-rich secretory
glycoproteins and is involved in multiple signaling pathways that
regulate a variety of cellular processes (42, 43). WNT5A mediates
the activation of Tregs and tumor-associated macrophages
(TAM), which thereby induces immunosuppression during the
progression of castration-resistant prostate cancer (44). WNT5A
may be a potential target for the prevention of gastrointestinal
radiotoxicity because its absence impairs the ability of individual
intestinal stem cells (ISCs) to form crypt spheroids after
irradiation, whereas the addition of WNT5A saves ISCs from
radiation-induced cell death (45). Tumor angiogenesis is
considered an important phenomenon in the progression of
tumors and is associated with overexpression of Neuropilin1
(NRP1) receptors. NRP1 is a nonenzymatic transmembrane
glycoprotein, and recent studies have shown that high NRP1
surface expression leads to more suppressive Tregs and reduced
progression-free survival (PFS). NRP1 is an independent novel
marker in RCC (46), which forms a complex with transexpressed
VEGFR2 and inhibits tumor angiogenesis, thereby improving
Frontiers in Immunology | www.frontiersin.org 7
patient survival. NRP1 is also highly expressed in glioblastoma
multiforme (GBM) and is closely associated with the prognosis of
GBM patients (47). As a member of the epidermal growth factor
family, TGFA binds to EGFR to activate a series of signaling
pathways that regulate cell biological processes such as cell
proliferation, migration, differentiation, and energy metabolism
(48, 49). TGFA also promotes cell proliferation and epithelial-
mesenchymal transition (EMT) in prostate, liver, and breast
cancers (50–53). SHC1 is a kind of skeletal protein that is
associated with cell membrane metabolism and exerts its
regulatory role mainly through the EGFR pathway (54, 55).
Overexpression of SHC1 is associated with poor survival in
stage IIA colon cancer (56). SHC1 encodes a splice protein that
acts on various tyrosine kinase signaling pathways and is thought
to be a key mediator in promoting immunosuppressed breast
cancer (55). Interleukin 4 receptor (IL4R) is a type I cytokine
receptor produced by activated Th2 cells and mast cells. The IL-4/
IL-4R axis plays a role in immunity and inflammation, and IL4R
has been shown to interact with SHC1 (57, 58).
A B

D E

C

FIGURE 4 | Differences in clinicopathological information and prognostic assessment in different IRPDGs subgroups. (A) Univariate Cox analysis of clinicopathological
factors and IRPDGs (P < 0.05). (B) Multivariate Cox analysis of clinicopathological factors and IRPDGs (P < 0.05). (C) Distribution of clinicopathological features in the
subgroups of IRPDGs in the TCGA cohort (** P < 0.01, *** P < 0.001). (D) Differential tumor stages in the IRPDGs subgroup of the TCGA cohort. (E) Differential tumor
grades in the IRPDGs subgroup of the TCGA cohort.
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Our survival analysis revealed that patients in the low-risk
subgroup of the IRPDGs had a better prognosis. We further
explored the prognostic characteristics of ccRCC patients in the
IRPDGs subgroups using TIDE. Peng Jiang established the
online TIDE score combining T cell dysfunction and T cell
exclusion characteristics, which predicts immunotherapy
responsiveness by calculating genome-wide expression profiles
of pre-treatment patients, simulating tumor immune escape with
different levels of CTLs (38). TIDE has shown outstanding
advantages over other biomarkers for the prediction of ICI
therapy responsiveness in prospective clinical trials. Our results
showed higher TIDE scores and lower T-cell dysfunction and T-
cell rejection in the high-risk subgroup of the IRPDGs. This
suggests that patients in IRPDGs-high groups had more immune
dysfunction and were less responsive to immunotherapy. In
contrast, the IRPDGs-low group with a lower TIDE score and
higher MSI score had a greater benefit from immunotherapy and
a better prognosis. Interferon-gamma-7–related 18-gene T-cell
inflammatory signaling (TIS) is a good predictor of ICI therapy
reaction and prognosis in a variety of tumors (37, 59, 60).
Through the analysis of the ROC curve, we found that the
prediction value of total survival time was significantly better
for the IRPDGs than for TIDE and TIS, with the AUC of
IRPDGs, TIDE, and TIS being 0.741, 0.543, and 0.516,
respectively. This means that the IRPDGs can effectively
identify high-risk patients and select those who are more
suitable for immunotherapy. Moreover, the IRPDGs, which
consist of only five genes, are also easier to detect.
Frontiers in Immunology | www.frontiersin.org 8
The TME plays a crucial role in the tumors’ growth and
migration. The GO enrichment and KEGG pathway analyses of
the immune-related DEGs revealed a variety of immune-associated
pathways and functions, including leukocyte-mediated adaptive
immunity, cytokine–cytokine receptor interactions, chemokine, T-
cell receptor, and B-cell receptor signaling pathways. Based on the
results above, we further explored the mechanisms of TIICs in
ccRCC immunomodulation through the GSEA. Our study showed
large differences in the composition of TIICs between the IRPDGs
subgroups. Six TIICs that differed significantly between the
subgroups were significantly associated with the survival of
patients with ccRCC. Tfh, Tregs, plasma cells, and M0
macrophages were more abundant in the IRPDGs high-risk
subgroup, while M1 macrophages, mast cell resting, and dendritic
cell resting was more frequently seen in the low-risk subgroup. As
one of the important immunosuppressive cell types, Tregs are
highly immunosuppressive to effector cells. It has been confirmed
that with the development of ccRCC, the infiltration of Treg cells
increases, which indicates a poor prognosis (61, 62); and the degree
of Treg infiltration is lower in some patients treated with ICI to CR
(63). Previous studies have suggested that the infiltration of ccRCC
by memory B cells and Tfh indicates a poor prognosis; in contrast,
dendritic cell resting, mast cell resting, and eosinophilia are
significantly associated with improved prognosis (64). Stefanie
Regine Dannenmann et al. showed that pro-inflammatory
macrophage phenotype (M1) is induced by IFNg and
lipopolysaccharide (LPS), and some factors associated with M1
correlate with prolonged survival in ccRCC (65). Our findings
A B

DC

FIGURE 5 | Molecular characterization of different subgroups of IRPDGs. (A) GSEA of the high-risk subgroup of IRPDGs. (B) GSEA of the low-risk subgroup of
IRPDGs. (C) Significant gene mutations in the high-risk subgroup of IRPDGs. (D) Significant gene mutations in the low-risk subgroup of IRPDGs. The percentage of
mutations is shown vertically on the right and the total number of mutations is shown above. The color-coding indicates the mutation type.
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support these conclusions. Further exploration of the molecular
immune functions between the IRPDGs subgroups revealed that the
high-risk subgroup was more likely to involve CD8+ T cells and
tumor-infiltrating lymphocytes (TILs), whereas the low-risk
subgroup involved more mast cells and type II IFN responses.
CD8+ T cell infiltration is associated with longer PFS and OS in
most solid tumors (66); in contrast, in ccRCC, infiltration by CD8+
T cells predicts a poor prognosis (67–69). Type II interferon IFN-g is
released by T cells, NK cells, and macrophages. A recent study has
explored the relationship between PD-L1 expression and IFN-g by
RT-PCR and western blot analysis; it showed that PD-L1 was
induced by typical IFN-g signaling in ccRCC cell lines, and IFN-
g-positive tumor tissues had high levels of PD-L1-mRNA expression
and showed better OS (70). These findings further supported that
the low-risk subgroup of the IRPDGs had better prognosis and
immune efficacy than the high-risk subgroup.
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A prerequisite for the efficacy of ICI is the generation of
immunogenic neoantigens by tumor-specific mutations and the
promotion of immune infiltration. Tumor mutational load (TMB)
is an important predictor of ICI efficacy in many malignant tumors
(71). We explored differences in somatic mutations between the
subgroups and showed that missense mutations occurred most
frequently between the two subgroups, followed by shift deletions
and nonsense mutations. Missense mutations are associated with
increased tumor antigen presentation and CD8+ T cell infiltration
in most of the solid tumors (61, 72, 73). The VHLmutation rate was
higher than 40% in both IRPDGs subgroups, and genes with the
largest mutational differences were SETD2 and BRCA1-associated
protein-1 (BAP1), which accounted for 18%:4% and 14%:5%,
respectively. SETD2 is a histone methyltransferase whose normal
function is of great importance in genome stability and DNA
damage repair (74, 75). SETD2 mutations are associated with
A B
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C

FIGURE 6 | Immunological profiling of different subgroups of IRPDGs. (A) Differences in the distribution of tumor-infiltrating immune cells in TMEs of different IRPDGs
subgroups. The difference between the two groups was statistically significant (ns: not significant, * P < 0.05, ** P < 0.01, *** P < 0.001). (B) Distribution of
immunerelated functional indicators in different subgroups of IRPDGs. The difference between the two groups was statistically significant (ns: not significant, * P <
0.05, ** P < 0.01, *** P < 0.001. (C–H) Six tumor-infiltrating immune cells significantly associated with ccRCC prognosis.
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shorter PFS andOS inmetastatic RCC and breast cancer (76). BAP1
is a kind of deubiquitinase that regulates various cellular functions
including proliferation, differentiation, and metabolism (77, 78).
BAP1 is mutated in lung cancer, thyroid cancer, kidney cancer,
melanoma, and mesothelioma (79–81). Previous studies have found
that the rate of BAP1 mutation increases with the increase in the
ccRCC stage. BAP1 and SETD2 mutations are associated with
disease progression and indicate a worse prognosis (82, 83). These
data are consistent with our survival results; namely, patients with
high SETD2 and BAP1 mutations in the IRPDGs-high subgroup
had a poorer prognosis than those in the low IRPDGs subgroup.

In conclusion, with the advent of the era of accurate
immunotherapy, IRPDGs shows obvious advantages in evaluating
the response to ICI treatment and in predicting the prognosis.
TIICs, which are significantly related to the prognosis of ccRCC in
the IRPDGs subgroups, are helpful to guide future immunotherapy.
The IRPDGs is a promising tool to guide clinical practice. More in-
depth studies are needed to further confirm this point.
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