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Abstract: We describe a high-speed camera system for frequency domain 
imaging suitable for applications such as in vivo diffuse optical imaging and 
fluorescence lifetime imaging. 14-bit images are acquired at 2 gigapixels 
per second and analyzed with real-time pipeline processing using field 
programmable gate arrays (FPGAs). Performance of the camera system has 
been tested both for RF-modulated laser imaging in combination with a 
gain-modulated image intensifier and a simpler system based upon an LED 
light source. System amplitude and phase noise are measured and compared 
against theoretical expressions in the shot noise limit presented for different 
frequency domain configurations. We show the camera itself is capable of 
shot noise limited performance for amplitude and phase in as little as 3 ms, 
and when used in combination with the intensifier the noise levels are nearly 
shot noise limited. The best phase noise in a single pixel is 0.04 degrees for 
a 1 s integration time. 

© 2011 Optical Society of America 

OCIS codes: (170.0110) Imaging systems; (170.3880) Medical and biological imaging; 
(170.6920) Time-resolved imaging; (170.5280) Photon migration; (170.3650) Lifetime-based 
sensing. 
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1. Introduction 

The frequency domain technique [1] is a method commonly used to perform time-resolved 
measurements for biomedical optics applications. Temporal resolution is achieved by 
measuring the phase shift of a sinusoidally modulated light source. An advantage of frequency 
domain measurements is that the phase shift can typically be measured to a very small fraction 
of the optical period (on the order of a part in 10

4
), which means that a frequency domain 

system can achieve better temporal resolution than a time domain system with the same 
bandwidth. The two primary applications of frequency domain imaging are diffuse imaging in 
vivo and fluorescence lifetime imaging. For diffuse optical imaging, the time-resolved 
measurements are used to separate the contributions of scatter and absorption, hence 
improving the ability to recover information on concentrations of endogenous chromophores 
such as hemoglobin concentrations and hemoglobin oxygenation. For fluorescence lifetime 
imaging, the lifetime information can be used to provide information on the environment of 
the emitting fluorophor such as pH, oxygen concentrations, or ion concentrations through 
fluorescence quenching, molecular reorientation, or proximity of neighboring chromophores 
through fluorescence resonance energy transfer (FRET). The phase noise is often the critical 
performance criterion for these applications. 

A variety of methods have been applied to frequency domain measurements including 
both single channel or point measurements [2–6] with either homodyne and heterodyne 
detection and imaging systems [7–11], which generally use heterodyne detection. Imaging 
systems have been described with application to both photon migration or diffuse imaging [7–
9] and fluorescence lifetime imaging (FLIM) [10,11]. The imaging systems typically acquire 
images at different phases and process the images on a desktop computer. We demonstrate a 
different approach using a high-speed camera with real-time processing performed by field 
programmable gate arrays (FPGAs). This enables increasing the intermediate frequency by 
roughly 2 orders of magnitude from ~10 Hz to ~1 kHz and enables calculation amplitude and 
phase images at this frame rate in real time. 

Higher frame rates and higher intermediate frequencies provide a number of potential 
advantages for frequency domain imaging. When performing measurements at low frame 
rates or low intermediate frequencies, the phase results can be impacted by system phase drift 
or 1/f noise. Higher frame rates and higher intermediate frequencies can reduce errors from 
such phase instability on the final phase results. Faster frame rates enable performing more 
phase measurements in the same total image integration time, which also improves phase 
results when the light source has amplitude instabilities or nonlinearities. The faster frame 
rates can also be used to capture more rapidly changing features in images such as kinetic 
changes in lifetimes for FLIM or cardiac or respiratory cycles in diffuse optical imaging. 
Finally, a higher frame rate can also support more sophisticated frequency coding, which can 
include using multiple frequencies for FLIM to recover lifetime information from more 
complex systems, or using wavelength to frequency encoding (i.e., each wavelength has a 
different modulation frequency) to allow simultaneous measurements of multiple wavelengths 
with a single detector for either FLIM or diffuse imaging. 

One challenge in high-speed imaging is storing all of the data, which is typically retained 
in the camera memory and downloaded to the computer for data processing once the data set 
is complete. For this system we stream the images to computer for pipeline processing in 
FPGAs, so camera memory limitations are avoided. After image processing, the raw data 
(quadrature images) are discarded and only the processed images are retained, which include 
the AC amplitude, phase, and DC amplitude images. In the process the total data bandwidth 
can be reduced greatly by factors of as much of 100 from around 1 kHz around 10 Hz. 
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FPGAs are a type of integrated circuit with an array of programmable logic components or 
logic blocks coupled by programmable interconnects. The FPGAs processing architecture 
performs parallel computations using multiple processors, enabling extremely high processing 
speed. Graphical processing units (GPUs) are another type of parallel processors that also 
allow very high processing speed. However, since GPUs do not provide capabilities for data 
input at the very high data input rates we require, FPGAs are the only option for this 
application. Both FPGAs and GPUs have been applied to processing of Fourier domain 
optical coherence tomography images [12,13]. 

We describe the system design considerations and how they guide the imaging system 
architecture. System performance is tested using both an RF-modulated laser with image 
intensifier and with an LED source. The results are compared with theoretical expressions for 
shot-noise-limited performance, which are presented in the appendix. With the LED source 
we obtained shot-noise-limited results in as little as 3 ms. The laser system provides results 
close to the shot-noise-limit. A shot noise limited system is desired because it means that the 
system itself introduces no noise. 

2. Instrumentation 

2.1. Camera and data processing 

The imaging system is based on a high speed CMOS camera (Vision Research Phantom v7.3 
w/ RTO real-time output) and field programmable gate array (FPGA) boards for high-speed 
data processing. Diagrams of the overall system and the FPGA architecture are shown in Figs. 
1 and 2, respectively. The camera can acquire 14-bit images at 6800 frames per second with 
resolution up to 800x600 pixels. The FPGA boards, purchased from Nallatech, comprise a 
BenNUEY-PCI-2V3000-4 PCI motherboard with three FPGA module boards: a BenDATA-II 
2VP70-6 to receive the data from the camera and two BenDATA-WS 2V6000-4 boards for 
processing and image caching. All boards are based on Xilinx Virtex-II and Virtex-II Pro (for 
2VP70-6) FPGAs. 

High-speed cameras typically store all images in memory on the camera. This camera is 
configured with real-time output, for which FPGAs in the camera stream the data to another 
device at up to 8Gb/s through a MPO/MTP 12-fiber multichannel cable. The streaming data is 
converted from optical digital signals to electrical digital signals with a Zarlink ZL60102 
parallel fiber receiver module on a custom board designed at SRI. This board includes a 
LV7744DV 106.25 MHz oscillator, which matches the 212.5 MB/s (post 8b/10b decoding) or 
2.125 Gb/s (pre 8b/10b decoding) data rate per fiber channel from the camera. The electrical 
signals are subsequently transferred to Rocket I/O multi-gigabit transceivers on the BenData-
II board FPGAs using Samtec QSE/QTE high-speed differential pair board-to-board 
connections with the 106.25 MHz oscillator as an external reference. Receiver code modified 
from code provided by Vision Research is used to reassemble the data in the BenData-II. The 
reassembled data is split into two streams sent to the two BenData-WS boards for 
calculations. The FPGA processors on the BenData-WS boards calculate two quadrature 
values, which we denote as X and Y, as well as the DC level, D, for each pixel. After the data 
processing, the two FPGA processors stream the data to the BenNUEY motherboard, which 
concatenates the data and outputs it to the PC through the 64-bit PCI interface. 

The X and Y quadratures are calculated as the correlation between each pixel data value 
and cosine and sine waveforms according to the equations 

 
1 1

0 0

( )cos( ) and ( )sin( )
K K

n n

X S n t n t t Y S n t n t t   
 

 

             (1) 

where S(t) = SDC [1 + m1cost(ωt + α)] is the optical signal and SDC is the DC signal on a given 
pixel in counts per second. A third value, the accumulated DC value, D = SDC nΔt, is 
calculated by summing the pixel counts without a sinusoid multiplier. Three 16-bit words are 
stored for each pixel representing the accumulated DC value, D, and the two quadratures, X 
and Y. Calculation of the correlations of Eq. (1) do not require storage of the individual 
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signals at each time point S(nΔt), only the running summation of the product of the pixel 
counts and the sinusoid. The FPGA discards the rest of the image data, converting gigabytes 
of image data to 8 Mb/image for 800x600 pixels, each 16 bits deep. The FPGA boards were 
specified primarily based on the data transfer rates and onboard memory. The 8 Rocket I/O 
inputs support 212.5 MB/s per channel for total bandwidth of 1700 MB/s. The adjacent bus 
between the BenData-II and the two BenDATA-WS boards supports 64-bit inputs at 66 MHz 
for a total of 1056 MB/s for both paths. The smaller data rate of the two (1056 MB/s) supports 
16 bit processing of full camera frames at 1000 frames/s or 8-bit images at 2000 frames/s. 
Each BenDATA-WS provides up to 24 MB wide ZBT SRAM for a total of 48 MB, exceeding 
the maximum storage of 24 MB for the three images – the DC image and the two AC 
quadrature images. 

 

Fig. 1. Schematic of optical and electrical circuits. 

Two quadrature illumination waveforms are provided by the analog outputs of National 
Instruments PCI PCI-6711 12-bit analog output DAQ board. Timing is provided through a 
SCSI connector on the backplate of the BenNUEY, providing the frame clock to the Phantom 
camera, resetting the illumination waveform on the DAQ board, and clocking the illumination 
waveform. Data acquisition is performed using Labview, although the loading of the FPGA 
code is performed with a call to MATLAB. Data analysis is performed in MATLAB. 

Once the desired integration time is complete, the AC amplitude, A, and phase, , are 
calculated according to Eq. (2) and Eq. (3) 

  
1/2

2 2 ,A X Y   (2) 

  1tan / .X Y   (3) 

We have tested the imaging system performance using two conditions: (1) high frequency 
imaging (100 MHz) using a laser and image intensifier for heterodyne downconversion and 
(2) low frequencies (50 to 333 Hz) using an LED. 

2.2 RF electronics 

High frequency imaging at 100 MHz was performed using a laser and image intensifier using 
circuitry shown in Fig. 3. The primary RF source is a 100 MHz signal produced by a  
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Fig. 2. Schematic of signal flow on FPGA boards. 

Wilmanco VS-C-100 oscillator and is split with one portion modulating the photocathode of 
the image intensifier, and the other sent to the IQ modulator. The National Instruments PCI 
6711 DAQ board provides two 10-333 Hz sinusoid signals in quadrature to the IQ modulator, 
which mixes them with the 100 MHz signal to create the 100+ MHz signal. The 100+ MHz 
signal is added to a dc bias voltage to drive the laser diode. The 100 MHz signal is amplified 
using a Kalmus Engineering model 250c RF amplifier providing ~60 Vrms, which is applied to 
the image intensifier photocathode through a bias tee. The low frequency image (1-333 Hz) 
signal is created by the heterodyne mixing of the 100 MHz and 100+ MHz signal, which 
produces the low frequency signal and a high frequency signal at 200 MHz. The 200 MHz is 
filtered by the phosphor screen in the image intensifier, which acts as a low pass filter. The 
low frequency signal is projected onto the phosphor screen, which is captured by the high-
speed camera. 

3. System performance 

The system produces three output images: a DC image, and AC image, and a phase image. 
Examples of these for illumination using an LED are shown in Fig. 4. 

3.1 Assessment of phase precision and linearity 

The phase is a critical performance parameter for frequency domain imaging. We have 
assessed whole-image phase precision and linearity of the LED and the image intensifier 
setups. For the image intensifier setup, the laser uniformly illuminated the intensifier 
photocathode and the intensifier phosphor screen was imaged onto the camera with a Nikon 
60mm f/2.8D AF Micro-Nikkor lens. The parameters for the tests are summarized in Table 1. 
For the LED we were able to operate the camera at the maximum frame rate for 800x600 14-
bit images at 1000 Hz and a maximum modulation frequency of 333 Hz. Because of the 
limited light available from the intensifier phosphor screen, a longer exposure time (2.4 ms) 
was used, limiting the frame rate to 400 Hz. Using a tapered fiber bundle instead of a lens 

#146883 - $15.00 USD Received 2 May 2011; revised 13 Jun 2011; accepted 13 Jun 2011; published 15 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1935



would improve the coupling efficiency between the intensifier and the camera and allow 
shorter integration times and faster frame rates with the intensifier. The camera’s frame rate 
can be increased to at least 2000 Hz with the new generation of BenNUEY FPGAs. 

 

Fig. 3. Schematic of RF circuitry. 

 

Fig. 4. Examples of DC image, AC image, and phase image using LED illumination. The 
graphs under each image show the pixel counts at row 300. The units of the DC and AC images 
are the summation of the pixel counts from each image. Using a range of intensities in a single 
image is useful for studying the limiting noise behavior as described below. 

For each setup, the light source to the camera was modulated at a frequency between 10 to 
250 Hz. In the setup described by Fig. 3, the intensifier gain was held constant for each trial. 
Measurement precision relied on four system parameters (1) the number of frames per cycle 
taken, (2) the number of cycles, (3) camera frame rate, and (4) the camera exposure time. Data 
acquisition parameters were chosen such that acquisition time totaled either 1 second, 
acquired with both LED and intensifier setups (Tables 2 and 3) or less than 10 ms, acquired 
with the LED only (Table 4). Longer acquisition times are typical for applications where low 
light levels are available, while short acquisition times can be used for applications when 
more light is available. 

Table 1. Parameters for System Tests using LED and Laser 

  Frame Rate (Hz) Exposure (µs) 

Modulation Depth 

Phase increment (degrees) Optical Electrical 

LED 1000 200 m1 = 0.6 - 1 

Laser 400 2400 m1 = 1 m2 = 0.3 5 
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Table 2. Linearity measurements for LED image data taken over 1s with LED phase 
changes (α) and FPGA phase changes (γ) 

Frames Per Cycle 4 5 10 20 

Cycles or Frequency 250 200 100 50 

Phase Varied α γ α γ α α 

Linearity 1.0001 1.0000 1.0000 1.0000 1.0000 0.9999 

Residual (deg) 0.2221 
0.0010 

0.0304 
0.0008 

0.0193 0.0176 

Phase in image (deg) 0.0906 0.1300 0.0851 0.1142 0.0628 0.0503 

Table 3. Linearity measurements for image intensifier data taken over 1s 

Frames Per Cycle 20 

Cycles or Frequency 20 

Linearity 0.9983 

Residual (deg) 0.2851 

Phase in image (deg) 0.8790 

Table 4. Linearity measurements for LED image data taken at  10ms 

Frames Per Cycle 3 4 5 6 7 8 10 

Cycles 1 1 1 1 1 1 1 

Frequency (Hz) 333.3 250 200 166.7 142.9 125 100 

Linearity 0.9992 0.9995 1.0000 1.0005 0.9999 0.9997 0.9999 

Residual (deg) 0.0226 0.017 0.0159 0.013 0.0180 0.0125 0.0109 

Phase in image (deg) 0.8124 0.6344 0.5776 0.5254 0.4884 0.4581 0.4123 

3.2 Results of system linearity 

Phase linearity was characterized using two values: the actual linearity and residual of 
measurements, each calculated from values averaged over 5 trials. As the phase between the 
illumination waveform and the correlation waveform is varied, we expect the image phase 
should change proportionally. Fitting a line to the output phase as a function of the phase 
difference between the illumination and correlation waveforms gives a value of 1 to within 
0.1% or better for the LED and 0.2% for the laser/intensifier (see row labeled linearity in 
Tables 2-4). The standard deviation between the phase measurements and this line is given as 
the second line (residual) in Tables 2-4. From Table 2 we see that there is a large difference in 
the residual depending on whether we vary the phase of the illumination waveform (α, 
following the notation in the Appendix) or the correlation (detection) waveform, γ, for 4 
frames per cycle. This is believed to be due to nonlinearity of the DAQ-driven LED power, 
which leads to a different apparent phase depending the exact phase, α, of the sinusoid when 
the light level is produced. This effect can be avoided by using more frames per cycle or 
presumably though generation of a voltage waveform that corrects for the LED nonlinearity. 
When the nonlinearity is avoided, the residual is 0.02 or better for the LED and 1 s integration 
time and ~0.3 for the intensifier. All of the data in Tables 3 and 4 use variation of the 
detection waveform phase, γ, for which there is no nonlinearity and no linearity bias. The final 
parameter in Tables 2-4 is the variation in phase across the image (phase in image). This value 
is on the order of 0.1 degree for the LED and an integration time T = 1 s, but drops to around 
0.5-1 degree for T < = 10 ms. The laser/intensifier has worse performance, or 0.9 degree for T 
= 1 s. 
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3.3 Results of system precision 

Phase precision was measured using the noise variation in DC, AC and phase for each pixel 
across 30 images with the same parameters. The standard deviation and mean for each pixel 
over the 30 images were calculated. The measured error was then plotted against the 
theoretical noise calculated using the system’s photon transfer curve, which was obtained 
using standard methods for both setups. Using the Photon Transfer Curve method described in 
[14], the gain for the camera system was 0.65 counts/electron when the slope of the standard 
deviation vs mean plot was about 0.35. The gain was calculated by finding the ratio of the DC 
signal variance to the DC signal within an image. For the laser diode, we calculated the gain 
of the laser diode system using the expressions in Table 7 to relate AC signal variance to the 
AC signal. The calculated gain was approximately 1.2 when the slope of the standard 
deviation vs mean plot was 0.52. Using the calculated gain values, the theoretical noise values 
were calculated (using the equations in the appendix) and compared to actual noise from these 

measurements. All measurements were done with phase differences ranging from 180 to 180 
degrees in 5-degree increments. 50 images were taken at each phase and only the last 30 were 
used for measurements. 

For LED data with an integration time of 1 second, the DC noise is higher than shot noise 
while AC and phase noise follow shot-noise theorized values (Fig. 5). The extra noise in the 
DC measurements may be attributed to the integration of 1/f noise over 1000 frames. 
According to Fig. 5, the AC and phase noise both approach the shot noise limit as the 
amplitude increases beyond an average pixel AC amplitude of 100 counts for a single frame 
(or 10

5
 counts for 1000 frames) out of a maximum of 2

14
 counts for the 14-bit images. 

For 4 to 10 frames in a single cycle using the LED, the measured DC, AC and phase 
noises all reach the theorized shot noise limit as the signal amplitude increases. For images 
with 3 frames in a single cycle, the AC noise appears to be below the shot noise limit and the 
phase noise is above the shot noise limit (Fig. 6). Three frames per cycle, the theoretical 
minimum number of points needed to determine a sinusoid with unknown DC offset, AC 
amplitude and frequency, is a special case which will be discussed later with Fig. 8. 

The laser diode data was not as ideal and did not meet the theoretical shot-noise 
calculations. Using the gain calculated from the AC measurements, AC and phase noise are 
slightly above the shot-noise values and the DC noise is very noisy and seems to be dependent 
on the phase difference between the laser and the correlation waveform (Fig. 7). However, the 
slope of all the noise plots does approach that of the theoretical slopes. Part of the DC noise 
may be attributed to the integration of 1/f noise over 400 frames and an unstable image 
intensifier. 

3.4 AC/DC amplitude results 

We can compare the AC/DC amplitude ratio with the theoretical expressions from Table 7 
using the modulation depths m1 and m2 from Table 1. For the direct detection (LED) 
experiments this ratio is m1/2 = 0.3, which matches the measured amplitude ratio of 0.3. For 
the heterodyne with dc offset (laser) experiments, the ratio is m1m2/4 = 0.0875, which agrees 
well with the large amplitude ratio of 0.1 from Fig. 7. Thus these measurements also match 
theoretical calculations. 

3.5 LED 3 frames per cycle noise results 

According to theoretical calculations noted in the Table 9 of the appendix, three frames per 
cycle is a special case in which the AC and phase noise can deviate from the theoretical shot 
noise values by up to 15%. The experimental noise measurements were taken at high DC 
amplitudes with some noise removed. Figure 8 shows the theoretical and measured AC and 
phase noise values. 

The measured AC noise values follow the sinusoidal trend of the theoretical values but do 
not reach the precise values for reasons unknown. The phase noise values follow the  
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Fig. 5. Measured vs theoretical noise from the LED system from images with 1000 frames and 
20 LED cycles. The x axes for Figs. 5-7 are total counts summed over all frames (1000 frames 
for this figure). Note that the AC CV (coefficient of variation) and phase standard deviation are 
almost identical. The best measured phase noise is 0.0007 radians or 0.04 degrees. 

theoretical values nearly perfectly. With the upper and lower bounds of the AC and phase 
noise values deviating from the norm at 15%, imaging at three frames per cycle is possible 
with predictable noise ranges. 

4. Conclusions 

We have demonstrated that optical and frequency domain imaging can be performed utilizing 
a high speed camera and FPGA system with total imaging times as short as 3 ms. For these 
imaging modalities, usually two of the three (DC, AC, phase) measurements are required for 
subsequent analysis, although all three must be calculated initially. With both the LED and 
laser systems, DC measurements have more noise than AC and phase measurements. A shot-
noise limited system is desired because it means that the system itself introduces no noise into 
the measurements. 

The experiment setup with the LED has been shown to be shot-noise limited and to 
maintain good linearity for data sets involving 3 frames to 1000 frames. Measurements taken 
over 1 second have good AC and phase shot-noise limited characteristics, while DC noise 
measurements have slightly more noise and do not match the theoretical shot-noise values. In 
addition, these measurements maintain accurate and precise linearity when imaged with a 
frame rate of 1000 Hz with LED waveforms at 50, 100, and 200 Hz (5, 10, and 20 frames per 
cycle) with residuals at or below 0.03. Measurements imaged at 250 Hz (4 frames per cycle) 
with phase variation of the illumination waveform, α, have slightly worse linearity 
characteristics, presumably due to source intensity nonlinearities. 

Images taken at speeds below 10 ms have good DC, AC and phase noise characteristics 
and follow the shot-noise limitations. Measurements at these fast speeds also have good  
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Fig. 6. Measured vs theoretical noise from the LED system from images with 3 and 10 frames 
and 1 LED cycle. Note that the AC CV and phase standard deviation deviate for large 
amplitude with 3 frames per cycles—this effect is elucidated in Fig. 8. 

linearity characteristics with residuals below 0.02 (aside from images taken at 9 ms). Images 
taken with 3 frames at a frame rate of 1000 Hz (3 ms) have special noise characteristics that 
agree with theoretical expressions. 

The experiment setup shown in Fig. 3 with the laser and image intensifier has shown to be 
near shot-noise limited and good linearity characteristics. Measurements were taken with a 
frame rate of 400 Hz over 1 second with waveforms at 20 Hz and had a residual of 0.34. AC 
and phase noise characteristics were limited to 2-3 times the shot-noise limitations while DC 
noise characteristics were many times above that. Therefore, for these types of measurements, 
AC and phase should be used. 

Consistent throughout these experiments was the fact that the DC measurements tended to 
have more noise than the AC and phase measurements. This may be attributed to the 1/f noise 
inherent in modulating waveforms, the instability of the image intensifier for the laser setup, 
or the imprecision of the DAQ digital output. The effective area of the phosphor screen in the 
image intensifier was unstable and diminished over time, which may contribute to the amount 
of noise. 

These results show that our system can be used for optical and frequency domain imaging 
at speeds ranging from 3 ms to 1 s with good linearity and noise characteristics. 

Appendix A: Measurement uncertainties from shot noise for frequency domain 
measurements 

We are considering the noise for frequency domain measurements involving detecting light 
with periodic intensity modulation. This can encompass a variety of situations including 
photon migration measurements involving detection of the attenuation of the primary light 
source or fluorescent light, fluorescence lifetime imaging microscopy, or time resolved  
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Fig. 7. Measured vs actual noise from image intensifier system with 400 frames and 20 cycles. 
AC/DC ratios vs DC amplitude. Different colors indicate different phase shifts. 

 

Fig. 8. Measured and theoretical AC noise ratios per phase taken with phase increments of 10 
degrees. 

ranging measurements. The measurements typically are performed as two quadratures, which 
we will write as X and Y as they would be represented on the polar plane. These can be 
determined from the real and imaginary parts of Fourier transformed data or from cosine and 

sine correlations. The modulated (AC) amplitude A and phase  are given by Eqs. (2) and (3) 
above. Standard error propagation using Eqs. (2) and (3) gives the dimensionless expressions 
for the coefficient of variation in the AC amplitude and phase uncertainty [Eq. (4) and Eq. (5)] 

 
2 2 2 2 2 2

2 2

cos ( ) sin ( ) sin(2 )
,A X Y XY

A A

       
  (4) 

 
2 2 2 2 2

2

2

sin ( ) cos ( ) sin(2 )
,X Y XY

A


     


 
  (5) 
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where σX
2
 and σY

2
 are the variances in X and Y, and σXY is the covariance in X and Y. In the 

following we will consider only the case where the noise is determined by shot noise, which 
constitutes a fundamental limit governed by the number of detected photons, except with 
methods such as squeezed light [15]. While there have been several examinations of shot 
noise for frequency domain measurements [6,16,17], these typically provide scaling relations 
only and do not consider different types of frequency domain measurements. Here we derive 
expressions for amplitude coefficients of variation and phase noise for several frequency 
domain detection methods in the shot noise limit. The number of photoelectrons produced on 
the detector depends on many factors including the intensity of the light source, the quantity 
and fluorescence cross sections of any fluorophors involved, propagation losses between the 
light source and detector, filter transmission efficiency, detection solid angle, and detector 
quantum efficiency. These details vary by application. However, it is only the number of 
photoelectrons produced in the detector, which could be a photocathode, photodiode, or 
camera pixel, that influence the shot noise, so we begin with the number of photoelectrons 
produced. If the light is modulated at a frequency, ω1, phase, α, and modulation efficiency, m1, 
then NΔt, the average number of photoelectrons produced in a measurement time Δt centered 
at time t is 

  1 1( ) 1 cos( )dc

t

i t
N t m t

q
 


    (6) 

with m1 1. Note that the dc level idc/q Δt includes all dc light whether from the frequency 
domain light source or background light, whereas the modulated light (idc Δt /q) 
m1cos(ω1t+α)] is predominantly from the frequency domain light source. For shot noise, the 
average fluctuation in this value is 

  1 1( ) ( ) 1 cos( ) .dc

N t t

i t
t N t m t

q
   


     (7) 

In general two steps are involved in determining the amplitude and phase from the 
photoelectrons in Eqs. (6) and (7): first electrical gain, possibly with electrical modulation and 
second, conversion to quadrature values. If the electrical signals are amplified and modulated 
by a time varying factor E(t), the detected signal and noise become 

  ( ) ( ) ,t tS t N t E t   (8) 

  ( ) ( ) ,S tt N t E t   (9) 

where E(t) includes a factor to convert electrons to a measurable value such as volts or counts. 
A single quadrature X is found by correlation of the signal from Eq. (8) with a cosine function 
according to 

 
/2 /2

/2 /2
( )cos( ) ( ) ( ) ( ) .

T T

t
T T

X S t t dt N t E t C t dt  
 

     (10) 

Integrals for the other quadrature, Y, and the DC, D, are the same as Eq. (10) except with C(t) 
replaced by S(t) and 1, respectively. C(t) and S(t) are of the general form cos(ωt+γ) and 
sin(ωt+γ). Although we write the expressions for the two quadratures as correlations, the 
following analysis is valid for calculation of the quadratures through Fourier transforms as 
well because the two correlations for X and Y are identical to the real and imaginary parts of 
the Fourier transform, with the exception of a constant multiplier. The constant multiplier 
does not affect the dimensionless noise expressions in Eqs. (4) and (5). 

While the signal adds linearly in Eq. (10), the noise adds in quadrature. That is, the 
variance in each quadrature is found by summing the variance for each time interval, which is 
given by the square of Eq. (9) times the square of the multiplicative factor, C(t) or S(t). We 
write the summed variance as an integral according to 
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        
/2 /22 2 2 22 2

/2 /2
( ) ( ) ( ) ( ) ( ) ( ) .

T T

x N t t
T T

t E t C t dt N t E t C t dt   
 

    (11) 

Expressions for σY
2
, σD

2
 and σXY are the same as Eq. (11) except that [C(t)]

2
 is replaced with 

[S(t)]
2
, 1, and C(t)S(t) respectively. This analysis is valid regardless of whether the experiment 

is better described by an integral such as Eqs. (10), or by summations such as in Eq. (1); i.e., 
by either continuous or discrete correlations or Fourier transforms. 

There are a variety of detection methods for frequency domain measurements that differ in 
the manner of demodulation as summarized in Table 5. Each has distinct parameters for E(t), 
C(t), and S(t), which are given in Table 6. The AC may be separated from the DC using filters 
prior to electronic demodulation and digitization of the signal (Cases 1A and 1B) or the AC 
and DC may be digitized together (Cases 2A and 2B). The homodyne methods perform 
demodulation in one step to determine the quadratures X and Y, such as performing RF mixing 
with an I/Q demodulator to produce two DC quadratures (Case 1A) or demodulation 
computationally following digitization (Case 2A). Heterodyne methods perform demodulation 
in two steps with a first mixing step reducing an RF frequency ω1 to a lower (intermediate) 
frequency |ω1-ω2| and a second step to determine the quadratures X and Y. Measurements with 
a photomultiplier typically perform the heterodyne and digitization of the AC separately from 
the DC (Case 1B), while measurements using an image intensifier perform the heterodyne 
without AC/DC separation and digitize AC and DC together (Case 2B). 

Table 5. Cases considered for frequency domain measurements 

  Homodyne Heterodyne 

Separated DC/AC Case 1A: Homodyne Case 1B: Heterodyne 

Combined DC/AC Case 2A: Direct Detection Case 2B: Heterodyne with DC Offset 

Substituting the terms in Table 6 into Eqs. (10) and (11) and using Eqs. (4) and (5) gives 
the expressions for the signal and variance in Table 7 and the dimensionless noise expressions 
in Table 8, where N = idcT/q. These expressions are valid when all of the oscillatory terms 
average to zero (well-sampled conditions). The covariance σXY is zero for well-sampled 
conditions. When the number of intervals is small or the integration range does not cover an 
integral number of cycles of the various difference frequencies, then the results will differ 
somewhat from the expressions in Table 8, as is described below for three measurements per  
 

Table 6. Electrical modulation and analysis demodulation terms for different frequency 
domain measurement types 

  
DC Electrical Term 

EDC(t) 
AC Electrical Term 

EAC(t) 
Analysis Terms  

C(t), S(t) 

Case 1A: Homodyne G G cos(ω1t + β) for X 
G sin(ω1t + β) for Y 

1 
1

Case 1B: Heterodyne G G cos(ω2t + β) cos[(ω1-ω2)t + γ] 
sin[(ω1-ω2)t + γ] 

Case 2A: Direct Detection G G cos(ω1t + γ) 
sin(ω1t + γ)

Case 2B: Heterodyne with DC Offset G [1 + m2 cos(ω2t + β)] G [1 + m2 cos(ω2t + β)] cos[(ω1-ω2)t + γ] 
sin[(ω1-ω2)t + γ] 

Table 7. Signal and variance for different types of frequency domain measurements 

  DC Signal D 

DC 
Variance 

σD
2 

Single Quadrature Signal 
X, Y 

Single Quadrature Variance 
σX

2, σY
2 

Case 1A: Homodyne GN G2N (GNm1/2)cos(β-α) 
(GNm1/2)sin(β-α) 

G2N/2 
G2N/2 

Case 1B: Heterodyne GN G2N (GNm1/4)cos(β + γ-α) 
(GNm1/4)sin(β + γ-α)

G2N/4 
G2N/4

Case 2A: Direct Detection GN G2N (GNm1/2)cos(γ-α) 
(GNm1/2)sin(γ-α) 

G2N/2 
G2N/2 

Case 2B: Heterodyne with DC GN G2N (1 + m2
2/2) (GNm1m2/4)cos(β + γ-α) 

(GNm1m2/4)sin(β + γ-α)
(G2N/2)(1 + m2

2/2) 
(G2N/2)(1 + m2

2/2) 

#146883 - $15.00 USD Received 2 May 2011; revised 13 Jun 2011; accepted 13 Jun 2011; published 15 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1943



cycle for Case 2A. Note that the expressions in Table 8 depends only N, m1, and m2. The gain 
or conversion factor G cancels out. G can be different for the AC and DC signals without 
affecting the dimensionless noise expressions. 

The difference between the various expressions in Table 8 can be understood as follows. 
First, for the dimensionless DC noise, the expressions for σD /D in Cases 1A, 2A, and 1B are 
all the same and equal to the expected expression for shot noise, N

-1/2
. For Case 2B, the DC 

uncertainty increases by an additional factor of (1+m1
2
/2)

1/2
 relative to the signal, which arises 

because the signal sums linearly while the noise sums in quadrature, resulting in an increase 

of the noise relative to the signal. The dimensionless AC noise terms σ and σA /A are always 
larger than the dimensionless DC noise terms for two reasons. First, a non-unity modulation 
depth leads to a reduction in the AC signal relative to the DC signal while the noise is 
unaffected by the modulation depth, resulting in a net increase in the dimensionless AC noise 
by a factor of 1/m1 for Cases 1A/2A/1B or 1/(m1m2) for Case 2B. Second, each demodulation 
step leads to an increase in the dimensionless AC noise by a factor of 2

1/2
 because the 

oscillatory sampling reduces both the AC signal and the AC variance by a factor of two 
relative to their nominal amplitudes, and the dimensionless noise scales with the square root 
of the variance. This leads to a net factor of 2

1/2
 or 2 increase in the dimensionless AC noise 

for Cases 1A/2A or Case 1B, which have one and two demodulation steps, respectively. For 
case 2B the net increase is 2(2

1/2
) because the first demodulation step passes the full DC noise. 

Note that the dimensionless noise expressions for the two homodyne methods (Case 1A and 
Case 2A) are identical. 

Table 8. Dimensionless noise expressions for different types of frequency domain 
measurements 

  σD/D σ or σA/A 

Case 1A: Homodyne (1/N)1/2 (1/m1)(2/N)1/2 

Case 1B: Heterodyne (1/N)1/2 (2/m1)(1/N)1/2 

Case 2A: Direct Detection (1/N)1/2 (1/m1)(2/N)1/2 

Case 2B: Heterodyne with DC Offset [(1 + m2
2/2)/N]1/2 [2/(m1m2)][(2 + m2

2)/N]1/2 

Derivation of the expressions for the variances in Table 8 can also proceed through a 
Fourier transform based analysis, noting that shot noise is white noise. The Fourier transform 
of the mean square fluctuations are given by the autocorrelation of the noise fluctuations. For 
white noise, the autocorrelation function is only a delta function at zero delay, which is 
equivalent to the DC integral of the noise variance. In essence, the noise spectrum is flat with 
equal noise power at every frequency. However, for the AC calculations, the noise power is 
equally split into the real and imaginary parts, or two quadratures. These are the Fourier 
transforms of the even and odd parts of the noise fluctuations and the noise is equally 
composed of each. Thus we see from Table 8 that the AC noise variance terms are equal to 
half of the DC noise variance for Cases 1A, 2A, and 2B. For Case 1B, there is a factor of four 
difference in noise variance. One factor of two is due to the heterodyne modulation that is 
applied to the AC signal only. The second factor of two is due to the separation into two 
quadratures. In the closest analysis to ours, Toronov et al. [6] have analyzed the noise scaling 
for Case 2B, although their expression for the AC amplitude and phase noise has m2 only 
where ours has m2

2
. 

The expressions in Eqs. (2), (3) and (10) and Tables 7 and 8 are valid when all oscillatory 
terms integrate to zero (well sampled conditions). Well-sampled conditions are well fulfilled 
though not exact when many measurements span a large number of periods of the light source 
τ = 2π/ω1. Well-sampled conditions are exactly fulfilled even for a single period τ for Cases 
1A and 2A (and also Cases 1B and 2B provided low pass filtering removes the ω1+ω2 
frequency) or when there are np evenly spaced measurements per period τ (i.e., measurements 

are τ/np apart) and np 4. Two measurements are sufficient to determine A and  when the DC 
contribution to the measurements is zero, but not for evenly spaced measurements because 
only one quadrature is sampled. For np=3 and even sample spacing, Eqs. (2), (3) and (10) are 
correct, but the expressions for the AC and phase noise parameters in Tables 7 and 8 are not 
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valid because there is a correlation between the noise expression of Eq. (7) and the sampling 
spacing τ/3, and the terms with frequency 3ω1 resulting from Eq. (11) do not sum to zero. 
Correct AC noise expressions for np=3 with even sample spacing for Cases 1A and 2A are 

shown in Table 9. The dimensionless phase and amplitude noise σ and σA /A depend on the 
phase of the light α when the measurements are performed, as verified experimentally in 
Figure 8. 

Table 9. Expressions for Cases 1A and 2A with three evenly spaced measurements per 
modulation cycle (np = 3). 

σX
2, σY

2 σXY σ, σA/A 

(G2N/2)[1 + (m1/2)cos(α + 2β)] 

(G2N/2)[1(m1/2)cos(α + 2β)] 

(G2Nm1/4)sin(α + 2β) (1/m1){[2m1cos(3α)]/N}½ 
(1/m1){[2 + m1cos(3α)]/N}½ 
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