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This article unifies neural modeling results that illustrate several basic design principles
and mechanisms that are used by advanced brains to develop cortical maps with
multiple psychological functions. One principle concerns how brains use a strip map
that simultaneously enables one feature to be represented throughout its extent, as
well as an ordered array of another feature at different positions of the strip. Strip
maps include circuits to represent ocular dominance and orientation columns, place-
value numbers, auditory streams, speaker-normalized speech, and cognitive working
memories that can code repeated items. A second principle concerns how feature
detectors for multiple functions develop in topographic maps, including maps for optic
flow navigation, reinforcement learning, motion perception, and category learning at
multiple organizational levels. A third principle concerns how brains exploit a spatial
gradient of cells that respond at an ordered sequence of different rates. Such a rate
gradient is found along the dorsoventral axis of the entorhinal cortex, whose lateral
branch controls the development of time cells, and whose medial branch controls
the development of grid cells. Populations of time cells can be used to learn how to
adaptively time behaviors for which a time interval of hundreds of milliseconds, or several
seconds, must be bridged, as occurs during trace conditioning. Populations of grid cells
can be used to learn hippocampal place cells that represent the large spaces in which
animals navigate. A fourth principle concerns how and why all neocortical circuits are
organized into layers, and how functionally distinct columns develop in these circuits
to enable map development. A final principle concerns the role of Adaptive Resonance
Theory top-down matching and attentional circuits in the dynamic stabilization of early
development and adult learning. Cortical maps are modeled in visual, auditory, temporal,
parietal, prefrontal, entorhinal, and hippocampal cortices.

Keywords: adaptive resonance theory, ocular dominance column, auditory stream, place-value number, speaker
normalization, reinforcement learning, navigation, working memory
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Grossberg Development of Cortical Maps in Multiple Modalities

CORTICAL MAPS: A BASIC PRINCIPLE OF
CORTICAL DESIGN

The editors of this Frontiers Research Topic, Nick Swindale
and Geoffrey Goodhill, have posed several basic questions
about cortical maps, notably concerning whether or not, despite
being ubiquitous in advanced brains, they have functional
significance. In particular, these authors wrote: ‘‘whilemaps seem
to be ubiquitous in the primary sensory cortical areas, many
questions about their significance remain. Might they simply
be an epiphenomenon of development with no real functional
significance? How widespread are maps in the cortex? For
example are there maps of speech properties in Broca’s area?
Are there maps in the frontal cortex?...Orientation columns are
also a puzzle, because it seems they can develop in the absence
of natural visual stimulation but it is not clear how this could
happen. Retinal waves may not have enough structure nor are
they easy for models based on them to explain how matched
preferences can develop in the two eyes. Their periodic structure
has also been especially hard to capture.’’

This article proposes answers to all these questions. It does
so by unifying a series of modeling studies that were carried out
during the past 40 years by the author with multiple colleagues.
The article focuses upon these research streams because, to
the best of my knowledge, the resultant models, after multiple
stages of development and refinement, come closer to principled
theories of their large targeted databases than alternative models
in the literature. These multiple stages of model evolution
have accumulated and satisfied computational and experimental
constraints that competing models have not, at least to the
present time.

This theoretical approach tries to at least partially alleviate a
general problem in modeling brain models of psychological
phenomena: models that propose explanations of small
neurobiological data sets often cannot survive under the weight
of accumulating interdisciplinary constraints. For example,
in modeling visual cortical development, several models may
simulate small data sets about the simplest properties of simple
and complex cells. Some analyses may even cast doubt on the
existence of separate classes of simple and complex cells; e.g.,
Mechler and Ringach (2002). However, they may fail to show
how the results of their analyses can support conscious visual
perception, which is the evolutionary outcome of vision.

The perspective taken in this article is to be guided by
all available evidence to attempt to construct a principled
computational theory that is powerful enough to explain
psychological and neurobiological data on multiple levels
of organization, ranging from single-cell properties to
organismic behaviors. Our own models have thus been shaped
by the weight of both psychological and neurobiological
constraints to provide accumulating evidence for the validity
of their main design principles, mechanisms, circuits, and
architectures. The article will also describe various alternative
models as part of its exposition, and will use this review
to compare and contrast them with the models that are
its focus.

As noted above, the models that have emerged from this
process of conceptual and mechanistic evolution suggest
answers to all the questions in the first paragraph, in
addition to others about cortical organization in general
and cortical maps in particular, including the organization
of cortical maps within the characteristic layers of all
neocortical circuits. Previous articles from the author and
his colleagues have shown how variations of the same canonical
laminar cortical architecture can be used to explain and
simulate neurobiological and psychological data about
vision, speech and language, and cognitive information
processing. The current article suggests how and why this
laminar organization, sometimes called Laminar Computing,
constrains how cortical maps form. Few, if any, alternative
models of cortical map formation have considered how maps
develop within and across this canonical cortical laminar
architecture.

Within this unifying framework, the exposition proposes how
a small number of design principles and mechanisms have been
used in neural models to explain and unify the explanation of
psychological and neurobiological data for brain functions as
diverse as:

- visual retinogeniculate, thalamocortical, and corticocortical
development, perception, attention, and categorization
(Grossberg and Levine, 1975; Grossberg, 1975b, 1976a;
Grunewald and Grossberg, 1998; Olson and Grossberg, 1998;
Grossberg and Kelly, 1999; Grossberg and Raizada, 2000;
Kelly and Grossberg, 2000; Grossberg and Williamson, 2001;
Raizada and Grossberg, 2001, 2003; Grossberg and Grunewald,
2002; Grossberg and Seitz, 2003; Grossberg and Swaminathan,
2004; Cao and Grossberg, 2005, 2012; Markowitz et al., 2012);

- development of entorhinal grid cells and hippocampal place
cells to support spatial navigation (Gorchetchnikov and
Grossberg, 2007; Grossberg and Pilly, 2012, 2014; Mhatre et al.,
2012; Pilly and Grossberg, 2012, 2013a,b, 2014);

- optic flow navigation by the dorsal, or Where. cortical stream
(Cameron et al., 1998; Browning et al., 2009a,b; Elder et al.,
2009);

- time cells for adaptively timed learning by the hippocampus
(Grossberg and Schmajuk, 1989; Fiala et al., 1996; Franklin and
Grossberg, 2017);

- analog and place-value numerical representations by the
parietal and prefrontal cortices (Grossberg and Repin, 2003);

- auditory streaming (Cohen et al., 1995; Grossberg et al., 2004);
- auditory scene analysis and speaker normalization by the
auditory cortex (Cohen et al., 1999; Grossberg et al., 2004;
Ames and Grossberg, 2008);

- reinforcement learning by cognitive-emotional interactions
within and between multiple brain regions (Grossberg, 1975a,
2018, 2019; Fiala et al., 1996);

- motion vector decomposition due to form-motion interactions
across the ventral, or What, and the dorsal, or Where, cortical
streams (Grossberg et al., 2011);

- linguistic, spatial, and motor working memories
in the prefrontal cortex that can temporarily store
event sequences with repeats (Grossberg et al., 1997;
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Grossberg and Myers, 2000; Grossberg and Pearson, 2008;
Grossberg and Kazerounian, 2011, 2016; Silver et al., 2012);

- and sequence categories, or list chunks, in the prefrontal cortex
that can encode lists of variable length (Cohen and Grossberg,
1986, 1987; Grossberg and Myers, 2000; Kazerounian and
Grossberg, 2014).

Given the number and functional diversity of the types of
maps reviewed herein, the model summaries will primarily
emphasize the main concepts used in their design. Key references
to the broader literature will be included, but the archival articles
contain many more.

Laminar Computing: From Infant
Development to Adult Perception,
Attention, and Cognition
One important theme describes an emerging computational
neural theory of how the laminar circuits of neocortex develop.
Indeed, it has long been known that all perceptual and cognitive
neocortex seems to have six main layers of cells, in addition to
characteristic sublaminae (Martin, 1989; Brodmann, 1909) and
that these neocortical circuits integrate bottom-up, top-down,
and horizontal interactions. Brodmann (1909) described more
than 50 distinct areas of neocortex based on differences in the
thickness of the layers, and the sizes and shapes of the neurons
within them. How a shared laminar organization might support
different behavioral functions of these specialized areas was not,
however, clear until a series of articles about Laminar Computing
started to explain them (e.g., Grossberg et al., 1997; Grossberg,
1999a; Grossberg and Raizada, 2000; Grossberg and Williamson,
2001).

This theory’s original focus was on the development of the
visual cortex. It soon became clear, however, that it has broad
implications in other areas of psychology and neuroscience,
for at least two reasons. First, emergent properties of the
developed circuits simulated psychological and neurobiological
data about adult visual perception, attention, and learning,
including the basic perceptual processes of 2D and 3D boundary
completion and surface filling-in. Second, related modeling
studies showed how variations of the same laminar neocortical
circuits can help to explain psychological and neurobiological
data about adult speech, language, and cognitive information
processing, notably about the organization of cognitive and
motor working memories and learned sequence categories,
also called chunks or plans. These laminar cortical models
built upon non-laminar models of brain development that
introduced their main design constraints and mechanisms,
before additional insights showed how to embody them in
laminar cortical circuits with a broader explanatory and
predictive range.

Laminar Computing achieves three basic general properties of
biological intelligence:

(1) self-stabilizing development and learning;
(2) seamless fusion of pre-attentive, automatic, bottom-up

information processing with attentive, task-selective,
top-down processing; and

(3) analog coherence; namely a solution of the binding problem
for perceptual grouping without a loss of analog sensitivity.

In fact, the proposed solution of problem (1) implies solutions
to problems (2) and (3). Thus, mechanisms that enable the
visual cortex to develop and learn in a stable way impose key
properties of adult visual information processing in such a way
that there is no strict separation between preattentive processes,
such as perceptual grouping, and task-selective attention. A
family of models that unifies these themes is called LAMINART
because it clarifies how mechanisms of Adaptive Resonance
Theory, or ART, which had previously been predicted to occur
in neocortex to help stabilize cortical development and learning
(e.g., Grossberg, 1980, 1999b), are realized in identified laminar
visual cortical circuits (e.g., Grossberg, 1999a). The following text
clarifies these issues.

Feedforward and Feedback:
Self-normalizing Circuits Trade Certainty
Against Speed
Neocortex can achieve fast feedforward processing when input
data are unambiguous (e.g., Thorpe et al., 1996). When multiple
ambiguous alternatives exist in the data, processing automatically
slows down. This happens because cortical computations are
normalized, so that when multiple alternatives exist, each
alternative becomes less active, thereby slowing down processing.
Intracortical positive feedback loops contrast-enhance and
choose the alternative, or alternatives, that are best supported by
the data, while negative feedback suppresses weaker alternatives.
As the chosen alternatives become more active, their processing
speeds up and gives rise to output signals.

Such a system ‘‘runs as fast as it can,’’ trading certainty
against speed. Because laminar neocortex uses self-normalizing
competition, cell activities can be interpreted as ‘‘real-time
probabilities’’ and the process of contrast-enhancement as one
of choosing the most likely alternatives. Laminar neocortical
dynamics that are modeled by ART go beyond the capabilities
of Bayesian decision-making models. Indeed, ART can learn
about rare but important events, such as the first outbreak
of a disease, for which no priors may exist. ART can do so
without confusing the rare event with similar diseases, due
to ART’s ability to dynamically regulate the concreteness or
abstractness of learned recognition categories using vigilance
control (Carpenter and Grossberg, 1987a,b; Grossberg, 2017a).
ART can also learn from small and nonstationary databases from
which reliable probability estimates cannot be made. It does not
need a statistical analysis to succeed.

Talking about statistics: although various ART models do
exhibit properties of Bayesian statistics, some go beyond the
capabilities of Bayesian classifiers; e.g., Williamson (1996, 1997).
Various other ART properties that go beyond Bayesian ones
will be described below. More generally, ART circuit designs
can be derived from thought experiments whose hypotheses are
ubiquitous properties of environments that we all experience
(Grossberg, 1980). ART circuits emerge as solutions that satisfy
multiple environmental constraints to which humans and other
terrestrial animals have successfully adapted. This fact suggests
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that ART designs may, in some form, have a property of
universality that may be expected to eventually be embodied in
all autonomous adaptive intelligent devices, whether biological
or artificial.

Analog and Digital: Analog Coherence
Analog coherence combines the stability of digital computing
with the sensitivity of analog computing. As noted above,
making decisions in neural networks typically requires the
action of recurrent on-center off-surround networks whose
positive on-center feedback helps to choose a winner, while
negative off-surround feedback suppresses weaker alternatives.
These feedback interactions endow network decisions with
useful properties of coherence, notably synchronization and
persistence. However, incorrectly designed feedback networks
may always allocate maximum activity to a winning cell
population, no matter how weak the evidence is for that decision.
Such winner-take-all decisions at early stages of processing could
undermine the ability of later processing stages to properly weigh
accumulating evidence for decision-making. Laminar recurrent
on-enter off-surround networks embody the useful properties of
coherence, while also allowing grouping strength to increase with
the amount of evidence for it.

Adaptive Resonance Theory and the
Stability-Plasticity Dilemma
In order to dynamically stabilize learning to prevent catastrophic
forgetting, advanced brains use a particular kind of top-down
feedback circuit that is said to obey the ART Matching Rule
(Figure 1, top row, left column). Without the action of such a
feedback circuit, new learning could rapidly erode memories
of older learning. This is called the property of catastrophic
forgetting, a property that is ubiquitous in most neural networks,
including backpropagation and the Deep Learning algorithm
built upon it. Adaptive Resonance Theory, or ART, which was
introduced in 1976 (Grossberg, 1976a,b, 1980) and incrementally
developed to the present, is a biological neural network that
solves the catastrophic forgetting problem. I prefer to call this
problem the stability-plasticity dilemma because it requires that
fast learning, or plasticity, be possible, without also forcing
fast forgetting or a loss of memory stability. ART solves the
stability-plasticity dilemma while overcoming 17 computational
problems of backpropagation and Deep Learning
(Grossberg, 1988).

Top-down learned expectations and attentional focusing are
needed to solve the stability-plasticity dilemma. In particular,
the ART Matching Rule governs object attention in the brain
(Figure 1, top row, left column). In an ART Matching Rule
circuit, bottom-up feature signals can, by themselves, activate
feature detectors (bottom layer of the figure). An activated
recognition category (top layer of the figure) can, in turn,
activate top-down learned expectation signals. The top-down
signals define a modulatory on-center, off-surround network.
The modulatory on-center cannot, by itself, activate its target
cells to suprathreshold values. However, it can sensitize, or
modulate, them in preparation for matching bottom-up signals.
The off-surround can, by itself, inhibit its target cells. When

bottom-up and top-down signals are both active at target
cells, then two sources of excitatory signals and one source
of inhibitory signals converge upon them, so that they can
fire (‘‘two against one’’). Cells in the off-surround receive only
one source of bottom-up excitatory signals and one source
of top-down inhibitory signals, so they are suppressed (‘‘one
against one’’). An attentional focus hereby forms across the
matched cells.

When cells in the on-center of the ART Matching Rule
fire, they can reactivate the bottom-up excitatory pathways that
originally activated them. An excitatory feedback loop between
the feature pattern and category layers is hereby closed. It triggers
a feature-category resonance that synchronizes, amplifies, and
prolongs system activity, focuses attention upon the feature
pattern that is resonating, and supports conscious recognition of
the resonating category and its feature pattern (Figure 1, top row,
right column; Grossberg, 2017b). Such a resonance can trigger
learning in the adaptive weights in active bottom-up pathways
and top-down expectation pathways.

Thus, unlike artificial neural networks like backpropagation
and Deep Learning that include only feedforward, or bottom-up
connections, a biological theory like ART includes bottom-up
and top-down connections in order to solve the stability-
plasticity dilemma. ART also includes recurrent horizontal
connections to choose the categories whose top-down
expectations are matched against bottom-up signals.

ART is currently the most advanced cognitive and neural
theory about how brains learn to attend, recognize, and predict
objects and events in a changing world that includes unexpected
events. This claim is supported by the fact that ART has
explained and predicted more psychological and neurobiological
data than other theories of how brains learn, and all the
computational hypotheses upon which ART is based have been
supported by subsequent psychological and neurobiological data.
See Grossberg (2013, 2017a,b, 2018, 2019, 2020) for reviews.

Preattentive and Attentive Learning
In the LAMINART and 3D LAMINART models that develop
ART to include cortical layers and identified cortical cells within
them, both intercortical and intracortical feedback circuits obey
the ART Matching Rule (e.g., Grossberg and Raizada, 2000). In
particular, both intercortical and intracortical pathways share
a key decision circuit in the deeper layers, between layers
6 and 4, of each cortical area (Figure 1, bottom row). In
particular, the intercortical circuits realize top-down attention,
which can dynamically stabilize learning using a modulatory on-
center, off-surround network from a higher cortical region to
a lower one. For example, layer 6 in the cortical area V2 can
attentionally prime processing in V1 via a circuit of this type.
Here active cells in layer 6 in V2 send excitatory topographic
signals to cells in layer 6 of V1, either directly or via layer
5 cells. The activated V1 cells, in turn, send signals to layer 4 in
V1 via modulatory on-center, off-surround interactions. Taken
together, these various signals realize an intercortical, top-down,
modulatory on-center, off-surround network. The flow of signals
from layer 6-to-6 and then back from layer 6-to-4 is said to
embody folded feedback.
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FIGURE 1 | (top row, left column) The ART Matching Rule governs object attention in the brain, notably the ventral, or What, cortical stream. Bottom-up feature
signals can, by themselves, activate feature detectors (bottom layer of the figure). A recognition category (top layer of the figure) can activate top-down attentional
signals. These top-down signals are carried by a modulatory on-center, off-surround network. The modulatory on-center cannot, by itself, activate its target cells to
suprathreshold values, but it can sensitize, or modulate, them in preparation for matching bottom-up signals. The off-surround can, by itself, inhibit its target cells.
When bottom-up and top-down signals are both active, then cells that receive two sources of excitatory signals and one source of inhibitory signals can fire (“two
against one”), whereas cells in the off-surround are suppressed (“one against one”). (top row, right column) When cells in the on-center of the ART Matching Rule fire,
they can reactivate the bottom-up excitatory pathways that originally activated them. An excitatory feedback loop between the feature pattern and category layers is
hereby closed, leading to a feature-category resonance. (bottom row) A modulatory on-center, off-surround network from layer 6–4 is activated both by intercortical
top-down attention and intracortical groupings in layer 2/3. The intercortical pathway supports top-down attention that obeys the ART Matching Rule. This
intercortical pathway selects critical features that fall within its modulatory on-center, while inhibiting features that fall within its off-surround. The intracortical pathway
enables a grouping to serve as its own attentional prime. It helps to choose a final grouping and to dynamically stabilize its own development. Because the
intercortical and intracortical pathways include the same layer 6-to-4 modulatory on-center, off-surround decision network, attentive and preattentive constraints can
cooperate and compete to choose the final grouping.

Intracortical circuits help to dynamically stabilize the
development of long-range horizontal connections that form
via recurrent signals among cells in layer 2/3. In addition
to these intralaminar recurrent interactions, interlaminar but
intracortical signals help to stabilize development and learning
among the layer 2/3 neurons. In particular, cells in layer 2/3 of
V2 send excitatory signals to cells in layer 6 of V2. The activated
V2 cells, in turn, send signals to layer 4 in V2 via modulatory
on-center, off-surround interactions. This is the same example of
folded feedback that realizes top-down attention. Here, however,
it occurs within a cortical area in response to activation of
horizontal cortical groupings that can form automatically and
preattentively, or in the absence of attention.

Perceptual groupings are completions of boundaries in the
interblob cortical stream. They include illusory contours, as
well as groupings of 2D shading gradients and texture elements
that support filling-in of brightnesses and colors to create
3D surface representations (Grossberg and Pessoa, 1998; Kelly

and Grossberg, 2000). To emphasize the difference between
intercortical and intracortical forms of attention, I like to say that
‘‘a preattentive grouping is its own attentional prime.’’

In summary, both the intercortical and intracortical
circuits include the same layer 6-to-4 modulatory on-center,
off-surround network of interactions. This shared network is
said to be an attention-preattention interface. It is here that
contextual constraints of preattentive grouping and task-related
top-down attention come together to decide which from the set
of possible groupings will be chosen in the current visual context.

ART MATCHING RULE SOLVES
STABILITY-PLASTICITY DILEMMA VIA
ATTENTION-PREATTENTION INTERFACE

As noted above, Adaptive Resonance Theory, or ART, uses
top-down attention that obeys the ART Matching Rule to enable
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advanced brains to solve the stability-plasticity dilemma, whereby
our brains can rapidly learn throughout life, without also rapidly
forgetting what they already know. Rapid brain plasticity can
thus occur without losing the memory stability that prevents
catastrophic forgetting. The generality of the stability-plasticity
dilemma suggests that similar top-down mechanisms should
occur between multiple cortical areas wherein self-stabilizing
learning can occur.

What circuits does top-down attention modulate? Answering
this question leads to the assertion that ‘‘a preattentive grouping
is its own attentional prime,’’ as well as to an understanding of
how solving problem (1) above also solves problems (2) and (3).
This is because one of the most important types of circuits that
top-down attention modulates during vision is the perceptual
groupings that form due to interactions among long-range
horizontal connections in layer 2/3. With perceptual groupings
in mind, it can readily be seen that an improper solution to
the stability-plasticity problem could easily lead to an infinite
regress, because perceptual groupings can form automatically
and preattentively before providing a neural substrate upon
which higher-level attentional processes can act. But how can
a preattentive grouping develop in a stable way, before the
higher-order attentional processes can develop with which to
stabilize them? In particular, how can long-range horizontal
connections in layer 2/3 of cortical area V1 develop before they
can be modulated by top-down attention from cortical area
V2? If such preattentive mechanisms cannot deliver reliable
signals to the higher cortical areas, then any top-down signals
from these higher areas may be of little use in stabilizing their
own development.

I called this the attention-preattention interface problem
because the laminar cortical circuits include layers (the interface)
where both preattentive and attentive mechanisms can come
together, notably layers 6-to-4 in Figure 1 (bottom row), to help
determine which of several possible ‘‘preattentive’’ groupings will
be chosen.

The existence of this kind of cortical interface within
multiple intercortical and intracortical feedback loops clarifies
why distinguished scientists have debated for decades about
the distinction between preattentive and attentive processes, as
illustrated by some descendants of the great vision scientists
Hermann von Helmholtz (von Helmholtz, 1866, 1962), who
emphasized top-down interactions that were a precursor of
current Bayesian concepts, and Gaetano Kanizsa (Kanizsa,
1955, 1974, 1976), who emphasized bottom-up and horizontal
interactions. As illustrated by Figure 1 (bottom row), all
three types of processes—bottom-up, horizontal, and top-
down—interact strongly using shared decision circuits within the
attention-preattention interface.

WHY DOES NOT THE DEVELOPMENT OF
PREATTENTIVE GROUPINGS VIOLATE
THE ART MATCHING RULE?

The fact that ‘‘a preattentive grouping is its own attentional
prime’’ solves a challenging problem for perceptual groupings,

such as illusory contours, that can generate suprathreshold
responses over positions that do not receive bottom-up
inputs. They, therefore, seem to violate the ART Matching
Rule, which asserts that, in order for cortical learning to
be stable, only cells that get bottom-up activation should
be able to fire to suprathreshold levels. That is one reason
why circuits that embody the ART Matching Rule can only
modulate the activities of the cells in their on-centers. How,
then, can the horizontal connections that generate perceptual
groupings maintain themselves in a stable way? Why are
they not washed away whenever an illusory contour forms
across positions that do not receive a bottom-up input?
The answer is now clear: At every position where an
illusory contour forms, the preattentive grouping is its own
attentional prime, so that development and learning at that
position are dynamically stabilized by the same modulatory
on-center, an off-surround circuit that attention can use to
stabilize learning. The current analysis hereby proposes an
answer to this question that clarifies how perceptual grouping,
attention, development, and adult perceptual learning are
intimately bound together within the laminar circuits of the
visual cortex.

INFANT DEVELOPMENT AND ADULT
LEARNING USE SIMILAR LAWS: A
UNIVERSAL DEVELOPMENTAL CODE

This conclusion illustrates an even broader generalization: both
psychological and neurobiological data support the idea that the
neural laws that regulate infant development and adult learning
in grouping and attentional circuits are the same. Supportive
data include the fact that the horizontal connections that support
perceptual grouping in cortical areas like V1 and V2 develop
through a learning process that is influenced by visual experience
(Callaway and Katz, 1990; Löwel and Singer, 1992; Antonini
and Stryker, 1993). It is also known that many developmental
and learning processes, including those that control horizontal
cortical connections, are stabilized dynamically, and can be
reactivated by lesions and other sources of cortical imbalance
(Gilbert and Wiesel, 1992; Das and Gilbert, 1995) in order to
relearn the environmental statistics to which the new cortical
substrate is exposed.

More generally, adult learning often seems to use the same
types of mechanisms as the infant developmental processes
upon which it builds (Kandel and O’Dell, 1992). This was
one of the guiding themes behind early ART predictions
from the 1970s about how brain circuits that form during
infant development can support later learning that refines
and builds upon them. For example, two articles that were
published back-to-back in the 1978 annual volume of Progress
in Theoretical Biology developed this theme. One article is
called Communication, Memory, and Development (Grossberg,
1978b), a title that underscores the article’s proposal that
all cellular tissues, both inside and outside brains, embody
a universal developmental code whose mathematical laws are
often formally the same as those that control later learning,
albeit possibly realized by different physical mechanisms;
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e.g., directed growth of connections during development
vs. learned tuning of synaptic connections during adult
learning. The other article is called A Theory of Human
Memory: Self-organization and Performance of Sensory-motor
Codes, Maps, and Plans (Grossberg, 1978a), a title that
summarizes the article’s goal of discussing various learning
processes that occur after infant development. This article
included contributions to ART. Both articles laid theoretical
foundations for many additional model developments during the
subsequent decades.

LAMINART CIRCUITS FOR
DEVELOPMENT AND ADULT
PREATTENTIVE GROUPING AND
ATTENTION

The LAMINART model proposes how horizontal and
interlaminar connections develop in cortical areas V1 and
V2, after which they support adult perceptual grouping and
attention. During the development of perceptual groupings,
initially there is crude clustering of weak horizontal connections
until patterned visual input occurs after eye opening. Visual
input strengthens and refines these connections while doubling
the projection range of long-range horizontal connections in
layer 2/3 (Figure 2, top image). These horizontal connections
also double their length in the model’s layer 2/3 (Figure 2,
bottom image) between iso-orientation columns, preferentially
along each cell’s preferred orientation, leading to cells that
exhibit other experimentally reported properties, such as length
summation and appropriate responses to surround stimuli, as
well as the temporal sequencing and relative amounts by which
different V1 laminae develop orientation selectivity.

During development, random or visual inputs from lateral
geniculate nucleus (LGN) excite cells in layer 4 (Figure 3A)
which in turn activate cells in layer 2/3 (Figure 3B), where the
horizontal connections self-organize between cells responding to
different orientations and locations according to correlational
and competitive growth rules (Figure 3C). This developmental
process results in a network of long-range horizontal excitatory
connections between layer 2/3 model pyramidal cells, along
with shorter-range disynaptic inhibitory connections mediated
by layer 2/3 model smooth stellate cells.

Such a network supports inward perceptual grouping between
two or more approximately collinear and like-oriented boundary
inducers, but not outward grouping from a single inducer. This
property is called the bipole grouping rule. Form-sensitive scenic
boundaries are hereby completed. The existence of bipole cells
was predicted in Grossberg (1984) and simulated in a series
of articles beginning with Grossberg and Mingolla (1985). The
first neurophysiological evidence for bipole cells was reported in
cortical area V2 by von der Heydt et al. (1984).

As noted above, boundary signals from layer 2/3 feedback
to layer 4 via layer 6, which sends on-center excitation and
adaptive off-surround inhibition to layer 4 (Figure 3C). The
model develops V2 connections using similar rules, but with
larger spatial scales.

FIGURE 2 | (Top image) The projection range of pyramidal cells in cat visual
cortex doubles after eye opening [adapted from Galuske and Singer (1996)].
(Bottom image) The same thing happens during model development
[reprinted with permission from Grossberg and Williamson (2001)].

BALANCED EXCITATION AND INHIBITION
ENABLE BOTH GROUPING AND
ATTENTION CIRCUITS TO DEVELOP

The LAMINART model clarifies how the excitatory and
inhibitory connections that occur in these circuits can develop
by maintaining a balance between excitation and inhibition.
The growth of long-range excitatory horizontal connections
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FIGURE 3 | The adult network of retinal, lateral geniculate nucleus (LGN),
and cortical V1 neurons to which the developmental model converges. (A)
Feedforward circuit from the retina to LGN to cortical layer 4: retinal ON cells
have an on-center off-surround organization (white disk surrounded by black
annulus). Retinal OFF cells have an off-center on-surround organization (black
disk surrounded by white annulus). LGN ON and OFF cells receive
feedforward ON and OFF cell inputs from the retina, which activate excitatory
inputs to layer 4 oriented simple cell receptive fields. Like-oriented layer
4 simple cells with opposite contrast polarities compete before generating
half-wave rectified outputs that are pooled at complex cells, which can thus
respond to both polarities. (B) Cortical feedback loop between layers 6, 4,
and 2/3: LGN activates layer 6 and layer 4 cells. Layer 6 cells excite layer
4 cells with a narrow on-center and inhibit them using layer 4 inhibitory
interneurons within a broader off-surround. Layer 4 cells then excite layer
2/3 cells, which send excitatory feedback signals back to layer 6 cells via
layer 5 (not shown). Layer 2/3 can hereby activate the layer 6-to-4 modulatory
on-center, off-surround network. (C) Horizontal interactions in layer
2/3 support perceptual grouping: Layer 2/3 complex pyramidal cells
monosynaptically excite one another via horizontal connections, primarily on
their apical dendrites, and inhibit one another via disynaptic inhibition via
model smooth stellate cells. (D) Top-down corticogeniculate feedback from
layer 6: Layer 6 cells send topographic excitatory signals to LGN ON and OFF
cells and broadly distributed inhibitory signals via LGN inhibitory interneurons.
The feedback signals pool outputs over all cortical orientations and are
delivered equally to ON and OFF cells [reprinted with permission from
Grossberg and Williamson (2001)].

between layer 2/3 pyramidal cells is balanced against that of
short-range disynaptic interneuronal connections. Within the
attention-preattention interface that is shared by both grouping
and attentional pathways, the growth of excitatory on-center
connections from layer 6-to-4 is balanced against that of
inhibitory interneuronal off-surround connections.

These balanced connections have been shown through
theorems and computer simulations in Grossberg and
Williamson (2001) to develop properly using a combination of
outstar (Grossberg, 1968, 1971) and instar [Grossberg, 1976a,
1980 (Appendix)] learning laws. The names of these learning
laws reflect the anatomies in which they occur (Figure 4).
In an outstar, when a ‘‘source cell’’ in the center of the
outstar (green disk) is activated, it sends a sampling signal
along all of its axons to the synapses at their ends, which are
drawn in Figure 4 as hemidisks. In these synapses, adaptive
weights, or long term memory (LTM) traces, begin learning
whenever a sampling signal is active. The LTM traces can
increase to match large postsynaptic activities or decrease
to match small ones. Through time, these LTM traces learn
a time-average of the activities of the cells that they abut
whenever their sampling signal is active. In this way, an
outstar can learn a time-averaged spatial pattern of activities
of the cells in its border. In different specialized circuits,
these spatial patterns can represent a wide range of specific
patterns, ranging from top-down cognitive expectations to
motor synergies.

The anatomy of an instar differs from that of an outstar by
reversing the direction of the signal flow in its axons. This is
the duality property of instar and outstar in Figure 4. Thus,
in an instar, the cell that triggers learning receives signals
from all the cells in the instar border. When it is activated,
this cell triggers learning in all LTM traces within its abutting
synapses. The pattern, or vector, of all these LTM traces, hereby
becomes more parallel to the time-averaged pattern of all the
input signals that they experience when the sampling cell is
active. After learning occurs, input patterns that are more
parallel to the LTM vector more vigorously activate their shared
postsynaptic cell.

This tuning process supports the learning of recognition
categories in self-organizing maps (SOM) and ART networks,
among many others. In such networks, multiple sampling cells
compete. The cells that are almost parallel to the current input
pattern have the highest activation and win the competition. In
this way, such a network’s input patterns selectively activate the
recognition categories that best represent them.

The development of grouping and attentional circuits in
laminar neocortical networks is yet another of the applications
where outstar and instar learning are valuable. Instar learning
helps to tune the growth and selectivity of excitatory horizontal
connections in layer 2/3, whereas outstar learning helps to tune
how inhibitory interneurons balance excitation in layers 4 and
2/3 (Grossberg and Williamson, 2001).

Outstars and instars are typically used in rate-based neural
networks. There has been substantial progress since their
introduction in showing how their activation and learning
laws can be embedded in spiking networks with detailed
biophysical and biochemical interpretations, including a method
for transforming any rate model that uses membrane equations
into an equivalent spiking model (e.g., Fiala et al., 1996;
Cao and Grossberg, 2012; Pilly and Grossberg, 2013b).
This rich theme of work on learning will not be further
discussed herein.
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FIGURE 4 | Instar and outstar networks can both learn spatial patterns of activity from the network of cells that they sample. When the source cell of an outstar is
active, its adaptive weights sample and learn a time-average of the activities in the outstar’s border cells. The outstar can then read-out the net spatial pattern of
activity that it learned across the border cells. When the source cell of an instar is active, its abutting adaptive weights learn a time-average of the axonal signals that
they gate from sampled cells. This tuning process makes the source cell fire more selectively to activity patterns across the sampled cells that match it. The source
cell functions like a recognition category for that, and similar, activity patterns.

BALANCED SIGNALS SUPPORT SPARSE
AND VARIABLE SPIKING AS WELL AS
RAPID SYNCHRONIZATION

The balance between excitatory and inhibitory interactions
helps to explain the observed sparseness and variability
in the number and temporal distribution of spikes
emitted by cortical neurons (Shadlen and Newsome,
1998; van Vreeswijk and Sompolinsky, 1998). This kind
of spiking does not efficiently activate neurons, but may
provide background activation that helps to maintain
homeostatic plasticity during periods of rest (Turrigiano,
1999). Given this inefficiency, how do neurons ever fire
efficiently? A property of such balanced networks, at
least when they are properly designed using neuronal
membrane equations that include automatic gain control
by shunting interactions (e.g., Grossberg, 2013), is that,
when they are driven with external inputs, their activities
are rapidly amplified and synchronized, thereby achieving
efficient processing (e.g., Grossberg and Williamson, 2001;
Grossberg and Versace, 2008).

The LAMINART model hereby suggests that a balance
between excitation and inhibition in multiple cortical layers
ensures several useful properties: stable development and

learning by cortical circuits, perceptual grouping and attention,
a baseline of inputs during resting states to support homeostatic
plasticity, and rapid, efficient, and synchronous processing of
input patterns during performance.

Various other authors have also emphasized a role for
balanced excitation and inhibition, including in the development
of map properties such as orientation tuning in primary visual
cortex (Mariño et al., 2005) and frequency tuning in primary
auditory cortex (Sun et al., 2010).

HOW DOES THE CORTICAL MAP
DEVELOP IN THE LAMINAR CORTEX OF
CORTICAL AREA V1?

The above results do not yet explain how the development
of cortical maps in cortical area V1 may occur, how this
development may be coordinated across cortical layers to form
cortical columns (Hubel and Wiesel, 1974), or how maps
form that coordinate inputs from both eyes. In particular,
in cortical area V1, cells tuned to orientation and ocular
dominance are found within its map (Blasdel, 1992a,b; Crair
et al., 1997a,b; Hübener et al., 1997). The V1 map is, however,
only one of many in the brain. Topographically organized
maps in functional columns have been found in visual (Tootell
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et al., 1982, 1998; Duffy et al., 1998), auditory (Komiya and
Eggermont, 2000; Stanton and Harrison, 2000), somatosensory
(Dykes et al., 1980; Grinvald et al., 1986;Wallace and Stein, 1996)
and motor (Nieoullon and Rispal-Padel, 1976; Munoz et al.,
1991; Chakrabarty andMartin, 2000) thalamic and cortical areas.
An important task in understanding the brain, and in building
computational models thereof, is to explain the organizational
principles and mechanisms whereby such maps develop and are
coordinated between interacting cortical columns. The cortical
map in V1 will be discussed first as a prototype for maps in
other modalities.

Early neural models proposed how maps of orientation
(OR), ocular dominance (OD), and related properties may
develop in V1 (e.g., von der Malsburg, 1973; Grossberg,
1975b, 1976a; Willshaw and von der Malsburg, 1976; Swindale,
1980, 1992; Kohonen, 1982; Linsker, 1986a,b,c; Miller et al.,
1989; Rojer and Schwartz, 1990; Olson and Grossberg, 1998).
These models showed how the spontaneous activity that
occurs before eye opening, when it interacts with associative
learning and competitive interactions, can generate maps
with properties similar to those found in vivo. However,
these results did not explain how cortical columns develop
the consistent tuning for orientation and ocular dominance
that is observed along with vertical penetrations across
multiple cortical layers (Hubel and Wiesel, 1974). This was
a significant challenge for models because the orientation
maps in layers 4 and 6, as well as the crude clustering
in layers 2/3 and 5, begin to develop before interlaminar
connections within V1 exist with which to coordinate their
formation across layers (Callaway and Katz, 1992). These initial
preferences are, moreover, preserved and refined in response
to patterned vision after eye opening (Callaway and Katz,
1990, 1991). It was thus an urgent question to explain how
these initially shared properties across cortical layers could be
coordinated without interlaminar connections that arise within
the cortex itself.

Grossberg and Seitz (2003) proposed that this coordination
is realized by the cortical subplate (Rakic, 1976; Luskin and
Shatz, 1985; Allendoerfer and Shatz, 1994; Ghosh and Shatz,
1994; Ghosh, 1995; McAllister, 1999). The subplate exists
transiently as a kind of extra deep layer of V1 where it receives
thalamocortical connections at an early stage of development.
These connections wait for weeks before innervating layer
4. During that time, the subplate sends vertical connections
throughout the developing cortical plate (Ghosh and Shatz,
1993; McConnell et al., 1994). The critical developmental
role of the subplate was also illustrated by the fact that its
ablation prevents the formation of cortical cells tuned to
orientation (Kanold et al., 2003) and ocular dominance maps
(Ghosh and Shatz, 1992).

Grossberg and Seitz (2003) modeled how a cortical map
develops within the subplate, and sends signals topographically
through the cortical layers. These topographic subplate signals
act as teaching signals whereby the early consistent tuning for
orientation and ocular dominance across layers is achieved,
even before interlaminar connections within V1 exist. The
subplate’s interlaminar topographic signals also activate the

growth of topographic interlaminar pathways within the cortex
that support cortical columns.

WHY IS THE SUBPLATE NEEDED FOR
CORTICAL DEVELOPMENT?

This overview raises the question of why the subplate is
needed, given that there are successful models of cortical map
development that do not require a subplate. Grossberg and
Seitz (2003) proposed that the subplate ensures the development
of topographically precise cortical columns that coordinate the
activities of cells in multiple cortical layers, as in Figure 1
(bottom row). The subplate avoids a serious problem that was
shown to occur in a laminar model of cortical development
without a subplate. Without a subplate to guide the topographic
growth of interlaminar connections, long-range horizontal
connections in layer 2/3, among others, caused correlations
across multiple cortical positions, resulting in interlaminar
connections distributed broadly across the network, rather than
in topographical cortical columns. A major reduction in the
spatial resolution of cortical representations was hereby caused.
Such a cortex could not represent the orientations and eye of
origin from a sufficient number of retinal positions to provide
adequate visual acuity using cortical maps.

The subplate hereby resolves a design tension between
the need to provide adequate visual acuity using topographic
cortical columns that can learn to become selective to different
visual features, and the need to enable long-range horizontal
processes like perceptual grouping to occur. Because earlier
models of V1 map development included neither cortical layers
nor long-range cortical interactions, this problem did not occur
in them.

STM, MTM, AND LTM IN CORTICAL MAP
DEVELOPMENT

As in earlier models of cortical development, the Grossberg
and Seitz (2003) subplate model proposed that subplate circuits
embody a source of noisy input, a bandpass filter, and
normalization across model cells. Moreover, all model cortical
layers realize bandpass filter and normalization properties,
which arise naturally in the networks of on-center off-surround
interactions between cells that obey membrane, or shunting,
equations (Grossberg, 1973, 1976a, 1980, 2013). As noted above,
such networks can balance cell cooperation and competition
and thereby enable network neurons to remain sensitive to
the relative size of inputs whose total size may vary greatly
through time.

When these networks include recurrent interactions, they can
also contrast enhance their cell responses to input patterns while
normalizing them. In particular, contrast enhancement amplifies
cell activities in response to their small initial inputs due to the
small size of bottom-up adaptive weights before development
occurs. The contrast-enhanced activities enable development to
occur efficiently by helping to choose the cell population, or small
set of populations, that receive the largest inputs. These winning
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cells can then drive instar learning in the LTM traces within the
synapses that abut them, and thereby tune the adaptive filters that
learn the cortical map.

The above comments invoke short term memory (STM)
traces, or cell activations, as well as LTM traces, or adaptive
weights, in map development. No less important are
medium-termmemory (MTM) traces, or habituative transmitter
gates (Grossberg, 1976a, 1980), which also occur in so-called
depressing synapses (Abbott et al., 1997) and dynamic synapses
(Tsodyks et al., 1998). MTM traces occur in the subplate and in
the subsequently developing cortical layers. These transmitters
gate, or multiply, the axonally-mediated signals between cells
and habituate in an activity-dependent way.

MTM traces overcome a serious problem that could impede
development in their absence; namely, they prevent the cells that
first win the competition from persistently dominating network
dynamics thereafter, due to the fact that their LTM traces have
become larger. Because the STM signal in a pathway is multiplied
both by LTM and MTM traces before a net signal activates
target cells, the increasing size of the LTM trace can be offset
by the decreasing size of the corresponding MTM trace when a
given STM signal has been active for a while. After the MTM
traces recover, the larger LTM traces can again help to choose
winning cells in response to input patterns that their LTM vector
best matches.

TEMPORAL ORGANIZATION OF STAGES
IN CORTICAL MAP DEVELOPMENT

Spontaneous Retinal Waves Drive the
Development of Retina-to-LGN and
LGN-to-Subplate Connections
The model’s initial circuit contains the retina, LGN and subplate
(Figure 5A). Several types of data support the hypothesis that this
circuit is monocular: Neurophysiological recordings in area 17 of
kittens show that, at eye opening, the majority of cells respond
only to contralateral eye inputs (Albus andWolf, 1984). In young
ferrets, LGN activity is largely unchanged when ipsilateral inputs
from the retina are cut (Weliky and Katz, 1997). In addition,
there exists an early bias of oriented OFF cell activity in the retina
(Wong and Oakley, 1996) and the kitten cortex (Albus andWolf,
1984) before eye opening. Accordingly, the model contains only
OFF ganglion cells at this stage of development.

Spontaneous activity arising in the retina drives the
development of model feedforward and feedback connections
between the LGN and the subplate. After development, the
pattern of feedforward connections to a given subplate cell and
the feedback connections from that cell share the same axis of
elongation (Murphy et al., 1999).

Markowitz et al. (2012) have additionally modeled how
spontaneous retinal activity in the form of retinal waves can drive
retinogeniculate map development before the LGN connects
to the subplate. This study simulates how suitably defined
retinal waves guide the connections from each eye into distinct
LGN layers A and A1, while these connections also develop in

topographic registration. The details of this model can be found
in the article.

Development of Ocular Dominance
Columns
The next steps in model development clarify how pathways
from both eyes are coordinated during development to form
ocular dominance columns in the subplate (Figure 5B). First,
connections from the contralateral eye develop a monocular
cortical map with orientation columns to the subplate. Activity
from the ipsilateral eye begins subsequently, and uses the scaffold
of the contralateral eye map, abetted by interocular correlated
activity due to processing of the same visual inputs, to create a
binocular map with ocular dominance columns. In this way, the
ipsilateral eye inherits the orientation map of the contralateral
eye, just as receptive fields of the cortical layers will subsequently
inherit properties of the subplate.

A Subplate Map Is Taught to the Other
Cortical Layers
After the subplate forms, it guides map formation in the cortical
layers. In the model, each cortical layer develops separately.
This property is consistent with the fact that, in vivo, learning
in layer 2/3 occurs after layer 4 has developed its orientation
map (Callaway and Katz, 1992; Galuske and Singer, 1996). The
development of layer 4 is guided by topographic afferents from
the subplate as afferents from the LGN begin to develop into
layer 4 (Figure 5C). The endogenous retinal activity enables layer
4 inputs from the subplate to teach developing connections from
the LGN into layer 4. The layer 4 LTM traces stabilize as a
map similar to that found in the subplate is learned. Maps of
ocular dominance and orientation tuning also form in layer 6
(Figure 5E) at a time and manner similar to the developing map
in layer 4, as will be explained more fully below.

Development of the horizontal connections in layer 2/3
(Figure 5D) begins when subplate inputs reach this layer. in vivo,
these subplate inputs are carried by axons that terminate in
the marginal zone (Ghosh, 1995) where layer 2/3 cell dendrites
occur (Callaway, 1998). In the model, long-range horizontal
connections between layer 2/3 cells develop in response to
lateral correlations within the subplate inputs. Recurrent signals
within these developing layer 2/3 connections amplify the
subplate-activated correlations, leading to refinement of the
specificity of connections. The subplate inputs to layer 2/3 are
the same as those to layer 4, but in layer 2/3 lateral connections
develop instead of connections from the LGN. The horizontal
connections in layer 5 are proposed to develop in a similar
manner to those of layer 2/3.

Development of Interlaminar Connections
After maps develop in each of the cortical layers, interlaminar
connections grow (Callaway and Katz, 1992). In the model, layer
6-to-4 and layer 4-to-2/3 connections develop (Figure 5E). They
do so vertically through the cortical layers because the subplate
provides the same teaching input to each of them. These vertical
interlaminar connections support the dynamics of adult cortical
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FIGURE 5 | Stages of model development (black circles denote OFF receptive fields, white circles denote ON receptive fields, ovals denote orientationally tuned
cells, lines ending in open circles denote adaptive connections, lines ending without circles denote non-adaptive connections). (A) Monocular subplate circuit:
spontaneous activity in retinal OFF cells activates the LGN, which in turn activates the subplate. Feedforward adaptive weights from the LGN to the subplate and
feedback adaptive weights from the subplate to the LGN develop a map of oriented receptive fields. (B) Binocular subplate circuit: inputs from the second eye
activate, leading to learning of a map of ocular dominance in the subplate that is superimposed on the existing orientation map. (C) Binocular layer 4 circuit: the
ocular dominance and orientation maps in the subplate are taught to layer 4. Retinal ganglion ON cells activate and correlated retinal inputs help to segregate ON
and OFF subfields in layer 4. (D) Layer 2/3 circuit: clusters of horizontal connections develop in layer 2/3, driven by the correlations in subplate inputs. (E) Fully
developed model: Layer 6 develops connections to and from the LGN. Then interlaminar connections develop from layer 6 to layer 4, and from layer 4 to layer 2/3.
After the subplate and its connections are removed, model maps remain stable [reprinted with permission from Grossberg and Seitz (2003)].

columns. Poorer correlations between cortical layers developed
in the absence of subplate teaching signals.

Development of the Layer 6 Map and
Subplate Atrophy
Layer 6 develops a map from the LGN that is topographically
similar to the map in layer 4 using the same subplate inputs as
layer 4 does. Layer 6 also develops a set of top-down connections
to the LGN (Figures 3D, 5E), which are similar to those from the
subplate to the LGN (Figures 5D,E).

The subplate is a transient structure that atrophies after
the cortical maps and interlaminar cortical connections
form. In the model, after the layer 6 connections form,
the subplate is removed. Simulations without the subplate
demonstrate that the developed cortical architecture is stable.
Grossberg and Seitz (2003) also simulated more subtle factors
that influence cortical development, such as the role of
BDNF (Ghosh and Shatz, 1994; Cabelli et al., 1995, 1997;
Berardi and Maffei, 1999).

Development of ON and OFF Regions in
Simple Cell Receptive Fields
As noted above, during early development, oriented cells found
in the cortex are monocular and dominated by OFF inputs.
During normal development, layer 4 simple cells quickly develop
distinct ON and OFF input fields (Albus and Wolf, 1984). In
contrast, dark rearing of the ferret causes convergence of ON and
OFF signals to LGN cells (Akerman et al., 2002). How distinct
but spatially correlated ON and OFF subfields develop is clarified
by their properties in response to visual inputs (Schiller, 1992).
After the eyes open, the mean firing rates of ON and OFF retinal
cells equalizes. Moreover, their activities become anti-correlated
because, when an ON cell is active, the OFF cell at that location
is hyperpolarized and spatially neighboring OFF cells are active,
due to the organization of these cells in on-center off-surround
networks within each cell type, and opponent, or competitive,
interactions between cell types at each position. Such a network is
called a double opponent network. These anti-correlated activities
across position help to drive selective learning of ON cell inputs
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to the ON subfield of a simple cell’s receptive field, and OFF cell
inputs to the OFF subfield of the cell (Figure 5C).

Additional properties are needed to explain how, at each
position, a pair of simple cells with oppositely polarized ON
and OFF subfields develop. An answer can be found in the
properties of the LGN double opponent networks of ON cells
and OFF cells. In addition to their fast STM interactions,
such networks also include MTM habituative transmitter
gates in the opponent circuits whereby ON and OFF cells
interact at each position. Such a network is called a gated
dipole field (Grossberg, 1980). Its individual ON and OFF
opponent cells at each position are said to form a gated dipole.
Grossberg (1972a,b) showed how the offset of a sustained input
to an ON cell in a gated dipole can cause an antagonistic
rebound that transiently activates the corresponding OFF cell
(Figure 6).

Grunewald and Grossberg (1998) have simulated the
dynamics of antagonistic rebounds between LGN ON and
OFF cells that interact within gated dipole fields during the
development of simple cells that are also organized into ON and
OFF cell pairs. Suppose that a visual input has activated ON and
OFF inputs to an LGN cell, which in turn activates a cortical
cell whose orientation and contrast polarity begin to develop
into a simple cell with the same orientation and contrast polarity
preference. When that visual input turns off, its developing
simple cell also shuts off. As a result, antagonistic rebounds in
the LGN ON and OFF cells cause LGN OFF and ON cells to
transiently turn on, at the same time as the opponent cell of
the developing simple cell also turns on. This opponent cell can
then begin to learn how to become a simple cell, but one that
responds to an opposite polarity input with the same orientation
in the same position. When such an opposite polarity input later
turns on at this position, this prior partial development give the
opposite polarity cell an advantage in winning the competition
with other cells. Its development as an opposite polarity cell
with the same orientation and position can hereby continue. In
this way, opponent pairs of simple cells with like orientation
and opposite contrast polarity selectivity can develop in the
same position.

Development of Complex Cells: How
Anti-correlated Simple Cells Input to a
Complex Cell
The development of opposite polarity simple cells with the same
orientation preference at each position sets the stage for the
development of complex cells. Complex cells pool inputs from
pairs of like-oriented simple cells at the same position but with
opposite contrast polarities; that is, with ON-OFF and OFF-ON
receptive subfields across position (Hubel and Wiesel, 1962;
Movshon et al., 1978). As a result, when one of the simple cells
that inputs to a complex cell is active, the simple cell with the
opposite contrast polarity preference at that position is silent.
Their activities are anti-correlated. How does a complex cell learn
to get activated by pairs of anti-correlated simple cells?

An answer follows from the previous discussion of how
opposite polarity simple cells develop. In particular, suppose

that a simple cell with a given contrast polarity is activated,
and starts learning to activate a complex cell. When that simple
cell turns off, its opposite polarity simple cell turns on due
to a rapid antagonistic rebound. If the previously activated
complex cell stays active during this rebound period, it can
begin to become correlated with the simple cells of both
contrast polarity preferences. Then, just as in the development
of opposite polarity simple cells, this initial advantage of
the opposite polarity simple cell in activating the complex
cell will give it a competitive advantage in response to later
inputs that directly turn it on, so that its opposite polarity
learning can continue. Grunewald and Grossberg (1998) have
simulated the development of complex cells using this kind of
dynamics. That article, as well as Grossberg and Grunewald
(2002), also simulates how these complex cells develop with
a prescribed binocular disparity preference, which is known
to occur in vivo (Ohzawa et al., 1990). They also simulated
development of the top-down connections from complex cells
in V1 to the LGN that carry out a matching process via
the ART Matching Rule, which dynamically stabilizes both
bottom-up and top-down learning (Varela and Singer, 1987;
Sillito et al., 1994).

3D LAMINART: BINOCULAR VISUAL
PROCESSING BY LAMINAR CORTICAL
CIRCUITS

The above discussion noted that complex cells in V1 receive
binocular inputs, but not how this occurs within laminar
cortical circuits in a way that can support binocular vision,
including boundary grouping in depth. The 3D LAMINART
model proposes and simulates key properties of the anatomical,
neurophysiological, and perceptual properties of the brain
networks that support vision, including how complex cells
in layer 2/3 of V1 become binocular, indeed disparity
selective, as well as of how simple, complex, hypercomplex,
and bipole cells in cortical areas V1, V2, and beyond
support binocular vision (Figure 7; Grossberg and Howe,
2003; Grossberg, 2003; Grossberg and Swaminathan, 2004;
Yazdanbakhsh and Grossberg, 2004; Cao and Grossberg, 2005,
2012; Grossberg and Yazdanbakhsh, 2005; Berzhanskaya et al.,
2007; Bhatt et al., 2007; Grossberg et al., 2008; Léveillé
et al., 2010). The present overview will just summarize
how the model proposes that complex cells develop to
represent disparity-sensitive properties within the laminar
cortical circuits in V1.

Disparity-Selective Complex Cells in Layer
2/3 of V1
As noted above, complex cells pool inputs from opposite polarity
simple cells with similarly oriented receptive fields. Complex cells
can hereby respond all along an object’s boundary even if its
contrast polarity with respect to the background reverses as the
boundary is traversed. Layer 2/3 is known to implement this kind
of contrast-invariant boundary detection (e.g., Hubel andWiesel,
1962; Poggio, 1972; Katz et al., 1989; Alonso and Martinez,
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FIGURE 6 | A gated dipole opponent network can generate a transient antagonistic rebound from its OFF channel in response to offset of a sustained input (J) to its
ON channel. This can happen because a nonspecific, tonically active, arousal input (I) equally energizes both the ON and OFF channels. The phasic input J to the ON
channel habituates its transmitter gate (y1) and thus its net output after competition occurs between the ON and OFF channels (see sustained ON-response in
yellow). When J shuts off, the net input to the OFF channel is larger than that to the ON channel, because both ON and OFF channels are now driven by the same
arousal input I, but the ON channel gate (y1) is more habituated than the OFF channel gate (y2). An antagonistic rebound then occurs in the OFF channel. The
rebound is transient (see transient OFF-response in yellow) because it gradually causes an equal amount of habituation to occur in the transmitter gates of both the
ON and OFF channels.

1998). It is also known that monocular, polarity-selective simple
cells exist in layer 4 (Hubel and Wiesel, 1962, 1968; Schiller
et al., 1976; Callaway, 1998). These properties raise the question:

How do the monocular, polarity-selective simple cells in layer
4 get transformed into binocular, disparity-selective, contrast-
invariant complex cells in layer 2/3?
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FIGURE 7 | The 3D LAMINART model circuit diagram. The model consists of a (V1 Interblob)—(V2 Pale Stripe)—V4 boundary stream which computes 3D
perceptual groupings, and a (V1 Blob)—(V2 Thin Stripe)—V4 surface stream which computes 3D surface representations of lightness, color, and depth. The two
processing streams interact to overcome their complementary deficiencies (Grossberg, 2000) and create consistent 3D boundary and surface percepts. Note the
binocular interaction in layer 3B of spatially displaced inputs from monocular left and right eye simple cells with the same polarity in layer 4, before opposite polarity
binocular simple cells input to complex cells in layer 2/3A [reprinted with permission from Cao and Grossberg (2005)].

Grossberg and Howe (2003) proposed that this occurs in
two stages (Figure 7): first, pairs of same-polarity, like-oriented,
monocular simple cells, that respond to opposite eyes at nearby
positions in layer 4, input to same-polarity, like-oriented,
binocular simple cells at an intermediate position in layer 3B.

These binocular simple cells respond selectively to a narrow
range of binocular disparities. This processing stage clarifies how
inputs from the two eyes binocularly fuse cells that are sensitive to
the same polarity, but not to opposite contrast polarities (Julesz,
1971; Poggio and Poggio, 1984; Read et al., 2002). This same
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sign property is one of several that help to guarantee that only
monocular cell responses from the left and right eyes that arise
from the same object can be binocularly fused. These binocular
simple cells can develop from their monocular simple cell inputs
using properties of SOM that were summarized above.

Second, pairs of opposite-polarity, like-oriented, binocular
simple cells at the same position in layer 3B learn to input to
contrast-invariant, like-oriented, binocular complex cells in layer
2/3 using the above adaptive filtering and rebound properties.
These hypotheses are supported by facts such as: layer 4 cells
output to layer 3B, but not to layer 2/3 (Callaway, 1998);
layer 3B projects heavily to layer 2/3 (Callaway, 1998); and
layer 2/3 contains a large number of binocular and complex
cells (Poggio, 1972). These complex cells can develop using the
properties of opponent rebounds that were summarized above.

This summary does not go into multiple subtleties that are
explained in the archival modeling articles, such as the slight
differences in the orientation preferences of monocular simple
cells of opposite eyes that are activated by viewing an object
boundary in-depth, and that is fused at binocular simple cells.

Alternative Models of V1 Complex Cells
Various alternative models of complex cells have been proposed.
For example, Tao et al. (2004) have suggested a model of
the neuronal dynamics in the input layer 4Cα of LGN output
signals to cortical area V1. They propose to explain how both
simple and complex cell responses are found in this layer,
and that ‘‘through a balance of strong recurrent excitation
and inhibition this model yields complex responses in those
cells with relatively little LGN drive.’’ Chance et al. (1999)
have proposed that phase-specific outputs of excitatory simple
cells drive cells that are coupled together in an excitatory
recurrent network. In particular, these authors propose that
‘‘local recurrent connections. . .are responsible for the spatial-
phase invariance of complex-cell responses. . .neurons exhibit
simple-cell responses when recurrent connections are weak and
complex-cell responses when they are strong, suggesting that
simple and complex cells are the low- and high-gain limits of the
same basic cortical circuit’’ (p. 277).

These models are underconstrained in the sense that they
do not explain how critical properties, such as the binocular
disparity-selective responding of complex cells is realized. They
also do not explain how monocular simple cells and binocular
complex cells are proposed to support 3D figure-ground
separation and both 3D boundary and surface perception. These
accomplishments of the visual cortex have been modeled as
part of the 3D LAMINART model, whose model cell types
and interlaminar interactions have been supported by multiple
anatomical, neurophysiological, and psychophysical experiments
(e.g., Grossberg and Raizada, 2000; Raizada and Grossberg, 2001,
2003; Grossberg and Swaminathan, 2004; Cao and Grossberg,
2005, 2012, 2014, 2018; Fang and Grossberg, 2009; Grossberg,
2016a). These articles also provide comparative discussions of
other models of visual cortex that do not attempt to explain such
data; e.g., Raizada and Grossberg (2003, Section 7).

As noted above, one motivation for these models is the fact
that both simple and complex cell properties can be recorded

in cortical layer 4. There are several possible reasons for this
fact, due to both bottom-up and top-down influences, all of
them consistent with the theoretical perspective taken in this
article. A bottom-up explanation would note that, just as there
may be varying degrees of ocular dominance across cells in the
V1 cortical map (LeVay et al., 1978; Kara and Boyd, 2009), if only
due to the statistical nature ofmap development, so toomay there
be gradients of polarity-selective vs. polarity-pooling bottom-up
interactions there. A top-down explanation would note that
complex cells in layer 2/3 of V1 feed back to simple cells in
layer 4 of V1, thereby mixing, albeit with a brief temporal delay,
their polarity-invariant properties with the polarity-specific
properties of simple cells. Sorting out these various possibilities
would benefit from more detailed statistical analyses of both
experiments and models of V1 cortical development.

HOMOLOGS OF OCULAR DOMINANCE
COLUMNS IN OTHER DEVELOPING
CORTICAL MODALITIES: STRIP MAPS

The preceding sections focused on models of visual cortical
development and architecture because psychological and
neurobiological studies of vision were some of the earliest
ones made and because they enjoy one of the largest
interdisciplinary databases in science. Other neural models
of cortical development have shown that several modalities use
variants of the same design principles and mechanisms that
support visual cortical development. The following text reviews
and unifies some highlights of their properties.

Strip Maps in Multiple Modalities
A key property is that all the maps exploit variations of how
a single ocular dominance column can be used to represent
multiple orientations of images that excite an eye at a given
position. In all the other examples that will now be summarized,
a strip of cells represents a given property that is also used to
represent an ordered series of changes in another property. Such
a design is accordingly called a strip map. A strip map provides
enough cortical representational space for the ordered values
of the second property to be represented in a map that also
codes the first property. Examples include how cortical maps
develop to represent the following kinds of information: place-
value numbers, auditory streams, speaker-normalized speech,
and cognitive working memories that can store repeated items;
e.g., ABACBD. These maps occur in both the ventral What
cortical stream and the dorsal Where cortical stream, and at
multiple levels of the cortical hierarchy.

Development of Place-Value Numbers and
Numerical Comparisons
Both animals and humans are capable of representing and
comparing numerical quantities. This competence is supported
by a spatial map in the inferior parietal cortex that represents
small numbers in order of increasing size (Dehaene et al.,
1996; Pinel et al., 1999; Piazza et al., 2004). Rhesus monkeys
are also known to represent the numerosities 1–9 on an
ordinal scale (Brannon and Terrace, 1998, 2000). Only humans,
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FIGURE 8 | Processing stages of the SpaN model. Preprocessor: For each sensory input increments the activity of the integrator y. Integrator activity uniformly
activates the spatial number map. Spatial number map: Each activity pi receives the output Si that is activated by the integrator input y. The signal functions si that
give the rise to Si has increasing thresholds and slopes at each successive map cell i. Examples for cells 10, 50, and 100 are shown on the diagram. Each pattern pi

“bump” on the spatial number map represents the analog numerical map value of increasing numbers of inputs in a sequence. Comparison wave: see the archival
article for details [reprinted with permission from Grossberg and Repin (2003)].

however, have evolved multi-digit place-value number systems
whereby much larger numbers can be represented by such a
map. Grossberg and Repin (2003) proposed a neural model
that is called the Spatial Number Network, or SpaN model
(Figure 8), to explain and simulate how small numbers are
represented in an ordered spatial map in the inferior parietal
cortex of the Where cortical processing stream. Multi-digit
place-value numerical representations are proposed to develop
through learned associations between categorical language
representations in the What cortical processing stream and the
Where spatial representation. For example, learned language
categories that symbolize separate digits, such as ‘‘one,’’ ‘‘two,’’

‘‘three,’’ etc., as well as place markers like ‘‘ty,’’ ‘‘hundred,’’
‘‘thousand,’’ etc., are together associated through learning with
the spatial locations of the Where spatial representation. The
model that realizes this expanded numerical capability is called
the Extended SpaN, or EspaN, model.

As noted in Figure 9A, each numerical representation in
the primary analog number map is expanded into a strip map
that provides enough representational space for the learning
of place-value numbers. Such a strip is a kind of numerical
hypercolumn. A number that activates a given analog numerical
representation in the primary number map can also activate
the entire strip corresponding to that numerical representation.
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FIGURE 9 | Summary of how place-value numbers are learned via What-to-Where interstream information fusion. (A) The striped vertical area on the left denotes
the primary analog number map in the Where cortical stream. Horizontal strips respond to the same numbers as the corresponding cells in the primary map. (B)
How What-to-Where associations activate a spatial representation of the number seven-ty in the strip that corresponds to seven in the primary number map. Sizes of
the solid circles encode activities of cells in the strip map. Convergent associations from language representations of “seven” and “ty” maximally activate the cells
representing “seventy” [reprinted with permission from Grossberg and Repin (2003)].

For example, the number ‘‘seven’’ would send inputs to its
entire strip (Figure 9B). Different place values, such as ‘‘ty,’’
‘‘hundred,’’ ‘‘thousand,’’ and so on, initially send broadly
distributed adaptive signals to the entire strip map. After
unsupervised learning, they can activate different positions
within each strip, with numbers like ‘‘seven,’’ ‘‘seventy,’’ and
‘‘seven hundred’’ being represented in progressively more distant
positions from the primary number map. This ordering emerges
from how the learning spontaneously develops when the entire
strip map also includes competitive interactions both within and
across strips. Grossberg and Repin (2003) hereby demonstrated
how a place-value number system develops as an emergent
property of What-to-Where interstream information fusion.
Piazza et al. (2007) have provided additional experimental
fMRI support of this conception by reporting ‘‘a magnitude
code common to numerosities and number symbols in human
intraparietal cortex.’’

This summary will not detail the large body of psychophysical
and neurobiological data that these models have explained.
In particular, the model quantitatively simulates error rates in
quantification and numerical comparison tasks, and reaction
times for number priming and numerical assessment and
comparison tasks. The dynamics of numerical comparison are
encoded in activity pattern changes within this spatial map
that cause a ‘‘directional comparison wave’’ with properties
that mimic data about numerical comparisons, such as
the Number Size Effect and the Number Distance Effect
(Dehaene, 1997). To clarify how these mechanisms may have
arisen through evolution—that is, to explain ‘‘where numbers
come from’’—Grossberg and Repin (2003) noted that these
mechanisms are specializations of neural mechanisms that had
earlier been used to model data about motion perception,

attention shifts, and target tracking, an explanation which
clarifies how numerical representations may have evolved from
more primitive functions that are known to occur in the
cortical Where processing stream, and how inputs to the parietal
numerical representation arise.

Development of Auditory Streams and the
Cocktail Party Problem
Auditory communication often takes place in an environment
with multiple sound sources simultaneously active, as when we
talk to a friend at a crowded noisy party. Despite this fact, we
can often track our friend’s conversation, even though harmonics
from other speakers’ voices may overlap those of our friend’s
voice. Such a conversation is possible because the auditory
system can often separate multiple overlapping sound sources
into distinct mental objects, or auditory streams. This process has
been called auditory scene analysis (Bregman, 1990) and enables
our brains to solve what is called the cocktail party problem.

Many models of auditory scene analysis have been proposed
since Bregman’s seminal book. Some of them apply classical
engineeringmethods, such as Independent Component Analysis,
to separate independent sources of activity from recorded
mixtures of acoustic sources; e.g., Brown et al. (2001). This
particular method works if the sources are non-Gaussian signals
that are statistically independent of each other. If N sources
are present, then at least N observations (e.g., microphones)
are needed to recover them1 Models of auditory scene analysis
vary considerably in their biological plausibility and their
ability to detect and track auditory streams without external
supervision. An issue of particular importance is whether and

1https://en.wikipedia.org/wiki/Independent_component_analysis
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FIGURE 10 | The ARTSTREAM model explains and simulates key data about how auditory scene analysis occurs by combining pitch and source direction
information. Multiple auditory streams (labeled 1, 2, 3) can emerge within strip maps that are perpendicular to the primary spectral representation within the spectral
stream layer. Spectral-pitch resonances develop between the spectral stream layer and the pitch stream layer to track each acoustic source. These are denoted by
the bottom-up and top-down filters with branching pathways between these layers, combined with top-down lateral inhibition via the pitch summation layer to realize
the ART Matching Rule. Interactions of the ART Matching Rule and asymmetric competition mechanisms in cortical strip maps explain how a source selects the
consistent frequencies in its own stream while separating other acoustic signals into another stream. Signals from both ears combine to compute source direction,
which also helps to identify a source [adapted with permission from Grossberg et al. (2004)].

how source separation occurs when the auditory signals are
significantly occluded by noise. See Szabó et al. (2016) for a
recent review.

Grossberg et al. (2004) introduced the ARTSTREAM neural
network model of auditory scene analysis to explain how
auditory scene analysis can be achieved by applying basic
ART principles and mechanisms in the auditory domain,
notably the ART Matching Rule for attentional focusing
and resonant conscious awareness, and how it can be used
to select and complete multiple auditory streams in noise
(Figure 10). To separate multiple auditory streams, the
ARTSTREAM model uses variations of the strip maps that
represent place-value numbers (Figure 9). These ART and strip
map designs together provide a secure biological foundation
for ARTSTREAM by suggesting how auditory scene analysis

may have emerged during evolution by exploiting widely used
brain mechanisms and circuits, while also ensuring that its
representations may be incrementally learned in real-time,
without experiencing catastrophic forgetting, even in response to
noisy and nonstationary acoustical environments.

In the ARTSTREAM model, multiple stages of auditory
preprocessing generate a spatial map of tonotopically ordered
sound frequencies in log-polar coordinates. This map is often
called a spectral representation. In order to carry out an
auditory scene analysis, a brain uses its spectral representation
to learn representations of the pitch of a sound and its spatial
location (Bregman, 1990). The front end of the ARTSTREAM
model accordingly uses the SPINET, or Spatial PItch NETwork,
of Cohen et al. (1995; see gray boxes in Figure 10) to
model how the pitch representations arise and simulate
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many data about pitch perception to support its proposed
neural mechanisms.

Using its spectral, pitch, and location representations,
ARTSTREAM can track several auditory streams simultaneously.
These several requirements build upon a strip map that
extends the spectral representation to enable multiple streams
to be represented, just as the EspaN model enables place-
value numbers to be represented. In the ARTSTREAM strip
map, when a sound frequency activates its primary spectral
representation, it also activates the entire strip of cells that
encode that sound frequency, in much the same way that ordered
representations of small numbers in the primary number map
expand their representations into strips that can represent place-
value numbers. In Figure 10, the anatomical substrate of each
stream in the spectral stream layer is denoted by a different
integer (1, 2, 3). Each stream includes a complete copy of
the spectral representation. The strips are perpendicular to the
streams, and redundantly represent each different frequency in
all the streams.

A stream in the model forms as a result of a spectral-pitch
resonance that emerges during feedback interactions between the
spectral representation of a sound source in the strip map and a
representation of its pitch in the pitch stream layer (Figure 10).
This pitch representation is a learned recognition category,
much like any such category in an ART network. The following
processing steps illustrate model dynamics:

First, a sound is transformed into a spatial pattern of
frequency-specific activations across the spectral stream layer
(Figure 10). These frequencies typically activate the harmonics
of a sound’s pitch, at least for the sonorant types of sounds that
have a pitch, such as vowels, due to the way in which such sounds
are processed in the cochlea. Each frequency activates its entire
strip. The cells that are activated by these sound frequencies then
send bottom-up signals through an adaptive filter. Because the
harmonics of the sound’s pitch are active, this filter is sometimes
called a harmonic sieve (Duifhuis et al., 1982; Scheffers, 1983).

Output signals from this filter activate a subset of cells within
the pitch stream layer (Figure 10) before these cells compete
to choose the most active cell population. Because such a cell
selectively responds to the harmonics of a pitch, it is called a pitch
category. A chosen pitch category, in turn, activates a top-down
expectation that obeys the ART Matching Rule. Because the
top-down expectation obeys the ART Matching Rule, spectral
components are selected if they match harmonics of the active
pitch category, and are suppressed if they do not. In this way,
noise is suppressed that would otherwise occlude processing
the pitch’s spectral components. Reciprocal bottom-up and
top-down excitatory signals then resonate between the spectral
and pitch stream layers. Such a resonance provides the temporal
coherence that allows one voice or instrument to be tracked
through a noisy environment that contains multiple active
sound sources.

A proper balance of cooperation and competition is needed
to choose multiple streams while suppressing noise. Asymmetric
intrastrip competition is stronger from the primary spectral
representation to other positions on its strip, than conversely;
that is, from stream 1 to streams 2 and 3. Interstrip competition

also occurs, and is regulated by active top-down expectations that
obey the ART Matching Rule.

The intrastrip competition enables the primary spectral
representation (labeled 1 in Figure 10) to win the competition for
generating the first spectral-pitch resonance. It hereby becomes
the first stream to be active. The harmonic components that
resonate with the chosen pitch category can also use the
asymmetric intrastrip competition to inhibit these components
at other strip positions that are distal to the primary spectral
representation (labeled 2 and 3 in Figure 10).

In contrast, the frequencies that are inhibited in the primary
stream by pitch-activated top-down signals that obey the ART
Matching Rule cannot inhibit themselves at positions distal to the
primary spectral representation. These uninhibited frequencies
can then activate the bottom-up filter at positions distal to
the primary spectral representation (e.g., in stream 2), so that
another pitch category can be chosen, and can begin to resonate
with a subset of spectral stream cells, thereby creating another
spectral-pitch resonance within stream 2. And so on, thereby
enabling several spectral-pitch resonances to simultaneously
represent several auditory streams. These specialized versions of
Adaptive Resonance Theory, or ART, mechanisms also clarify
how spatial location cues can help to disambiguate two sound
sources with similar spectral cues (see the f – τ plane in
Figure 10).

Auditory Continuity Illusion, Separation of
Intersecting Frequency Sweeps, and Scale
Illusion
The ARTSTREAM model simulates data from streaming
experiments, such as how the auditory continuity illusion occurs,
during which a tone is perceived to continue through a
noise burst even if the tone is not present during the noise;
how a tone sweeping upwards in frequency creates a bounce
percept by grouping with a downward sweeping tone due to
proximity in frequency, even if noise replaces the tones at
their intersection point; and how the scale illusion of Deutsch
occurs (Deutsch, 1975), whereby downward and upward scales
presented alternately to the two ears are regrouped based on
frequency proximity, leading to a bounce percept.

ARTSTREAM would need to be further developed to explain
more complex streaming data. ARTSTREAM models only a
single scale of sustained detectors, or detectors of a given size that
respond to sounds with sustained energy across time in particular
frequencies. Grossberg et al. (2004) noted that preprocessing
by detectors of multiple scales that are sensitive to transient
sounds are needed, in addition to sustained detectors, to fully
explain data about how frequency sweeps are separated, as well
as other acoustic signals with rapidly changing frequencies.
Parallel interacting streams of sustained and transient cells
are also used to explain data about how speech and language
sounds are represented at higher levels of brain processing
(e.g., Cohen and Grossberg, 1997; Boardman et al., 1999). The
circuit properties that give rise to these transient cells can
also be used to guide the design of transient cells at earlier
processing stages.
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FIGURE 11 | (left architecture) An auditory-to-articulatory feedback loop enables babbled sounds to activate learning in an imitative map that is later used to learn
to reproduce the sounds of other speakers. The invariant feature detectors include preprocessing by speaker normalization circuits. An articulatory-to-auditory
expectation renders learning possible by making the auditory and motor data dimensionally consistent [reproduced with permission from Cohen et al. (1988)]. (right
architecture) Parallel streams in the ARTSPEECH model learn speaker-independent speech and language meaning, including a mechanism for speaker normalization
(right cortical stream), and for learning speaker-dependent vocalic qualities (left cortical stream) [reproduced with permission from Ames and Grossberg (2008)].

For present purposes, the main point is that multiple
auditory streams and their spectral-pitch resonances build upon
strip maps, abetted by intrastrip and interstrip competitive
interactions, just as in the case of place-value numbers.

Development of Speaker Normalization
and Language by Circular Reactions
Different speakers—such as young children, women, and
men—utter language utterances in different frequency ranges.
Despite this variability, we can all understand each other’s
language utterances without having to separately learn
language meanings for each different frequency range that
any speaker might use. The transformation of individual speaker
frequency ranges into a format that can be understood in a
speaker-invariant way is called speaker normalization. Various
engineering approaches to speaker normalization have been
proposed; e.g., Joy et al. (2018). The biological neural model that
is proposed below again uses ART, strip maps, and asymmetric
competitive interactions to achieve speaker normalization, and is
moreover homologous to the model used for auditory streaming.

Speaker normalization is essential for babies to learn language
from adult speakers, since their parents’ spoken frequencies differ
from those that the baby can babble. Babies babble simple sounds
during a critical period of their development. They also hear their
own babbled sounds and learn to associate the heard sounds with
themotor commands that they used tomake them. This feedback
loop between speaking and hearing is called a circular reaction
(Piaget, 1963).

How do babies use these relatively simple learned associations
to learn the more complex language utterances of adult speakers?
By converting all speech sounds into a frequency-normalized
format, including the sounds that the baby babbled, speaker
normalization enables sounds from adult caretakers to be
filtered by the speaker-normalized map that was learned during
babbling, and to thereby enable the baby to begin to imitate heard
sounds as part of its own language productions. This kind of map
is accordingly called an imitative map (Figure 11, left panel).

The NormNet model of Ames and Grossberg (2008)
simulates speaker normalization to generate a pitch-independent
representation of speech sounds, while also preserving
information about speaker identity in a parallel cortical
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FIGURE 12 | (A) Anchor Map and Stream Map: these strip maps are organized so that their strips overlap each other. Both maps receive the spectral
representation, in log frequency coordinates, from the streamed sound. (B) Coincidence detection: chosen by asymmetric competition, the winning Anchor
Frequency Coding Cell triggers coincidence detection along its Anchor Frequency Strip, which also receives spectral inputs from the Stream Map. Activations of the
Stream Map are thereby translated into the Anchor Frequency Strip. (C) Speaker-independent spectral representation: summation of activities along each diagonal
strip creates a speaker-independent spectral representation, which is then fed into an ART network that learns to categorize it [adapted with permission from Ames
and Grossberg (2008)].

stream (Figure 11, right panel). The model exploits the fact
that auditory streams form before the stage where speaker
normalization occurs. In this way, our brains can normalize the
frequencies of a single attended voice after it is segregated in
a stream.

Remarkably, both auditory streaming and speaker
normalization in the model uses multiple strip representations
and asymmetric competitive interactions (Figure 12), thereby
suggesting that these two circuits, with their strikingly different
functions, arose from similar neural designs.

In the auditory cortex of both humans and other mammals,
multiple tonotopic maps exist that contain strips of cells called
iso-frequency contours that respond to a specific best frequency
(Merzenich and Brugge, 1973; Imig et al., 1977; Morel and
Kaas, 1992; Morel et al., 1993; Hackett et al., 1998; Kaas and
Hackett, 1998, 2000; Formisano et al., 2003; Rauschecker and
Tian, 2004; Petkov et al., 2006). NormNet assumes that two
identical tonotopic strip maps occur with perpendicular, or at
least overlapping, orientations (Figure 12A). These maps are
called the Anchor Log Frequency Map (Anchor Map) and the
Stream Log Frequency Map (Stream Map). Both the Anchor
Map and Stream Map are activated by a speech sound, which is
assumed to have already been segregated into an auditory stream
by processes such as those modeled by ARTSTREAM.

Due to this spatial format, activations in these strips intersect.
Asymmetric competition occurs between frequencies in the

Anchor Map to choose the cell with the lowest active frequency
in the speech sound, which typically has the greatest spectral
energy (Figure 12A). This cell is called the anchor frequency
coding cell. While the anchor frequency coding cell wins the
asymmetric competition, it inhibits activations corresponding to
higher frequencies in the Anchor Map. Coincidence detection
between the perpendicular strips determines which cells will
next be activated. In particular, only cells in the Stream Map
that receive acoustic inputs and that intersect the strip of the
anchor frequency coding cell will be activated (Figure 12B). In
other words, such coincidences occur in the strip corresponding
to the Anchor Frequency of the Anchor Map and all the
active strips corresponding to spectral activations in the
Stream Map.

These coincidences are registered by diagonally connected
strips that transform the Anchored Stream into a speaker-
normalized representation S (Figure 12C). In particular, each cell
in the S field sums inputs from all cells within diagonal stripes
that cross the maps. This speaker-normalized representation
then triggers the learning of speaker-normalized recognition
categories. In Ames and Grossberg (2008), category learning is
carried out by a fuzzy ARTMAP network with default parameters
(Carpenter et al., 1992).

NormNet was tested by simulating how its normalized speech
items are categorized and stably remembered by ART circuits.
The simulated acoustic inputs were synthesized steady-state
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vowels from the Peterson and Barney (1952) vowel database
and achieved accuracy rates similar to those achieved by
human listeners.

Development of Item-Order-Rank Working
Memories
Essentially all higher-order biological intelligence requires that
sequences of previously experienced items or events be used
to determine subsequent thoughts, decisions, and actions.
Working memory temporarily stores such sequences until
they are performed or used to trigger learning and LTM
of sequence categories, or list chunks, with which to control
future behaviors. Due to its importance of working memory
in controlling intelligent choices and predictions in complex
situations, the psychological and neurobiological study and
modeling of working memory has been very active for decades;
e.g., Miller et al. (1960), Atkinson and Shiffrin (1968), Baddeley
and Hitch (1974), Baddeley (2010) and Constantinidis and
Klingberg (2016). As with all the kinds of models reviewed in this
book, thesemodels vary greatly in their biological plausibility and
in their ability to support learning. For example, in the pioneering
Atkinson and Shiffrin (1968) model, previously stored items
move from one storage slot to the next as a new item is stored.
Such a model faces both conceptual and empirical problems. For
example, it cannot explain the ubiquitous bowed curves that are
found in working memory data (see below) and it cannot learn
list chunks.

Multiple working memories are used to temporarily store
sequences of linguistic, spatial, and motor items, among others,
such as sequences of words, navigational goals, and arm
movement commands. It is explained below why all working
memories are realized by a similar kind of recurrent neural
network, despite their different functions. Another important
property of working memories is that they can store repeated
items, such as the list ABACBD. The model of working memory
proposed below uses strip maps to realize this property, as well as
ART to categorize sequences of stored items.

A series of articles, starting in 1978, have characterized
how biological working memories are designed, and have
explained and predicted many psychological and neurobiological
data about them (e.g., Grossberg, 1978a; Grossberg, 2018;
Grossberg et al., 1997; Boardman et al., 1999; Grossberg and
Myers, 2000; Grossberg and Pearson, 2008; Silver et al., 2012;
Kazerounian and Grossberg, 2014; Grossberg and Kazerounian,
2016). These articles also explained why and how all working
memories, whether linguistic, spatial, ormotor, all share the same
underlying kind of neural circuit; namely, a specialized recurrent
on-center off-surround network whose cells obey membrane, or
shunting, equations.

These working memories have been derived from postulates
which ensure that list chunks can be learned and stably
remembered. Working memories that obey the LTM Invariance
Principle have this property. The LTM Invariance Principle
guarantees, for example, that the first time a novel word, such
as MYSELF, is stored in working memory, it does not force
catastrophic forgetting of previously learned list chunks that code
for its familiar subwords MY, ELF, and SELF. Without such a

property, language, spatial, and motor sequential skills could not
be learned.

It was shown, starting in Grossberg (1978a), how the LTM
Invariance Principle could be satisfied by a working memory
for which temporal sequences of items or events are converted
into an evolving spatial pattern of activity over item chunks that
store these events in working memory. Then, during rehearsal,
the item stored with the largest activity is rehearsed first, the item
with the next largest activity is rehearsed second, and so on. In
other words, a spatial gradient of activity across item chunks
encodes both the items that are stored in working memory
and their temporal order. Such working memories are thus
called Item-and-Order working memories. The LTM Invariance
Principle is satisfied if the relative sizes, or ratios, of activities in
this spatial gradient remain the same as new items are stored in
working memory, even if their total sizes may change through
time to approximately normalize the total activity that is stored
by the recurrent shunting network.

If a primacy gradient is stored, then the first item is stored
with the largest activity, the second item is stored with the
next largest activity, and so on. Rehearsal from a primacy
gradient can recall the items in the correct order in which
they were stored. If a recency gradient is stored, with the last
item having the largest activity, then items are rehearsed in
the reverse order that they were stored, with the last item
recalled first. If a bowed gradient is stored, with items at
the beginning and end of the list stored with larger activities
then items in the middle, then items at the beginning and
end of the list are rehearsed before items in the list middle.
Remarkably, as more items get stored, a primacy gradient is
always converted into a bowed gradient. As a result, sufficiently
long lists cannot be recalled in their correct temporal order from
working memory.

A series of articles has illustrated the explanatory power
of the hypothesis that all linguistic, spatial, and motor
working memories use variations of a recurrent shunting
on-center off-surround network. Data about bowed serial
position effects are ubiquitous in the working memory
literature, notably psychological data about the linguisticworking
memories whereby humans do immediate serial recall, and
immediate, delayed, and continuous distractor free recall; and
neurophysiological data recorded frommonkeys about themotor
working memories whereby planned arm movement sequences
are stored and performed. Grossberg and Pearson (2008)
and Grossberg (2017b) explain and quantitatively simulate
these and other psychological and neurobiological data about
working memory using homologous Item-Order-Rank working
memories. Silver et al. (2012) use homologous Item-Order-Rank
working memories to explain and simulate the spatial working
memories whereby movement storage, planning, and control of
sequential saccadic eye movements is achieved.

Working memories also need to be able to store sequences
of events that may repeat themselves; e.g., ABACBD. This
generalization of Item-and-Order working memories is called an
Item-Order-Rank working memory. Item-Order-Rank working
memories provide a foundation for learning both speech and
language. It has, for example, been shown that a suitably designed
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three-level network of Item-Order-Rank working memories can
store and learn sequences of repeated words, such as ‘‘DOG
EATS DOG.’’

Strip maps enter the story by enabling Item-Order-Rank
working memories to store item sequences that contain repeats.
Each of these strips is a kind of item-rank hypercolumn. For
example, to store a list like ABACBD, the item representation
of A would activate its item-rank hypercolumn in rank
positions 1 and 3, B would activate its item-rank hypercolumn
in rank positions 2 and 5, C in rank position 4, and
D in rank position 6. The rank information is proposed
to be projected to the prefrontal cortical working memory
from numerical representations in the parietal cortex. This
prediction uses properties of the Spatial Number Network,
or SpaN, model of Grossberg and Repin (2003), that was
described above, of how numerical maps in the inferior parietal
cortex enable numerical quantities to be represented and
compared. Properties of SpaN model neurons were supported
by neurophysiological data of Nieder and Miller (2003, 2004),
who also reported prefrontal projections of parietal numerical
representations. In such an Item-Order-Rank working memory,
relative activity still represents the temporal order of a sequence
that is stored, and the off-surround of the network can still
equally inhibit all other cells, including the cells in each
item-rank hypercolumn.

Item-Order-Rank working memories have been used
as part of larger neural architectures for learning and
performing sequential tasks. One such architecture is the
lisTELOS architecture of Silver et al. (2012) which explains
and simulates how an Item-Order-Rank working memory
in the prefrontal cortex stores and learns multiple spatial
positions with which to control sequences of eye movements.
Model simulations reproduced behavioral, anatomical, and
electrophysiological data frommultiple experimental paradigms,
including visually-guided and memory-guided single and
sequential saccadic eye movement tasks, and behavioral
data from two microstimulation paradigms in which the
supplementary eye fields were stimulated, thereby explaining
how their seemingly inconsistent findings about saccade latency
could be reconciled. It is explained below why similar working
memory circuits and architectures can store and learn multiple
types of sequential behaviors.

TOPOGRAPHIC MAPS OF FEATURE
DETECTORS AND THEIR GAUSSIAN PEAK
SHIFTS

Not all feature-selective maps need strip maps in order to
function well. Several examples of this will now be summarized
in order to illustrate the diversity of possibilities.

Steering During Optic Flow Navigation
Visually guided navigation enables humans and many other
animals to move through cluttered natural scenes without
colliding with obstacles. At least two parallel processes, with
computationally complementary properties (Grossberg, 2000),
contribute to this competence.

The first process uses the optic flow that is generated as
an animal moves with respect to its environment in order to
steer towards a goal. Optic flow is the information carried
by the light that streams in time over the retina due to such
movements (Gibson, 1950). For example, if the movement is
straight ahead through a rigid environment, then the optic
flow generates a radial motion pattern whose individual motion
vectors emanate from a single position, which is called the
focus of expansion. Heading is the direction that the observer is
traveling at any time, and can be computed from a combination
of optic flow information and outflow movement commands,
called corollary discharges or efference copies, that code eye
and head movements relative to the body. Browning et al.
(2009a) provide a comparative review of the three main classes
of heading models: differential motion, decomposition, and
template models.

The second process separates objects—including goal objects
and obstacles—from each other and the background using their
relative motion to enable tracking of a goal without bumping into
obstacles. Browning et al. (2009b) and Elder et al. (2009) review
alternative models and data about tracking.

These two processes are computationally complementary
because optic flow computations use additive processing
of motion signals across an entire scene to compute an
observer’s heading, whereas subtractive processing separates an
object’s boundaries as they move relative to a background.
These processes occur due to interactions between cortical
areas MT− and MSTv to compute heading, and between
cortical areas MT+ and MSTd to control tracking. Supportive
neurophysiological data for these hypotheses is provided in
Born and Tootell (1992).

The ViSTARS (Visually-guided Steering, Tracking,
Avoidance, and Route Selection) neural model (Browning
et al., 2009a,b; Elder et al., 2009) proposes how primates use
these two kinds of complementary motion information to
segment objects and determine heading for purposes of goal
approach and obstacle avoidance. The model simulated this
competence in response to video inputs from real and virtual
environments and thereby produced trajectories that match
those of human navigators.

A topographic map enters the story because it is known
that, during human visually-based navigation, goals behave like
attractors and obstacles behave like repellers (Fajen and Warren,
2003). The ViSTARS model shows how a topographic map of
movement directions can realize this kind of attractor-repeller
control, leading to navigational trajectories that closely match
human performance. In this map, the instantaneous directions
of heading, goal object, and obstacle are represented by Gaussian
activity profiles (Figure 13). The heading and goal object
Gaussians add whereas the obstacle Gaussian activity profile
is subtracted from them, thereby causing a peak shift of the
direction of heading away from the obstacle.

Gaussian receptive fields occur in many topographic cortical
maps. Whenever one of them is subtracted from another one
whose activation represents a sufficiently nearby position in the
feature map, a peak shift occurs in the direction opposite to the
peak in the inhibitory Gaussian.
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FIGURE 13 | A peak shift due to the negative Gaussian of an obstacle prevents a collision with the obstacle without losing the information that is coded in the sum
of the goal and heading Gaussians of how to reach the goal [adapted with permission from Browning et al. (2009b)].

Peak Shift During Reinforcement Learning:
Do We Know What We Like?
A peak shift can, for example, occur in situations where pigeons
are trained using operant conditioning to respond to one
colored light when it flashes on, and to not respond to other
colored lights when they flash on. During learning by operant
conditioning, animals or humans are rewarded or punished
only after they emit a certain behavior, or set of behaviors
(Skinner, 1938).

Suppose that a pigeon is trained to respond to a given colored
light cue. After learning occurs, the pigeon also responds to other
colors via a generalization gradient; that is, the pigeon responds
progressively less as a function of how different the wavelength
of the test light is compared to the training light. This result
implies that color representations are organized in a topographic
map. Further corroboration of this hypothesis can be found by
additional training of the pigeon: After training with reward to
respond to one colored light, train it with punishment to not
respond to a different colored light, and do so using errorless
training (Terrace, 1963). The rewarded wavelength activates an
excitatory Gaussian, whereas the punished wavelength activates
a negative Gaussian, due to interactions of their cortical sensory
representations with affective centers like the amygdala. When
pigeon responses are now tested to other colored lights, a
remarkable effect called peak shift and behavioral contrast
is observed.

Peak shift means that, just as in the case of optic flow
navigation, the pigeon now pecks in response to a color that it has
never experienced. This color is ‘‘repelled’’ from the wavelength
on which the pigeon was earlier punished. Behavioral contrast
means that the pigeon responds more to this novel color than it
did to the rewarded color!

Grossberg (1975a) proposed that this happens because the
net gradient that causes the peak shift is narrower than a single
Gaussian gradient. Gaussian gradients are caused in this feature
map by on-center off-surround intercellular interactions whose
on-center and off-surround have Gaussian receptive fields. These
interactions obey shunting laws, so their total activity tends to
be approximately normalized. Because fewer active cells cause
the net gradient, its peak activity is higher than that of a stand-
alone gradient.

When one considers the great variety of ordered feature
maps in our brains, it becomes clear that, after a lifetime of
rewards and punishments, we may intensely like options that
we never before experienced. In this sense, ‘‘we may not know
what we like.’’

Peak Shifts During Motion Perception of
an Object and Its Parts
Optic flow navigation and operant conditioning are not the
only situations in which topographic feature maps exist and
lead to peak shifts. One particularly interesting one, which will
not be further explained here, concerns how we see an object’s
parts move relative to the object as the object itself moves in
its environment. For example, how do we see a person’s arms
swing back and forth with respect to her body as she walks
down the street? Such a percept is said to obey a rule of vector
decomposition (Johansson, 1974).

Grossberg et al. (2011) have explained this percept by
simulating how the motion direction of the object, again
represented by a Gaussian receptive field, is subtracted from
the direction of the object part’s motion direction, which is
also represented by a Gaussian, thereby causing a peak shift
in the perceived direction of the part’s motion relative to the
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FIGURE 14 | A Masking Field is a recurrent shunting on-center off-surround network with multiple self-similar receptive field sizes. Self-similar growth during
development leads to Masking Field list chunks such that longer words activate list chunks with stronger recurrent inhibitory connections and top-down adaptive
excitatory connections. As a result, longer lists can preferentially activate larger list chunks (e.g., of MYSELF), which can thereby inhibit chunks of smaller subwords
(e.g., MY) more than conversely.

object. Then objects and their parts are seen moving relative to
a common reference frame.

List Chunks of Variable Length Lists:
Masking Fields and Self-similar Map
Development
The final example concerns how lists of variable length that
are stored in working memory can learn to be categorized
during behaviors in real-time (Kazerounian and Grossberg,
2014). The LTM Invariance Principle was described above to
show how brains prevent storage in working memory of a novel
word, such as MYSELF, from causing catastrophic forgetting of
previously learned list chunks that code for its familiar subwords
MY, ELF, and SELF. A related problem is: Why is not the
brain forced to process the new word as a sequence of its
smaller familiar words? How does a not-yet-established word
representation overcome the salience of already well-established
phoneme, syllable, or word representations to enable learning
of the novel word to occur? This is called the Temporal
Chunking Problem.

Cohen and Grossberg (1986, 1987) first showed how this
problem can be overcome by a Masking Field network by
using cells with multiple receptive field sizes, or spatial

scales (Figure 14). A Masking Field is a recurrent on-center
off-surround network whose cells obey the membrane equations
of neurophysiology (shunting laws) that occur, as noted above,
with multiple receptive field sizes, or spatial scales. These spatial
scales are related to each other by a property of self-similarity;
each scale’s properties, including its cell body sizes and their
excitatory and inhibitory connection lengths and interaction
strengths, are (approximately) a multiple of the corresponding
properties in another scale. This self-similarity property can
develop as a result of simple activity-dependent growth laws in
the following way.

During this developmental process, just like in many
map development processes, two cortical levels interact. The
cells in the cortical level that will eventually represent item
chunks are endogenously active during a critical period of
development. During this active phase, these cells send growing
connections to the cortical level that will eventually represent
the Masking Field. Suppose, for simplicity, that these growing
connections are distributed randomly across the Masking Field.
As a result of this growth, different Masking Field cells
will receive different numbers of connections. Due to the
endogenous activity, Masking Field cells that receive more
connections will, on average, receive a larger total input activity
through time.
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FIGURE 15 | The GridPlaceMap model contains self-organizing maps (SOM) whereby stripe cells learn to activate grid cells, and grid cells learn to activate place
cells. In addition, top-down connections from place cells to stripe cells obey the ART Matching Rule and dynamically stabilize both kinds of learning, thereby
converting the entire system into an ART model wherein place cells are spatial categories [adapted with permission from Mhatre et al. (2012)].

Activating Masking Field cells above a fixed threshold
causes their cell bodies and connections to grow approximately
proportionally. This is called self-similar growth. Cell growth
terminates when the cell bodies become large enough to dilute
their activities sufficiently in response to their inputs so that the
total inputs no longer exceed the growth-triggering threshold.
Because cells that receive more input connections also receive
larger total inputs through time, they will grow larger than cells
that receive fewer input connections. The effects of individual
inputs are thus smaller on the firing of larger cells. Self-similar
growth hereby normalizes the total effect of all the inputs that
converge on a Masking Field cell. Consequently, a Masking Field
cell will only fire vigorously if it receives active inputs from all of
its item chunk cells. In other words, self-similar growth ensures
that each Masking Field cell responds selectively to the input
sequence that it codes.

Due to self-similar growth, larger Masking Field list chunks
selectively represent longer lists because they need more inputs,
and thus more evidence, to fire. Once they fire, their stronger
inhibitory interaction strengths than those of smaller list chunks
can inhibit the smaller list chunks more than conversely.

This is another example of asymmetric competition. The
stronger inhibition from list chunks of longer, but unfamiliar,
lists (e.g., MYSELF) enables them to inhibit the chunks that
represent shorter, but familiar, sublists (e.g., MY), more than
conversely, thereby solving the Temporal Chunking Problem.
Once developed, Masking Fields explains many data about
recognition learning, including such phenomena as the Magical
Number Seven Plus and Minus Two, the word length effect, and
the word superiority effect.

RATE GRADIENTS INDUCE MAPS FOR
LEARNING TIMING AND SPATIAL
NAVIGATION

How Cell Populations Whose Cells
Respond at Different Rates Represent
Large Times and Spaces
How do our brains learn to bridge large time intervals
of hundreds of milliseconds or even several seconds, and
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thereby learn to associate events that are separated by time
intervals that are behaviorally meaningful? How do our brains
learn to represent large spatial regions, such as the large
rooms and open fields within which humans and animals can
successfully navigate? Answers to both of these questions must
confront the fact that the typical biophysics and anatomy of
individual neurons do not enable them to span such long
times or large spaces. Remarkably, as will be summarized
below, spatially ordered populations of neurons that respond
at increasingly slow rates can achieve both capabilities. The
emergent properties that these populations generate can,
moreover, explain challenging parametric psychological and
neurobiological data about temporal and spatial properties
of behavior.

Spectral Timing and Spacing in Lateral and
Medial Entorhinal-Hippocampal Systems
In particular, large spatial representations emerge within the
entorhinal and hippocampal cortices using interactions between
entorhinal grid cells and hippocampal place cells. There has
been intense experimental and theoretical interest in how these
properties emerge since the classical article of O’Keefe and
Dostrovsky (1971) reported the existence of hippocampal place
cells. John O’Keefe won the Nobel Prize in Physiology or
Medicine in 2014 for this and subsequent work on how spatial
navigation works. May-Britt and Edvard Moser shared the
2014 Nobel Prize in Physiology or Medicine with John O’Keefe
for their discovery of entorhinal grid cells (Hafting et al., 2005).

Grossberg and Pilly (2012) provide a review and comparative
analysis of the three main types of model mechanisms that have
been proposed for how entorhinal grid cells form: oscillatory
interference, 2D attractor, and SOM. Modeling hippocampal
place cells has been no less active. Some approaches assume
Gaussian receptive fields of place cells that are centered at
different positions in a space defined by two-dimensional
Cartesian (x, y) coordinates; e.g., Tsodyks and Sejnowski (1995).
Such models can then be used to draw conclusions about spatial
navigation that are based upon how these place cells may interact
in this representation of space. Other approaches combine
associative learning and reinforcement learning to generate place
cells; e.g., Arleo and Gerstner (2000), but without an influence
from grid cells.

My own work with Praveen Pilly attempts to provide a
unified theory of the learning processes that support adaptively
timed and spatial navigation behaviors (Grossberg and Pilly,
2012, 2014; Pilly and Grossberg, 2012, 2013a,b, 2014). The
spatial navigation theory, whose properties are unified in our
GridPlaceMap model, has many parsimonious and elegant
properties. In particular, grid cells and place cells, despite their
dramatically different receptive field properties, may arise during
development through a learning process that uses the same SOM
laws and circuits for learning both types of cells. Both grid cells
and place cells are spatial categories in this hierarchy of SOMs.
Moreover, each SOM amplifies and learns to categorize the
most frequent and energetic co-occurrences of its inputs, while
suppressing the representations of less frequent and energetic
input patterns using its recurrent inhibitory interactions. The

angular and linear velocity signals that drive these learning
processes arise from head direction cells and stripe cells that
are both modeled by homologous ring attractors. Additional
homologs between spatial navigational learning and adaptively
timed learning will be summarized below.

This section will sketch an explanation of why spatial and
temporal representations that represent large spaces and times,
unlike spatial attention and working memory, are both in a single
part of the brain. The reason seems to be that, remarkably, these
spatial and temporal representations seem to use variations of a
single brain design that is characterized by similar equations. In
particular, large time intervals can be bridged using a mechanism
of spectral timing (Grossberg and Schmajuk, 1989; Grossberg
and Merrill, 1992, 1996; Grossberg and Seidman, 2006; Franklin
and Grossberg, 2017; Grossberg, 2017b) whereby a ‘‘spectrum’’
of time cells (MacDonald et al., 2011) along a dorsoventral
gradient in the lateral entorhinal cortex, each with different
reaction rates, can learn to match the statistical distribution of
expected delays in reinforcement over hundreds of milliseconds,
or even seconds.

The cells in this dorsoventral gradient respond at
progressively slower rates from its dorsal to ventral end,
and obey a Weber Law whereby cells that respond later do
so with a proportionally larger variance of response times.
Although each of the cells in such a spectrum reacts at different
times, their population response as a whole can learn to
bridge, and adaptively time, much longer time intervals at
which events can be associated that are separated in time,
as occurs during trace conditioning, delayed non-match
to sample, and other conditioning paradigms with delays
between offset of a conditioned stimulus and onset of an
unconditioned stimulus.

In a similar way, large spaces can be navigated using a
mechanism of spectral spacing (Grossberg and Pilly, 2012, 2014;
Mhatre et al., 2012; Pilly and Grossberg, 2014) whereby a
‘‘spectrum’’ of grid cells (Hafting et al., 2005; McNaughton
et al., 2006; Sargolini et al., 2006) can be learned along a
dorsoventral gradient in the medial entorhinal cortex. As in the
case of spectral timing, the cells in this spectrum, or gradient,
respond at progressively slower rates from its dorsal to ventral
end and exhibit spatial Weber Law properties. In this case,
the Weber Law properties include larger spatial scales and
spacing of grid cells as the dorsoventral gradient is traversed
that match anatomical and neurophysiological data (Sargolini
et al., 2006; Brun et al., 2008; Stensola et al., 2012). A wide
range of additional neurophysiological data about cells in the
dorsoventral gradient of medial entorhinal cortex can also be
explained by this model, including simple ones like phase
precession (Pilly and Grossberg, 2013b) and more subtle ones
like the way in which reduction of theta rhythm by medial
septum inactivation may covary with impaired entorhinal grid
cell responses due to reduced cholinergic transmission (Pilly and
Grossberg, 2013a).

Contiguous grid cells of different spatial scales can together,
using properties of a SOM, drive the learning of place cells in
the hippocampal cortex (O’Keefe and Dostrovsky, 1971) that
can represent large spaces. As noted above, place cells are
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spatial categories in this SOM. Critically, the spaces that such
a place cell can represent are the least common multiple of the
spatial scales of the grid cells that input to it (Gorchetchnikov
and Grossberg, 2007; Pilly and Grossberg, 2012, 2013b). If the
grid cells exhibit centimeter spatial scales, the corresponding
place cells can represent spaces that are many meters in
size. Place cells that are learned from grid cells can thus
support navigational behaviors within the large spaces that are
characteristic of terrestrial animals. At an early developmental
stage, place cells can be directly learned without grid cells, and
can perhaps represent the small spaces that rat pups traverse
before they leave their nests (Langston et al., 2010; Wills
et al., 2010, 2012; Pilly and Grossberg, 2014; Muessig et al.,
2015).

ART Matching Rule Dynamically Stabilizes
Learning in the Entorhinal-Hippocampal
System
Place cell selectivity can develop within seconds to minutes
and can remain stable for months (Wilson and McNaughton,
1993; Muller, 1996; Frank et al., 2004). This combination of
fast learning and stable memory is yet another example of how
the brain solves the stability-plasticity dilemma. To realize stable
memory, the bottom-up SOM interactions that learn grid cells
and place cells activate top-down interactions that obey the ART
Matching Rule, which dynamically stabilizes the learning of these
cells (Figure 15).

Neurophysiological data about the hippocampus from several
labs are compatible with ART predictions about the role of
top-down expectations and attentional matching in stabilizing
learned grid cells and place cells. For example, Kentros et al.
(2004) reported that ‘‘conditions that maximize place field
stability greatly increase orientation to novel cues. This suggests
that storage and retrieval of place cells are modulated by a
top-down cognitive process resembling attention and that place
cells are neural correlates of spatial memory.’’ In addition,
NMDA receptors, which support many learning processes in the
brain, also mediate long-lasting hippocampal place field memory
in novel environments (Kentros et al., 1998). Compatible data
have shown that hippocampal plasticity reflects an ‘‘automatic
recording of attendee experience’’ (Morris and Frey, 1997) and
that hippocampal inactivation causes grid cells to lose their
spatial firing patterns (Bonnevie et al., 2013).

In addition to the fact that both spectral timing and spectral
spacing in the entorhinal-hippocampal system seem to exploit
a similar temporal rate gradient to develop time cells and grid
cells, respectively, spectral timing seems to be a variant of a
brain design for adaptively timed learning that is also found in

the cerebellum and basal ganglia, where it carries out different
behavioral functions (Fiala et al., 1996; Brown et al., 1999;
Grossberg, 2016b). In all cases, it seems that the timed spectrum
is set up by a calcium gradient that modulates the dynamics
of metabotropic glutamate (mGluR) receptors (e.g., Finch and
Augustine, 1998; Takechi et al., 1998; Ichise et al., 2000; Miyata
et al., 2000). Indeed, all of these neural circuits seem to exploit
an ancient design that is found even in non-neural cells, such as
HeLa cancer cells, where again a calcium gradient is implicated
(Bootman and Berridge, 1996, p. 855). It remains to be seen if the
spectral spacing gradient is also induced by a calcium-mediated
gradient of mGluR dynamics.

CONCLUDING REMARKS

This article provides a unified overview of several of the
design principles and mechanisms that cortical maps use to
represent many different types of information across multiple
modalities. One design explains how brains use a strip map that
simultaneously enables one feature to be represented throughout
its extent, as well as an ordered array of another feature at
different positions of the strip. Strip maps include circuits to
represent ocular dominance and orientation columns, place-
value numbers, auditory streams, speaker-normalized speech,
and cognitive working memories that can code repeated items.
A second design explains how feature detectors for multiple
functions develop in topographic maps. Such maps support optic
flow navigation, reinforcement learning, motion perception,
and category learning at multiple levels of brain organization.
A third design explains how a spatial gradient of cells that
respond at an ordered sequence of different rates enable time
cells and grid cells to develop along a dorsoventral axis in the
lateral and medial entorhinal-hippocampal systems, respectively.
Populations of time cells can learn how to adaptively time
behaviors over time intervals of hundreds of milliseconds, or
several seconds. Populations of grid cells can induce learning
of hippocampal place cells that can represent the large spaces
in which animals navigate. A fourth design explains how and
why all neocortical circuits are organized into layers, and how
functionally distinct columns develop in these circuits to enable
map development. A fifth, and final, design explains the role of
Adaptive Resonance Theory top-down matching and attentional
circuits in the dynamic stabilization of early development and
adult learning.
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