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Altered functioning of the inhibition system and the resulting higher impulsivity are known

to play a major role in overeating. Considering the great impact of disinhibited eating

behavior on obesity onset and maintenance, this systematic review of the literature aims

at identifying to what extent the brain inhibitory networks are impaired in individuals

with obesity. It also aims at examining whether the presence of binge eating disorder

leads to similar although steeper neural deterioration. We identified 12 studies that

specifically assessed impulsivity during neuroimaging. We found a significant alteration

of neural circuits primarily involving the frontal and limbic regions. Functional activity

results show BMI-dependent hypoactivity of frontal regions during cognitive inhibition

and either increased or decreased patterns of activity in several other brain regions,

according to their respective role in inhibition processes. The presence of binge eating

disorder results in further aggravation of those neural alterations. Connectivity results

mainly report strengthened connectivity patterns across frontal, parietal, and limbic

networks. Neuroimaging studies suggest significant impairment of various neural circuits

involved in inhibition processes in individuals with obesity. The elaboration of accurate

therapeutic neurocognitive interventions, however, requires further investigations, for a

deeper identification and understanding of obesity-related alterations of the inhibition

brain system.

Keywords: obesity, impulsivity, central nervous system, inhibition, functional magnetic resonance imaging, binge

eating disorder

INTRODUCTION

Over the last decade, health care professionals have been exposed to the emergence of a new form
of addiction—food addiction (1). Eating has always been a basic human behavior primarily devoted
to the maintenance of homeostasis. Nonetheless, high-energy food products (i.e., rich in fat and/or
sugar), which are everyday more available on the market, are engaging a strong reward response
(2–4) and, due to those strong reinforcing properties (5), lead to addictive behaviors, like craving,
similar to those caused by drugs (6). Craving, or a strong desire to consume a product, is associated
with high sensitivity of the reward system (7). This hypersensitivity of the reward system has been
well-documented in individuals with obesity (8–12). Notably, in response to the mere visualization
of food items, neuroimaging studies report excessive activations of several brain regions strongly
involved in food intake and reward processes [e.g., (9, 13)], hence fostering the excessive desire to
eat (14).
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Parallel to reward system hyperactivity, but less extensively
investigated, a hypoactivity of the inhibition system was
observed in individuals with obesity. Specifically, (f)MRI
studies reported decreased gray matter volume (15) and
functional activity of the frontal cortex (16), the brain region
highly responsible for inhibition processes (17, 18). It has
further been discovered that the repeated exposure to high-
energy food will lead to a decrease of the availability of
dopaminergic D2 receptors in the striatum (19). Not without
consequence, this dopaminergic alteration directly impairs
prefrontal activity (20, 21) and, thus, associated inhibitory
control (22). Consequently, in individuals with obesity, a
hypoactive inhibitory system will inevitably fail to counteract
reward system hyperfunctioning (19).

Such imbalance between the two systems will behaviorally
translate into an impulsive way to act (23), characterized by
difficulties to override eating temptation (24) and lead to obesity.
A strong association between body mass index (BMI) and
impulsivity has been established in several studies (25–27).
Impulsive behavior can result into poor response inhibition
ability (28), which, interestingly, was found to correlate positively
with overeating (29) and BMI (30, 31). Basically, those studies
reported poor performances during go/no-go and stop signal
tasks, with an impaired ability to inhibit from responding
during no-go and stop trials. Impulsivity can also result from
poor cognitive ability to override temptation. Several behavioral
studies reported such insufficiently suppressed temptations in
obese individuals using delay discounting, where participants
have to choose between immediate or bigger although delayed
reward, or craving regulation tasks, where participants are asked
to use mental strategies to refrain from eating desire (32–34).

Interestingly, the presence of binge eating disorder (BED)
leads to even greater impulsive traits (35, 36). This disorder,
characterized by recurring short periods of uncontrolled
consumption of abnormally large quantities of food, affects at
least 25% of the obese population (37). Although overeating
may not be considered as dangerous as drug consumption, this
behavior leads to obesity with all its comorbidities (except in the
case of purge, i.e., bulimia, not considered in this review since
it does not lead to obesity-related devastating consequences on
various aspects of health).

Recent brain stimulation studies provided promising results
on the control of food craving and food intake (38). Specifically,
studies showed thatmodulating the dorsolateral prefrontal cortex
(39, 40), nucleus accumbens (41), and hypothalamic area (42)
substantially reduced food craving. However, inhibitory control
does not exclusively rely on the functioning of those three
brain regions. It rather involves a complex neural network in
which key regions and their way of communication remain
largely unexplored.

Considering the importance of a precise identification
of the different brain areas involved in the functioning of
inhibition processes for the elaboration of relevant and accurate
neurocognitive therapies, we propose in this review to gather
the results provided by neuroimaging studies. The main aims
are to [1] provide a detailed report of the brain regions showing
obesity-related impaired function during response inhibition and

[2] examine whether BED leads to similar although steeper
neural deterioration.

METHODS

To identify studies aiming at investigating the neural basis
of the inhibitory system in obese individuals, we used
Google Scholar and PubMed databases using the following
keywords: impulsive, impulsivity, inhibition, inhibitory system,
and executive functions, each combined with the following terms:
food, feeding behavior, obesity, and obese. Additional papers
were also found from the reference lists of the selected papers.
To comply with inclusion, studies had to [1] use a behavioral
task specifically designed for the assessment of impulsivity,
which [2] participants completed during functional magnetic
resonance imaging (MRI) or magnetoencephalography (MEG),
and [3] entail a lean control group (except in the specific case
of comparison between obese with and without binge eating
disorder). Moreover, participants from the experimental group
had to [4] be obese (BMI ≥ 30) and not “only” overweight (25 <

BMI < 29). Nonetheless, due to the lack of studies investigating
impulsivity in individuals with BED, we decided to also include
studies where participants were normal-weight binge eaters.
Brain activation data were extracted from the MNI coordinates
reported in the results sections of the original articles.

RESULTS

Study Selection
The initial search identified 3,009 studies. After removal of
duplicates and exclusions through title and abstract screening,
30 studies were assessed for eligibility. For design, population,
and control reasons, 19 studies were excluded. After we further
searched for articles on lean individuals with BED, one more
article was selected. Twelve studies were hence included in this
systematic review of the literature (Figure 1).

Functional Activity
In the 12 identified studies that met the inclusion criteria
(Table 1), 10 reported different patterns of activation during
response inhibition in obese in comparison with lean individuals
(n = 8) or in obese with BED in comparison with obese
without BED (n = 2) and one in lean individuals with BED
in comparison with lean without BED. Differences were mainly
observed in the frontal (Table 2, Figure 2) and limbic regions
(Table 3, Figure 3), but also in the visual and inferior parietal
cortices and the Rolandic operculum (Table 4, Figure 3). One
study showed an inverted U-shaped pattern of activation in
the insula, claustrum, and putamen (Table 5), hence reporting
disparate neural activity during inhibition depending on obesity
severity (32). Hypoactivity in the frontal and visual cortices
reported in obese individuals during inhibition, but also in
the temporal cortex, was found to be exacerbated in obese
individuals with BED (Table 6). Only Carbine et al. (45) found
no difference between their obese and lean participants’ neural
activity during inhibition.
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FIGURE 1 | Prisma flow diagram.

Functional Connectivity
Two from the nine identified studies assessed functional
connectivity during inhibition and reported either strengthened
or U-shaped patterns of connectivity in obese in comparison with
lean individuals (Table 7).

DISCUSSION

The studies included in this review used go/no-go, stop signal,
Stroop, and craving control tasks to investigate inhibition
processes in individuals with obesity. Designed to assess response
inhibition, the go/no-go (action restraint) and stop signal tasks
(action cancellation) engage overlapping but also different brain
activations during successful inhibition. More precisely, while
the medial prefrontal cortex and the insula were found to be
engaged during both tasks, the go/no-go task triggers further
activation in the fronto-parietal network and the stop signal task
in the cingulo-opercular network (54). The Stroop task, assessing
inhibition of prepotent response tendencies, has been shown to
mainly recruit the prefrontal, anterior cingulate, and posterior

parietal cortices (55–57). Despite stronger cognitive engagement
required during craving control tasks, the intentional regulation
of food desire and response inhibition share mainly similar
networks. Specifically, in comparison with passively viewed food
items or allowed food craving, regulation of food craving was
also found to engage a large brain network encompassing the
insula, prefrontal cortex, temporal parietal junction, and the
supplementary motor area (58). Here, we review to what extent
those neural networks are impaired in individuals with obesity.
We provide a list of brain regions together with their precise
anatomical locations and discuss their potential functions during
inhibition processes.

Frontal Regions
Frontal regions, including the prefrontal (PFC) and premotor
cortices, have been consistently found to be involved in
the inhibitory system (59–62). This role endorsed by the
frontal regions in inhibitory processes also applies to the
specific context of eating behavior (58). The results of this
review of the literature confirm the major involvement of
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TABLE 1 | Neuroimaging studies assessing inhibition in obese in comparison with lean individuals.

References Participants BMI Task Imaging

technique

Batterink et al. (43) n = 29 (All W; Mage = 15.7 ±

0.93)

Range = 17.3–38.9 Food-specific go/no-go fMRI

Balodis et al. (44) n = 35 (W = 19; Obese with

BED: Mage = 47.6 ± 12.7;

Obese without BED: Mage =

35.4 ± 9.3; Lean: Mage = 32.7 ±

11.3)

Obese without BED: M = 34.6 ±

4.1; Obese with BED: M = 37.1

± 3.9; Lean: M = 23.2 ± 1.1

General stroop

color-word interference

fMRI

Carbine et al. (45) n = 54 (50% W; Mage = 24.65 ±

7.31)

BMI > 30 n = 19; 25 < BMI <

30 n = 18; BMI < 25 n = 17;

Food-specific go/no-go fMRI

Dietrich et al. (32) n = 43 (All W; Mage = 26.7 ± 3.5) Range = 19.4–38.8; M = 27.5 ±

5.3

Food-specific

admit/regulate craving

fMRI

He et al. (46) n = 30 (W = 17; Mage = 19.7 ±

1.7)

Range = 19.1–33.7; M = 23.1 ±

3.0

Food-specific go/no-go fMRI

Hege et al. (47) n = 34 All W; Obese with BED: n

= 17, Mage = 41.88 ± 8.46;

Obese without BED: n = 17,

Mage = 41.35 ± 12.33

Obese with BED: M = 34.01 ±

5.58; Obese without BED: M =

36.52 ± 4.89

General go/no-go MEG

Hendrick et al. (48) n = 43 (All W; Obese: n = 13,

Mage = 34.8 ± 9.6; Intermediate:

n = 12, Mage = 33.2 ± 16.7;

Lean: n = 18, Mage = 26.2 ±

6.7)

Obese: BMI > 30; Intermediate:

22 < BMI < 30; Lean: BMI < 22

General stop signal fMRI

Hsu et al. (49) n = 40 (All W; Obese: n = 20;

Lean: n = 20)

Obese: BMI > 27; Lean: BMI <

24

General go/no-go fMRI

Janssen et al. (50) n = 76 (W = 65; Mage = 31.5 ±

10.7)

Range = 19–35; M = 26.4 ± 3.8 Food-specific stroop

color-word interference

fMRI

Oliva et al. (51) n = 42 (Lean with BED: n = 21,

W = 17, Mage = 23.9 ± 3.19;

Lean without BED: n = 21; W =

16; Mage = 25.23 ± 3.08)

Lean with BED: M = 22.3 ± 2.1;

Lean without BED: M = 21.29 ±

2.02

General and

Food-specific go/no-go

and stop signal

fMRI

Scharmüller et al.

(52)

n = 26 (All W; Obese: n = 14,

Mage = 26.6 ± 4.5; Lean: 25.6 ±

6.7)

Obese: M = 31.5 ± 5.2; Lean: M

= 20.6 ± 1.3

Food-specific

admit/regulate craving

fMRI

Tuulari et al. (53) n = 41 (All W; Obese: n = 27,

Mage = 42.1 ± 9.3; Lean: n =

14, Mage = 44.9 ± 11.9)

Obese: M = 41.4 ± 3.9; Lean: M

= 22.6 ± 2.7

Food-specific

admit/regulate craving

fMRI

BED, binge eating disorder; BMI, body mass index; fMRI, functional magnetic resonance imaging; M, mean; Mage, mean age (in years ± standard deviation); MEG,

magnetoencephalography; W, women.

frontal regions during eating control in the obese population.
However, over the 10 studies we identified that directly
compared brain activity between lean and obese participants

during an inhibition task, seven of them clearly reported an
altered functioning of frontal regions, mostly characterized by
hypoactivity (Figure 2).
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TABLE 2 | Neural activity in frontal regions during inhibition in obese in comparison with lean individuals.

BA Hemisphere Coordinates Results

x y z

PREFRONTAL CORTEX

Orbitofrontal

Batterink et al. (43) 47 L −39 33 −9

47 R 45 33 −6

47 R 45 42 −9

Hendrick et al. (48) 47 L −36 29 −5

47 L −39 20 −11

Tuulari et al. (53) 47 R 28 32 −6

Medial

vmPFC

Batterink et al. (43) 10 L −9 54 −3

10 R 6 54 −6

dmPFC

Hendrick et al. (48) 10 R 21 56 25

Lateral

dlPFC

Tuulari et al. (53) 9 R 44 22 26

Janssen et al. (50) 8 L −28 32 50

Scharmüller et al. (52) 8 R 28 18 40

Batterink et al. (43) 8 R 9 33 48

vlPFC

Batterink et al. (43) 46 R 36 42 0

Hendrick et al. (48) 45 L −57 17 7

44 R 48 8 1

Hsu et al. (49) 45 R 32 30 0

PREMOTOR CORTEX

Batterink et al. (43) 6 L −21 12 57

6 R 21 15 63

6 R 24 12 54

Hendrick et al. (48) 6 L −6 −1 67

6 R 3 5 61

Blue arrows indicate hypoactivity in obese in comparison with lean participants. Red arrows indicate hyperactivity in obese in comparison with lean participants.

BA, Brodmann area; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex.

Prefrontal Cortex
Compelling data from the studies that investigated the neural
correlates of behavioral inhibition in obese in comparison with
lean individuals clearly emphasize a hypoactivity of the PFC in
the totality of both its medial and dorsal parts, suggesting obesity
to be linked to a global impairment of this brain region, known
to be a central hub for inhibitory processes.

Orbitofrontal Cortex
Located in the inferior part of the frontal lobe, the orbitofrontal
cortex (OFC), known to be involved in encoding reward
value and decision-making (63), plays a major role in the
value attributed to food and subsequent eating behavior. More
precisely, the lateral OFC encodes the objective nutritive value of
food and integrates it within the medial OFC, which will in turn
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FIGURE 2 | Functional activity in the frontal regions during inhibition. Blue and red colors, respectively, indicate hypo- and hyperactivity, respectively, in obese in

comparison with lean participants during inhibition (see Table 2 for precise coordinates). 1–3 = orbitofrontal cortex (43), 4–5 = orbitofrontal cortex (48), 6 =

orbitofrontal cortex (53), 7–8 = ventromedial prefrontal cortex (43), 9 = dorsomedial prefrontal cortex (48), 10 = dorsolateral prefrontal cortex (53), 11 = dorsolateral

prefrontal cortex (50), 12 = dorsolateral prefrontal cortex (52), 13 = dorsolateral prefrontal cortex (43), 14 = ventrolateral prefrontal cortex (43), 15–16 = ventrolateral

prefrontal cortex (48), 17 = ventrolateral prefrontal cortex (49), 18–20 = premotor cortex (43), 21–22 = premotor cortex (48).

TABLE 3 | Neural activity in limbic regions during inhibition in obese in comparison with lean individuals.

BA Hemisphere Coordinates Results

x y z

CINGULATE CORTEX

Anterior

He et al. (46) 32 R 4 44 4

Tuulari et al. (53) 24 L −14 16 30

Posterior

Tuulari et al. (53) 29 L −4 −32 12

29 R 6 −38 12

DORSAL CAUDATE NUCLEI

Tuulari et al. (53) 48 R 20 6 22

Insula

Batterink et al. (43) 13 R 51 9 −6

Dietrich et al. (32) 13 L −39 −12 9

Hendrick et al. (48) 13 R 39 26 −5

PARAHIPPOCAMPAL GYRUS

Hsu et al. (49) 36 R 12 −30 −10

Thalamus

Hsu et al. (49) 50 L −20 −28 0

Blue arrows indicate hypoactivity in obese in comparison with lean subjects. Red arrows indicate hyperactivity in obese in comparison with lean subjects.

BA, Brodmann area.
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FIGURE 3 | Functional activity in the limbic regions during inhibition. Blue and red colors indicate hypo- and hyperactivity, respectively, in obese in comparison with

lean participants during inhibition (see Table 3 for precise coordinates). 1 = anterior cingulate cortex (46), 2 = anterior cingulate cortex (53), 3–4 = posterior cingulate

cortex (53), 5 = dorsal caudate nuclei (53), 6 = insula (43), 7 = insula (32), 8 = insula (32), 9 = parahippocampal gyrus (49), 10 = thalamus (49).

TABLE 4 | Other brain regions showing different patterns of activity during inhibition in obese in comparison with lean individuals.

BA Hemisphere Coordinates Results

x y z

Visual cortex

Hendrick et al. (48) 17 L −18 −70 4

17 L −15 −76 16

17 R 9 −94 −2

17 R 12 −94 10

18 R 21 −64 16

Rolandic operculum

Hsu et al. (49) 1 R 58 −8 14

1 R 38 −16 18

Inferior parietal cortex

Hendrick et al. (48) 40 L −60 −37 34

40 R 60 −40 46

Blue arrows indicate hypoactivity in obese in comparison with lean participants. Red arrows indicate hyperactivity in obese in comparison with lean participants.

BA, Brodmann area.

attribute the subjective value of the food item (64). Moreover,
the OFC is a key node of the cognitive and, more specifically,
emotion inhibition system (65). Interestingly, a decrease of the
OFC metabolism has been observed in cocaine and alcohol
abusers, probably on the grounds of decreased sensitivity to

inhibitory (GABA) neurotransmission (20). Therefore, results
from Batterink et al. (43), Hendrick et al. (48), and Tuulari et al.
(53), reporting decreased activation of the OFC among obese
participants during response inhibition specific to food, may
suggest an alteration of the food value perception and/or emotion
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TABLE 5 | Regions showing an inverted U-shaped pattern of activity during inhibition in obese in comparison with lean individuals.

BA Hemisphere Coordinates Results

x y z

Insula

Dietrich et al. (32) 13 L −39 −12 9

Claustrum

Dietrich et al. (32) L −30 −3 −18

Putamen

Dietrich et al. (32) 49 L −33 −9 −3

U-inverted symbols indicate increased neural activity in class I obese (BMI = 30) in comparison with lean participants, followed by a decrease for obesity classes II and III (BMI = 35–40),

reaching similar levels of activation as lean participants.

BA, Brodmann area.

inhibition function(s) due to the addictive dimension of eating
behavior in obese individuals.

Medial Prefrontal Cortex
The anterior part of the PFC (BA10) plays a central role in
cognitive processes. BA10 is parcellated into an inferior and a
superior part, respectively, named ventromedial and dorsomedial
PFC. While each of these subregions endorses distinct cognitive
roles, such as emotional regulation, salience attribution (66), and
food valuation process (67) for the ventromedial PFC and inter
alia decision-making (68–70) and uncertainty processing (71) for
the dorsomedial PFC, both have been shown to play a role in
inhibition processes. For instance, decreased graymatter volumes
of the dorsomedial (72, 73) and lesions of the ventromedial
PFC (74, 75) were found to be linked to increased levels of
impulsivity. As previously observed among addicted gambler and
heavy smokers (76, 77), this review of the literature revealed that
obese individuals also show a hypofunctioning of both medial
PFC regions during inhibition (43, 48).

Lateral Prefrontal Cortex
The lateral part of the PFC entails the dorsolateral and
ventrolateral PFC. Postulated to be involved in cognitive
inhibition processes (78, 79), the dorsolateral PFC plays an
important role in the regulation of food craving (80, 81). Essential
to the downregulation of high-energy food reward, this region
has been shown to be critical for dietary self-control (82).
Thus, considered as a key node of eating behavior control,
the dorsolateral PFC has been the subject of numerous brain
stimulation studies, showing that increased activation of this
region allowed an improvement of resistance to food stimuli (38).
In the same vein, higher levels of activity in the dorsolateral
PFC were shown to be a good predictor of diet success in
obese individuals (83, 84). Surprisingly, when comparing the
activity of this region between obese and lean participants, only
three studies found a significant difference in activations during
food-specific inhibition, characterized by a hypofunctioning BA8
(43, 50) and BA9 (53). Scharmüller et al. (52), however, reported
the opposite pattern of activation in BA8 (i.e., hyperactivity
in comparison with lean participants). Interestingly, beyond its
implication in inhibition (85), BA8 was found to be involved

in uncertainty, with increased activations being correlated to
the degree of uncertainty (86, 87). This could mean that the
conviction driving eating refrainment may be more unstable in
obese individuals. Together, results collected from dorsolateral
PFC could reflect a food-specific impairment in both response
inhibition and decision-making processes.

Decreased patterns of activity were also reported in parts of
both the left [BA45, (48)] and right ventrolateral PFC [BA46,
(43); BA44, (48)]. The ventrolateral PFC was also shown to be
involved in inhibitory processes (88) and, more particularly, to
be a critical substrate of dietary self-control (89). The results
from Batterink et al. (43) and Hendrick et al. (48) corroborate
those from Tuulari et al. (53) observed in the dorsolateral PFC,
hence extending hypofunctioning of the lateral PFC to its entire
volume and supporting again the assumption of hypoactivity of
key regions during eating control in obese individuals.

On the other hand, Levy and Wagner’s meta-analysis (90)
revealed that the middle part of the right ventrolateral PFC
(BA45) is involved in decision uncertainty. This function
was found to be present only in the right ventrolateral
PFC. Interestingly, Hsu et al. (49) observed that during
general inhibition (i.e., non-food specific), the right BA45 was
significantly more activated among obese than lean participants.
Corroborating the results from Scharmüller et al. (52) in BA8,
we propose that this finding may connote a decreased ability to
firmlymake the choice to inhibit from acting in obese individuals.
However, the site of increased activation within the right BA45
was on the border of the insular region. Considering the various
preprocessing steps taken to analyze fMRI data (i.e., realignment,
normalization, and smoothing), the accuracy of the obtained
sites of activation and related coordinates through the MRI
methods bear some inaccuracies. Our assumption of greater
levels of uncertainty linked to obesity should then be taken
precociously, as the results from Hsu et al. (49) may also reflect
insular hyperactivity.

Premotor Cortex
Situated in the superior part of the frontal cortex, Brodmann area
(BA) 6 is located on the posterior part of the premotor cortex
and corresponds to the supplementary motor area, also described
as secondary motor cortex. Several behavioral tasks, such as
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TABLE 6 | Regions showing different patterns of activity during inhibition in obese individuals with binge eating disorder in comparison with individuals without.

BA Hemisphere Coordinates Results

x y z

PREFRONTAL CORTEX

Medial

vmPFC

Oliva et al. (51) * 10 R 43 53 2

* 10 R 33 56 2

dmPFC

Oliva et al. (51) **** 10 L −31 49 26

Lateral

dlPFC

Hege et al. (47) 9 R 44 30 28

Oliva et al. (51) **** 46 L −45 42 14

vlPFC

Balodis et al. (44) 46 L −30 36 9

VISUAL CORTEX

Balodis et al. (44) 19 L −42 −87 9

19 R 45 −87 15

Oliva et al. (51) * 18 R 36 −88 −6

** 18 R 36 −88 −6

SENSORIMOTOR CORTEX

Primary motor cortex

Oliva et al. (51) ** 4 L −38 −21 58

Premotor cortex

Oliva et al. (51) *** 6 R 15 −25 46

*** 6 R 22 −25 42

Primary sensory cortex

Oliva et al. (51) *** 1 R 36 −28 46

CEREBELLUM

Oliva et al. (51) * L −34 −84 −38

* L −45 −67 −22

** L −45 −67 −22

** L −24 −81 −26

** L −13 −70 −46

** L −13 −39 −38

*** L −17 −74 −22

PRECUNEUS

Oliva et al. (51) * 7 R 1 −63 42

* 7 R 5 −67 54

** 7 R 5 −70 50

** 7 R 5 −63 42

(Continued)
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TABLE 6 | Continued

BA Hemisphere Coordinates Results

x y z

PUTAMEN

Oliva et al. (51) ** 49 R 26 14 −2

** 49 R 12 7 −2

TEMPORAL GYRUS

Balodis et al. (44) 37 R 60 −63 −12

Blue arrows indicate hypoactivity in obese individuals with binge eating disorder in comparison with those without binge eating disorder. Red arrows indicate hyperactivity in individuals

with binge eating disorder in comparison with those without binge eating disorder.

BA, Brodmann area; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex.

* = general go/no-go, ** = food-specific go/no-go, *** = general stop signal, **** = food-specific stop signal.

the go/no-go and stop-signal task, emphasize its importance for
response inhibition (85, 91, 92). In individuals with substance
addiction, decreased activation of the supplementary motor area
has been observed during those two inhibition tasks (93, 94).
Considering the neural similarities as well as the comparable
exacerbated levels of impulsivity in individuals with substance
and food addiction (19, 95), results from Batterink et al. (43)
and Hendrick et al. (48) are not surprising. These authors
reported that, when compared with their lean counterparts, obese
individuals exhibited hypoactivity of the supplementary motor
area during both general and food-specific inhibition processes.

Limbic Regions
The limbic system is composed of a set of interconnected
subcortical but also cortical structures. Those numerous
connections form complex circuits (96), known to be highly
involved in the regulation of emotion-related behavior (97).

In the present review, we report the major contributions of the
limbic system to eating behavior control, but impaired among
the obese population, either showing hypo- or hyperactivity in
different limbic regions according to their functional role in
inhibitory control (Figure 3).

Insula
As part of the gustatory cortex (98), the insula is known to play a
role in smell and taste processing, as well as in fat detection (63).
The insula is also a crucial region for homeostatic regulation, with
its external input and expected reward integration function (99).
It was more recently suggested that through the translation of
objective interoceptive signals into subjective experiences such
as craving, which will potentiate impulsivity, the insula may
play a role in the onset and maintenance of addiction (24).
For instance, experimentally silenced insula in rats and lesioned
insula in humans were found to be, respectively, associated with
amphetamine (100) and smoking craving disruption (101).

Consistent with the results suggesting increased insular
activations during inhibition to be characteristic of inhibitory
control difficulties (102) and to correlate with the tendency to
eat in response to food stimuli regardless of the state of hunger
in obese adolescents (103), the articles we reviewed show a

hyperactivity of the insula (BA13) in obese in comparison with
lean participants when inhibiting (32, 43) (see further section for
the inverted U-shaped activation of the insula in relation to BMI).
Only Hendrick et al. (48) found an opposite pattern of activity.
However, the site of activation was on the boarder of the OFC.
For the same methodological reason we mentioned before (i.e.,
spatial resolution accuracy), the hypoactivity found by Hendrick
et al. (48) in the part of the insula bordering the OFC could
potentially be attributed to the lateral OFC rather than to the
insular cortex.

Cingulate Cortex

Posterior Cingulate Cortex
The posterior part of the cingulate cortex is involved in
processing emotionally relevant stimuli and memory-related
functions (104, 105). Interestingly, its level of activation during
high-calorie food anticipation was found to be associated
with BMI (106). Results from Tuulari et al. (53), showing a
hyperactivity of this region in obese participants in comparison
with their lean counterparts, may therefore be the neural
signature of excessive episodic memory-related hyperactivity
during eating anticipation based on constrained downregulation
and, hence, inhibition capabilities in obese individuals.

Anterior Cingulate Cortex
Besides forming an integral part of the limbic system, the anterior
cingulate cortex is often considered as belonging to the frontal
cortex (107) and associated inhibitory control networks (108,
109). Playing a major role in palatable food salience attribution
and subsequent decision-making (63), the anterior cingulate
cortex was demonstrated to be involved in the regulation of
food craving and to be related to BMI. Specifically, He et al.
(46) and Giuliani et al. (80) reported a negative correlation
between anterior cingulate cortex activations and BMI during a
food-related inhibition task. In line with those results, Tuulari
et al. (53) showed that obese participants exhibited significantly
lower activation in this region, therefore suggesting an impaired
palatable food salience attribution with consequences on food
choices in case of obesity.
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TABLE 7 | Neural connectivity during inhibition in obese in comparison with lean individuals.

BA Hemisphere Coordinates Results

x y z

FRONTAL CORTEX

Tuulari et al. (53)

Seed: dlPFC 8 L −42 14 42

Putamen 49 R 32 −20 4

Cingulate cortex 23 R 30 −64 6

SMA 6 R 8 −8 64

Seed: Pre-SMA 8 R 4 25 38

Precuneus 31 L −8 −54 36

Cingulate cortex 32 R 10 16 36

Inferior parietal cortex 39 R 42 −66 48

39 R 52 −56 46

PARIETAL CORTEX

Tuulari et al. (53)

Seed: precuneus 7 R 11 −72 58

SMA 6 R 10 −20 66

vlPFC 44 R 48 12 12

Sensory cortex 1 L −20 −30 68

BASAL GANGLIA

Dietrich et al. (32)

Seed: putamen 49 L −33 −9 −3

dlPFC 9 L −24 33 30

9 L −33 27 24

8 L −12 21 45

8 R 9 42 45

8 L −15 33 48

dmPFC 10 L −33 45 30

Seed: amygdala L −30 −3 −18

Pallidum 51 L −15 0 0

Putamen 49 L −21 18 3

Visual cortex 17 L −3 −90 6

18 L −6 −81 −9

Red arrows indicate strengthened connectivity in obese in comparison with lean participants. U-shaped symbols indicate weaker neural connectivity in class I obese (BMI = 30) in

comparison with lean participants, but stronger connectivity for obesity classes II and III (BMI = 35–40), reaching similar connection strengths as lean participants.

BA, Brodmann area; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; pre-SMA, presupplementary area; SMA, supplementary area; vlPFC, ventrolateral

prefrontal cortex.

Thalamus
The thalamus has been suggested to be involved in substance
addiction due to its function in expectation processing (110).
Expectation of the rewarding effects of drug consumption is
thought to be responsible for the reinforcing dynamic of drug
abuse (111). The role of the thalamus in the context of food
addiction is nonetheless less elucidated. A part of the thalamus,
namely the paraventricular thalamus, has been postulated to be

a gateway to feeding and appetitive motivation. Specifically, it
was suggested that its strategic position between brain regions
responsible for homeostatic perception (i.e., hindbrain and
hypothalamus), motivation, and reward processes (i.e., amygdala,
ventral striatum, and cortex), allows the paraventricular thalamus
to control eating behavior via bottom-up and top-down control
(112). The importance of this part of the thalamus for controlling
food intake was evidenced by animal research, revealing that
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lesions (113), pharmacological activation of its GABAA receptors
(114), or its chemogenetic inhibition (115) causes increased
food intake. On the contrary, activation of the paraventricular
neurons was found to reduce food intake (115). Assuming that
the results observed in mice would apply to human, we propose
that thalamic hypoactivity in obese individuals (49) may reflect a
dysfunctional inhibition of eating.

Caudate Nucleus
Together with the anterior part of the putamen, the head of the
caudate nucleus represents the dorsal striatum, a region primarily
responsible for reward processing (116). The mere exposure to
food items is enough to produce dopamine release in this brain
region (117). In the addiction literature, the caudate nucleus
function is also linked to impulsivity. For instance, decreased
caudate nucleus activations during the reception of a pleasant
taste were associated with impulsivity and obesity (118, 119).
Obesity-related lower dopamine signaling during the ingestion
of food refers to the “reward-deficiency” theory, justifying the
need for compensatory overeating to trigger satisfying reward
responses (67). To explain the hypoactivity of the caudate nucleus
during the attempt to inhibit from craving in their obese vs.
lean participants, Tuulari et al. (53) referred to the reward
deficiency theory. However, one may also argue that a hypoactive
reward system would rather lead to improved inhibitory control.
In this context, it is interesting to refer to the implication
of the caudate nucleus in motor inhibition (120–122). In the
study by Tuulari et al. (53), the dorsal part of the caudate
nucleus was found to be hypoactive. While the ventral caudate,
mainly interconnected with the limbic system, is involved in the
processing of affects (123), the dorsal caudate is connected to
the motor, cingular, and dorsolateral prefrontal cortices (124–
126). Furthermore, it is thought to play a role not only in
motor but also executive functions (127, 128). Therefore, an
alternative interpretation of the hypoactivation of the dorsal
caudate nucleus during attempting to inhibit the urge to eat in
obese individuals could originate from impaired motor and/or
cognitive inhibitory functions.

Parahippocampal Gyrus
As part of the reward system, the parahippocampal gyrus is
involved in hedonic feeding and incentive motivation processes
(129). Its activity was shown to be responsive to the perception
of food items (130) and to correlate positively with obesity
(9) and weight gain (131). The role of the parahippocampal
gyrus during reward processing seems to depend on its function
in emotional memory (129, 132). In Chen et al. (133), trait-
based food craving was associated with spontaneous neuronal
activity in the parahippocampal gyrus. This suggests reinforced
food-related hedonic memories in obese individuals. However,
the hypersensitivity of the food reward system is rather
counterintuitive to explain the results from Hsu et al. (49),
reporting a hypoactivity of the right parahippocampal gyrus
(BA36) during inhibition among obese in comparison with
lean individuals.

Besides its role in reward and memory functions, the
parahippocampal gyrus also seems to underpin inhibition. For

instance, using the go/no-go task in healthy adults, Nakata
et al. (134) revealed the implication of this brain region in
inhibition processes. Its activity was further shown to positively
correlate with inhibition success (135). During no-go trials,
normally developing children activated a neural network also
comprising the parahippocampal gyrus, whereas children with
attention deficit/hyperactivity disorder, which is associated with
impaired inhibition capacities (136), failed to activate this region
during inhibition attempts (137). In the literature specific to
addiction, Sheinkopf et al. (138) revealed that activations of
the parahippocampal gyrus during inhibition were significantly
attenuated in children with prenatal exposure to cocaine. Despite
the lack of information specifically concerning the role of this
region in inhibition processes in individuals with food addiction,
we propose that the hypoactivity observed by Hsu et al. (49)
during no-go trials is likely to reflect an impairment of the
inhibitory function hosted by the parahippocampal gyrus in the
obese population.

Additional Regions
Visual Cortex
Located in the posterior part of the occipital cortex, the cuneus
belongs to the visual cortex. Besides its essential role in the
processing of visual information (139), the cuneus has been
shown to be involved in addiction. Both structural and functional
impairments of the cuneus have been suggested to be associated
with addiction disorders. For instance, decreased cuneus volume
was found to negatively correlate with years of drug use in
cocaine addicts (140) and to predict relapse in alcoholics (141).
In the same vein, using a color-word drug Stroop task, Goldstein
et al. (142) found hypoactivation of the cuneus during inhibition
in cocaine addicts. Although the structural and functional
properties of the cuneus in individuals with food addiction
remain to be elucidated, we propose that the hypoactivity
reported by Hendrick et al. (48) in obese in comparison with lean
individuals during inhibition (Figure 4) may stem from altered
cuneus volume and/or function.

Rolandic Operculum
Studies investigating the neural responses to both food
anticipation and delivery revealed a hyper-responsivity of the
Rolandic operculum in obese adults (143) and adolescents (144),
hence suggesting this brain region to be part of the food
reward system. Decreased activations of the Rolandic operculum
should therefore concur with decreased reward responses, hence
facilitating inhibition processes. In that sense, its hypoactivity
reported by Hsu et al. (49) in obese individuals during inhibition
may seem counterintuitive. This result rather suggests that
the Rolandic operculum may actively play a role not only
in reward but also in inhibition processes related to food
behavior. In drug addicts, studies reported decreased gray matter
volume in this brain region (145, 146). Likewise, using single-
photon emission computed tomography, Willeumier et al. (147)
scanned a cohort of suicide, also known to present excessive
levels of impulsivity (148). The authors revealed decreased
cerebral blood flow in the region of the Rolandic operculum.
Considering those results, we assume that the hypoactivity of the
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FIGURE 4 | Functional activity in other regions during inhibition. Blue color indicates hypoactivity in obese in comparison with lean individuals during inhibition (see

Table 4 for precise coordinates). 1–5 = visual cortex (48), 6–7 = rolandic operculum (49), 8–9 = inferior parietal cortex (48).

Rolandic operculum during inhibition among obese individuals
(49) (Figure 4) may stem from hypoperfusion and/or atrophy,
resulting from high impulsivity levels and, in turn, leading to
inadequate response inhibition.

Inferior Parietal Cortex
The inferior parietal cortex has been shown to be consistently
involved in response inhibition processes, measured either
with go/no-go (149), stop signal reaction time (150), or
other adapted tasks (151, 152). Interestingly, in populations
showing high levels of impulsivity, such as individuals with
attention deficit/hyperactivity disorder and alcoholics, voxel-
based morphometry analyses showed decreased gray matter
volume of the inferior parietal cortex (153, 154). The deleterious
effects of impulsivity were also found to not only impact
inferior parietal cortex structure but also its functionality.
Notably, Schilling et al. (155) reported decreased gray matter
volumes and Horn et al. (102) showed decreased neural activity
during no-go trials. In the specific context of obesity, Stoeckel
et al. (156) revealed that the inferior parietal cortex was less
activated during difficult than easy delay-discounting trials. To
that extent, we propose that the hypoactivity of the inferior
parietal cortex (BA40) reported by Hendrick et al. (48) in
obese individuals during stop signals (Figure 4) reflects the
impairment of inhibitory capacities and, hence, the amplification
of impulsivity, probably as a consequence of structural and/or
functional alterations.

Inverted U-Shaped Reward Activations
In their study, Dietrich et al. (32) found an inverted U-shaped
pattern of activation in the insula, claustrum, and putamen
during inhibition (Figure 5), with the highest activation values
observed among class I obese participants (BMI = 30). With
its role merging the detection of food characteristics and
interoception, the insula plays a major role in reward processing.
Increased insular activations in class I obese participants support
the assumption of a hypersensitivity of the reward system in
addicts (13, 95, 144). A similar pattern of activation was obtained
from the putamen, which together with the caput caudatum
constitutes the ventral striatum, a key region of the brain’s reward
system (157). The putamen entails both the delivery and the
detection of reward (158) and is part of the corticolimbic pathway
controlling food reward processes (67). Moreover, supporting
habit formation (159), the putamen is involved in the mediation
of habitual eating behavior (67). The creation of a habit,
originating from previous goal-directed behavior, is accelerated
through dopamine release (160). Obesity, and thus habitual
overeating, was found to be positively associated with dopamine
D2-like receptors in the putamen. This suggests that habitual
excessive eating behavior observed in obese individuals may
partly stem from the putamen’s sensitivity to enhanced dopamine
release. Another explanation for this increased activation of the
putamen in class I obese individuals during inhibition is that
highly caloric foods act as strong reward reinforcers (19) andmay
thus hamper automatic eating behavior control, hence leading
to overeating (161). This loss of control resulting from exposure
to salient stimulus refers to an attentional bias. In individuals
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FIGURE 5 | Inverted U-shaped pattern of functional activity during inhibition. Green color indicates an increased neural activity in class-I obese (BMI = 30) in

comparison with lean participants, and an attenuated activity in obesity classes II and III (BMI = 35–40) reaching similar patterns of activation as in lean participants

(see Table 5 for precise coordinates). 1 = insula (32), 2 = claustrum (32), 3 = Putamen (32).

with substance addiction, attentional bias was found to positively
correlate with craving and putamen activations (162).

Between the insula and the putamen lies the claustrum, a
very small brain region [i.e., roughly 0.25% of the cerebral
cortex (163)], but nonetheless highly connected (164). It was
found to be also hyperactive among class I obese. Due to its
bilateral connections with all areas of the cortex, the claustrum
has been identified as a key node for multisensory integration
and then responsible for the encoding of stimuli salience (165).
To reduce the affluence of cortical information not selected
for attention, the claustrum operates via a selective activation
of inhibitory neurons in layer IV (166). The hyperactivity of
this region among obese individuals during inhibition could
be the sign of an exacerbated inhibitory activity aiming at
focusing attention through compensating the excessive intensity
of perception-related cortical processing. This hypothesis would
reflect an excessive sensorial input and/or difficulty in deciding
for the salience qualities of a given food-related input in class I
obese individuals.

Altogether, those results support the notion of a hypersensitive
reward system in obese individuals, but only partially. While
activation in these areas linearly increases up to a BMI of 30,
a BMI from 30 to 40 is associated with the opposite dynamic,
suggesting a decreased hypersensitivity of the reward system in
class II obese individuals. Parallel to reward hypersensitivity,
the reward hyposensitivity hypothesis can also be found in
the addiction literature [i.e., reward deficiency theory (95,
144)]. While the former applies during eating anticipation, the

later occurs during actual reception. According to the reward
deficiency theory, obese individuals must consume more food
to reach satisfying reward activations and subsequent pleasure
perception (67). Neurobiological evidence for this assumption
relies on decreased dopamine D2 receptor availability in obese
individuals’ brain (167). Results from Dietrich et al. (32) suggest
that this alteration of the dopaminergic system may be BMI
dependent and within the different obese classes. The inverted
U-shaped pattern of activation these authors found in the insula,
putamen, and claustrum could signify that the dynamics of the
impaired dopaminergic system may be reversed with increasing
obesity severity and that the reward deficiency theory also applies
to food anticipation in severely obese individuals.

Functional Connectivity
Functional connectivity studies showed a stronger connectivity of
frontal regions (dorsolateral PFC and pre-supplementary motor
area) with the putamen, cingulate cortex, supplementary motor
area, precuneus, and inferior parietal cortex (53) (Figure 6),
suggesting a shift in neural demand away from executive
to hedonic functions during inhibition of food intake. This
strengthened functional connectivity between inhibition and
reward-related nodes was furthermore found to be a two-
way relationship, notably between the inferior parietal cortex
(precuneus), the basal ganglia (putamen), and frontal regions
(dorsolateral PFC, dorsomedial PFC, ventrolateral PFC, and
supplementary motor area) (32, 53). As the putamen is
involved in the attribution of food reward value and in the
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FIGURE 6 | Functional connectivity during inhibition. Red and green connections indicate hyperconnectivity and U-shaped connectivity, respectively, in obese in

comparison with lean participants during inhibition (see Table 7 for precise coordinates). Regions n◦1, 5, 10, 14, and 21 are seed regions. 1 = dorsolateral prefrontal

cortex, 2 = putamen, 3 = cingulate cortex, 4 = supplementary motor area, 5 = pre-supplementary motor area, 6 = precuneus, 7 = cingulate cortex, 8–9 = parietal

cortex, 10 = precuneus, 11 = supplementary motor area, 12 = ventrolateral prefrontal cortex, 13 = sensory cortex (53), 14 = putamen, 15–19 = dorsolateral

prefrontal cortex, 20 = dorsomedial prefrontal cortex, 21 = amygdala, 22 = pallidum, 23 = putamen, 24–25 = visual cortex (32).

mediation of habitual eating behavior (see previous section),
and the precuneus plays a role in a large number of affective
and cognitive functions (168), the strengthened functional
connectivity between those reward regions with the frontal
part of the brain may also reflect increased neural demand for
the successful control of food intake in the obese population.
The hyperactive interplay between frontal and limbic regions
during inhibition in obese individuals may be the adaptive
signature of increased neural activity aiming at compensating the
pathologically induced decreased functioning of those regions.

Conversely, a U-shaped pattern of functional connectivity
was reported between the amygdala, involved in motivational
salience encoding (169), and regions involved in reward
perception and signaling (32) (Figure 6).Whereas, the functional
activity in lean and severely obese individuals was found to
be similar, decreased values were reported in class I obese
individuals between the amygdala, visual cortex, and basal
ganglia (pallidum and putamen). Dietrich et al. (32) assumed
that BMI may affect craving regulation through a U-shaped
modulation of the interplay between salience encoding and
pleasantness computation. This would mean that whereas mildly
obese individuals show a decreased functional connectivity of
the regions involved in craving regulation, morbidly obese
individuals’ neural activity is similar to the pattern obtained from
normal weighted controls, despite an exacerbated behavioral
loss of control regarding food craving regulation (probably even
greater than among mildly obese individuals). This assumption

seems counterintuitive to us. We therefore assume that the U-
shaped pattern of functional connectivity found in this brain
network may rely on other explanations, however still unknown
and deserving further examination.

Binge Eating Disorder
Part of the obese population is confronted with an aggravated
form of excessive eating behavior, consisting in consuming a large
amount of food within a short period of time, paired with a
sensation of loss of control. This pathological eating behavior,
named BED, is referenced as a stand-alone illness in the DSM-5
(170). As binge period may be followed by purge (e.g., vomiting),
not all individuals suffering from BED are obese. This is however
true in 40% of the cases (171). Importantly, in comparison with
obese individuals without BED, those presenting the pathology
were found to have higher psychiatric comorbidities and diabetes
rates, as well as more physical symptom and health dissatisfaction
(172–175). Considering those alarming observations, a deeper
understanding of the disinhibition processes underlying BED,
and specifically among the obese population, is critical. As
behavioral impulsivity was found to be even more pronounced
among obese with BED (176, 177), it can be expected that the
neural networks responsible for inhibition, already found to be
downregulated in the obese population (see previous sections),
are presenting further weakening in the presence of BED. Results
from Balodis et al. (44) and Hege et al. (47) support this
assumption. Using food-specific Stroop color-word interference
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and go/no-go tasks, these authors emphasize the exacerbated
decrease of frontal regions’ activity. Specifically, obese individuals
with BED showed less neural activation within the ventrolateral
(BA46) and dorsolateral part (BA9) of the prefrontal cortex. The
same impairment was also observed in the visual cortex, more
precisely in the cuneus (BA19). Besides this exacerbation of the
frontal and visual regions’ hypoactivity, the study from Balodis
et al. (44) further revealed hypofunctioning of the middle (BA21)
and inferior parts (BA37) of the temporal lobe. Belonging to the
cognitive system (178, 179), the temporal lobe is also involved
in inhibition processes (180, 181). Higher impulsivity levels have
been found to be associated with reduced gray matter volume
(182) and regional cerebral blood flow (183) in the temporal lobe.
Moreover, animal studies showed that structural alterations of
the temporal cortex led to hyperphagia and obesity (184). This
relation between temporal cortex integrity and eating behavior
was also observed among humans. Gray matter volume was
notably found to be negatively correlated with BMI (185, 186)
and, accordingly, systematically reduced in obese individuals
(187–189). A 24-year longitudinal study showed that individuals
who were starting to increase their BMI during their middle
age present decreased gray matter volume in the temporal lobe
at a later age (190). This suggests that this brain alteration is a
consequence from obesity, probably because of related insulin
resistance (15). However, womenwith an atrophy of the temporal

lobe were found to have a higher BMI (190), here suggesting
the reversed cause–effect relationship between obesity and the
temporal lobe. In essence, results from Balodis et al. (44) and
Hege et al. (47) support the assumption of similar, although
exacerbated, as well as further inhibition network impairments
in obese with binge eating disorder (Figure 7).

Binge eating episodes can also occur in normal-weight
individuals (191). They are thought to occur more frequently
and compulsively in the course of time (192), hence increasing
the risk to develop obesity. To provide a better understanding
of the tendency to binge eating, Oliva et al. (51) investigated
neural activity of normal-weight adults while performing the
go/no-go and stop signal inhibition tasks. Inconsistent with the
results from Hege et al. (47) who used the classical version of
the go/no-go task in obese with BED, Oliva et al. (51) reported
increased activity of the dlPFC during the food-specific version
of the stop signal task. Those results are however consistent with
the findings from Scharmüller et al. (52) who also used a food-
specific inhibition task. This suggests that the opposite patterns
of activity observed in the dlPFC in lean individuals with BED
in comparison with obese individuals with BED may not only
steam from the presence of obesity but also from the nature of
the inhibition task. This may also explain the increased activity
observed in the visual cortex in lean individuals with BED during
inhibition, whereas those with BED and obesity were shown to

FIGURE 7 | Functional activity in individuals with binge eating disorder during inhibition. Blue color indicates hypoactivity in obese individuals with binge eating

disorder in comparison with obese individuals without binge eating disorder during inhibition. Yellow and orange colors indicate hypo- and hyperactivity, respectively, in

lean with binge eating disorder in comparison with lean without binge eating disorder (see Table 6 for precise coordinates). 1–2 = ventromedial prefrontal cortex (51),

3 = dorsomedial prefrontal prefrontal cortex (51), 4 = dorsolateral prefrontal cortex (47), 5 = dorsolateral prefrontal cortex (51), 6 = ventrolateral prefrontal cortex (44),

7–8 = visual cortex (44), 9 = visual cortex (51), 10 = primary motor cortex (51), 11–12 = premotor cortex (51), 13 = primary sensory motor cortex (51), 14–19 =

cerebellum (51), 20–23 = precuneus (51), 24–25 = putamen (51), 26 = temporal gyrus (44).
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present hypoactivity (44). Besides those incongruent results with
obese BED, lean BED further showed hypoactivity of the primary
sensorimotor cortex, precuneus, putamen, and cerebellum, all
being involved in inhibition processes (59, 193–195). To what
extent an impairment of those regions during inhibition may
represent early warning signs of obesity development deserves
further longitudinal investigation.

LIMITATIONS

This review article entails studies that used general as well
as food-specific paradigms to investigate inhibition processes,
despite coming from different methodological paradigms (i.e.,
experimental tasks). Thus, this precludes obtaining information
on the general or specific aspect of inhibition impairment in
individuals with obesity and BED. Moreover, only 12 studies
could be included, hence not allowing detailed and firm
conclusions to be drawn. That is why we aimed at additionally
adding EEG studies. However, all studies we found, although
they showed impaired inhibition response, did not report on
precise brain regions. Thus, we did not include EEG studies in
this review.

CONCLUSION

In this review, we gathered further evidence of shared neural
impairment underlying drug and food addiction, mainly
targeting the frontal and limbic regions. Specifically, obesity is
linked to alterations of the dopaminergic system during response
inhibition, translating into hypoactivity of the frontal regions
and either hypo- or hyperactivity of the limbic regions according
to their role in behavior control. We further conclude that the
presence of BEDmay lead to similar although greater impairment
of the inhibition system. We however suggest that a deeper
and more grounded understanding of the inhibition system
impairment related to obesity should constitute the subject
matter of future studies. Investigating whether alterations of the

dopaminergic function and its related inhibition processes in
obese individuals are rather general or specific to eating behavior,
and also whether it varies within different classes of obesity, could
provide valuable insights for the comprehension of inhibition
impairment in the obese population.

In summary, inhibition processes are found to rely on
a complex neural network involving the prefrontal but also
the frontal and subcortical regions. Whether stimulation of
the identified key areas, such as the striatum, orbitofrontal,
medial prefrontal, cingulate, or insular cortex, may lead to
substantial improved eating control deserves future non-invasive
(transcranial direct current stimulation, repetitive transcranial
magnet stimulation) as well as invasive brain stimulation studies
(deep brain stimulation).
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