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Objective: The aim of this study is to evaluate the evolution of GPi DBS targeting.

Methods: This retrospective, single-center study included patients implanted with GPi

DBS leads for dystonia or PD during the years 2004 to 2018 at the University of

Florida Fixel Institute for Neurological Diseases. Each patient underwent a high-resolution

targeting study on the day prior to the surgery, which was fused with a high resolution

CT scan that was acquired on the day of the procedure. Intraoperative target location

was selected using a digitized 3D Schaltenbrand-Bailey atlas. All patients underwent

a high-resolution head CT scan without contrast approximately one month after lead

implantation and accurate measurement of neuroanatomical lead position was acquired

after fusion of pre-operative and post-operative image studies.

Results: We analyzed 253 PD patients with 352 leads and 80 dystonia patients with

141 leads. During 15 years of follow-up, lead locations in the PD group migrated more

laterally (β = 0.09, p < 0.0001), posteriorly [slope (β) = 0.04, p < 0.05], and dorsally

(β = 0.07, p < 0.001), whereas leads in the dystonia group did not significantly change

position aside from a trend in the dorsal direction (β = 0.06, p = 0.053).

Conclusion: The evolving target likely results from multiple factors including

improvements in targeting techniques and clinical feedback intraoperatively and

post-operatively. Our demonstrates the potential importance of a systematic

post-operative DBS lead measurement protocol to ensure quality control and to inform

and optimize DBS programming.
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INTRODUCTION

Deep brain stimulation (DBS) is a surgical therapy that uses a neurostimulator and one or multiple
brain leads to modulate specific neural circuits (1). Modulation of the globus pallidus internus
(GPi) is a well-established and highly effective therapeutic option for appropriately selected patients
with Parkinson’s disease (PD) and for patients with severe dystonia that is refractory to optimized
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medical therapy (2, 3). GPI DBS has the potential to improve
both hypokinetic and hyperkinetic disorders (4). Although the
antiparkinsonian effects of GPi DBS are well recognized, there
remains debate about the underlying therapeutic mechanism (5)
and the ideal position for lead implantation within the target. The
posterolateral, somatosensory region of the GPi has been one of
themost consistently utilized areas and has shown robust benefits
across studies (3, 6, 7).

Despite established efficacy and safety, the clinical response
to DBS may at times be variable among patients and dependent
on a variety of factors including patient selection, appropriate
target selection, and adequate surgical planning. Okun et al.
(2005) evaluated causes of DBS failures in patients referred
to tertiary movement disorders centers (8). Nearly half of the
patients had sub optimally placed DBS electrodes, and 17% had
leads that were not programmable. Half of the cohort required
lead revision (8). Although several factors may influence lead
placement, appropriate surgical planning is critical to the process.

In both PD and dystonia, accurate DBS targeting is a primary
determinant of outcomes (9) and the evolution of improved
direct targeting techniques over the last two decades has provided
more effective stimulation with fewer side effects. The aim of this
study is to evaluate the evolution of GPi DBS targeting over time
through analysis of a large, single-center cohort.

METHODS

This is an IRB-approved, retrospective, single-center study
including patients implanted with GPi DBS leads for dystonia
or PD during the years 2004–2018 at the University of Florida
Fixel Institute for Neurological Diseases. Informed consent was
obtained. We confirm that we have read the Journal’s position on
issues involved in ethical publication and affirm that this work is
consistent with those guidelines.

The standard-of-care surgical approach has been previously
described by our group (10). On the day prior to the surgery, each
patient underwent a high-resolution 3 Tesla MRI direct targeting
study. The image study included a Gadolinium enhanced
MPRAGE sequence and a Fast Gray Matter Acquisition T1
Inversion Recovery sequence (FGATIR), which was introduced
in 2009. On the day of the procedure, a high resolution CT
scan was acquired after the Cosman-Roberts-Wells (CRW) frame
was attached to the patient’s head. Both the MRI and the
CT images were fused and intraoperative target location was
selected using a digitized Schaltenbrand-Bailey atlas (11). The
atlas was manually fitted to each patient’s pre-operative imaging
using three-dimensional (3D) scaling, shifting, and rotating. All
patients underwent a high-resolution head CT scan without
contrast approximately 1 month after implantation. This image
study was fused to the pre-operative targeting MRI, which
allowed accurate measurement of neuroanatomical lead position.
Planned and measured lead positions were reverse normalized
based on individual atlas-fits in order to place all leads within
the Schaltenbrand-Bailey atlas coordinate space for comparison
across patients. We analyzed the PD and dystonia cohorts
separately. For analysis, we dropped the sign of the lateral

position to combine data from the left and right hemispheres.
Absolute error in all three dimensions and 3D Euclidean error
was computed.

Data were filtered to remove outliers defined by a z-score
greater than or less than three standard deviations away from
the mean with respect to the final planned positions or measured
positions in the lateral, A-P, and axial dimensions. Correlation
analysis was used to identify associations between time (years)
and variables of interest including lead positions and errors in
final positions. The significance level was set at an alpha of 0.05.
The statistical software R was used for all analyses.

RESULTS

Patient Characteristics
A total of 253 PD patients with 352 leads and 80 dystonia
patients with 141 leads were included after outlier analysis led
to exclusion of 10 patients. Within the PD group, 152 patients
had unilateral implants and 101 patients had bilateral implants.
Within the dystonia group, 13 patients had unilateral implants
and 67 patients had bilateral implants. Ages at the time of surgery
were 63.61 +/− 9.12 (M +/− SD) years in the PD group and
44.40+/− 21.94 years in the dystonia group.

Evolution of the Lead Positioning and Error
During 15 years of follow-up, lead locations in the PD group
migrated more laterally (β = 0.09, p < 0.0001; Figure 1A),
posteriorly [slope (β) = 0.04, p < 0.05; Figure 1B], and dorsally
(β = 0.07, p < 0.001; Figure 1C), whereas leads in the dystonia
group did not significantly change position aside from a trend in
the dorsal direction (β = 0.06, p= 0.053; Figures 1D–F). Similar
lateral (β = 0.11, p< 0.0001) and posterior (β = 0.09, p< 0.0001)
shifts in the PD group were also found in the intraoperative
planned coordinates whereas the axial shift (β = 0.02, p = 0.34)
was not. However, the intraoperative planned coordinates for
the lateral position in the dystonia group showed a small but
significant shift more laterally with time (β = 0.05, p < 0.05).

Absolute error significantly decreased over time in the PD
group for the lateral (β = −0.04, p < 0.01; Figure 2A), A-P
(β = −0.04, p < 0.001; Figure 2B), and axial (β = −0.05, p
< 0.001; Figure 2C) directions leading to a reduction in overall
3D Euclidean error of about 0.08mm per year (p < 0.0001;
Figure 2D). In the dystonia group, error did not significantly
reduce over time (Figures 2E–H). The average lead position
from 2004–2006 to 2016–2018 for Parkinson’s disease and
dystonia in axial, coronal, and sagittal planes was shown in
Supplementary Figure 1.

DISCUSSION

To our knowledge this is the first study evaluating long-term
accuracy and evolution of GPi DBS targeting, though there are
many studies evaluating the effectiveness of GPi DBS (12, 13).
There is a paucity of data regarding errors in lead location
measurement or of errors in surgical placement. It is well
known in stereotactic surgery that the further away a target is
from the midline, the higher the predicted error may be (14),
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FIGURE 1 | Normalized lead positions in millimeters for PD (A–C) and dystonia (D–F) patients in the lateral (A,D), anterior-posterior (B,E), and axial (C,F) dimensions

shown from 2004 to 2018. Slopes (β) and p-values are shown for linear fits in all plots.

especially if the targeting procedure is based only on indirect
targeting relative to the mid-commissural point. Improvement
of DBS targeting software and high resolution brain imaging
[e.g., FGATIR, quantitative susceptibilitymapping] has improved
our ability to clearly identify and directly target neuroanatomical
structures (15–17). The FGATIR sequence was introduced in
2009 and its combination of high resolution (1 x 1 x 1mm
voxel), 1mm slice thickness and high contrast, enabled better
visualization of the GPi borders, leading to a more precise
location of the target (15). These improvements have likely
contributed to the diminishing rate of GPi-DBS targeting errors
during the more recent years of this cohort.

Evolution of the final lead placement may also be a result
of technique refinement, including reasons beyond the advent
of high-resolution MRI. For instance, clinical feedback from
outpatient programming sessions may play a role as lateral
placement decreases the likelihood of inadvertent internal
capsule stimulation and widens the therapeutic window for
DBS programming, an aspect particularly important in dystonia
patients, who often require larger volumes of tissue activation

to control their symptoms chronically (18). These patients
are also more prone to stimulation-induced side effects. In
addition, dystonia patients may require DBS earlier and
require it for a longer time given the younger mean age
at implantation. Dystonia patients commonly require higher
settings and higher charge densities over time for chronic
symptom control (19–22). This is the largest study to examine
the evolution of GPi targeting over a period of 15 years, and
it reinforces the potential importance of an interdisciplinary
team and the clinical feedback directed from neurologists to
neurosurgeons. We highlight that during these 15 years, there
was consistency in our team in terms of senior neurosurgeon
and senior neurology programmer. Clinical feedback relating
lead locations to outcomes is particularly important for refining
lead placements to maximize benefits while minimizing adverse
effects of DBS (23). Surgical teams that do not receive such
clinical feedback regarding their patients’ post-operative lead
locations relative to their clinical outcomes fail to exploit an
important tool for DBS quality improvement and will likely have
less optimal surgical outcomes.
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FIGURE 2 | Absolute error in lead positions in millimeters for PD (A–C) and dystonia (E–G) patients in the lateral (A,E), anterior-posterior (B,F), and axial (C,G)

dimensions shown from 2004 to 2018. 3D Euclidean distance in the PD (D) and dystonia groups (H) are also shown. Slopes (β) and p-values are provided for linear

fits in all plots.

There are some hypotheses for why the GPi targets moved
through the years: (1) For the lateral move, it was mainly related
to the neurological team feedback requiring more “room” to
work. Over the years, due to the progression of the dystonia
and Parkinson’s disease, the DBS programming may require
amplitude and pulse width increase to control the motor
symptoms. (2) For the dorsal move, it could be related to the
surgeon’s cautious with deep vessels, which are commonly seen
inferiorly to the GPi.

There are particular limitations of this analysis that should be
mentioned. This is a single center study. As previously described

by our group, microelectrode recording (MER) is part of our
surgical approach. Thus, adjustments of the coordinates based on
MER and intra operative stimulation can play an important role
in the final location of the lead. The retrospective nature of the
study can introduce bias related to record keeping, though this
bias is partially offset by the large number of patients included.
The different size of the heads between the patients can be a
limitation; however, the planned and measured lead positions
were reverse normalized to individual atlas-fits to place all leads
within the Schaltenbrand-Bailey atlas coordinate space to enable
more meaningful comparison across patients.
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In summary, this is the first single tertiary center study
to show the longitudinal evolution of targeting in GPi
DBS. The evolving target likely results from multiple
factors including improvements in targeting techniques
and clinical feedback intraoperatively and post-operatively.
Our results also demonstrate the potential importance of a
systematic post-operative DBS lead measurement protocol
to ensure quality control and to inform and optimize DBS
programming. More precise targeting of the GPi with patient-
specific modeling can potentially predict effectiveness by
representing the volume of tissue activated. This strategy
can aid in predicting optimal stimulation parameters, more
efficiently maximizing therapeutic benefit and reducing adverse
effects. Future studies incorporating a larger, multi-center
dataset might be useful to corroborate the findings of this
analysis and help to establish useful guidelines for improving
electrode placement and global outcomes in movement
disorders patients.
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