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Colon adenocarcinoma (COAD) is a malignant gastrointestinal tumor, often occurring in the
left colon, which is regulated by glycolysis-related processes. In past studies, multiple genes
that influence the prognosis for survival have been discovered through bioinformatics anal-
ysis. However, the prediction of disease prognosis using a single gene is not an accurate
method. In the present study, a mechanistic model was established to achieve better predic-
tion for the prognosis of COAD. COAD-related data downloaded from The Cancer Genome
Atlas (TCGA) were correlated with the glycolysis process using gene set enrichment analysis
(GSEA) to determine the glycolysis-related genes that regulate COAD. Using COX regression
analysis, glycolysis-related genes associated with the prognosis of COAD were identified,
and the genes screened to establish a predictive model. The risk scores of this model were
correlated with relevant clinical data to obtain a connection diagram between the model
and survival rate, tumor characteristic data, etc. Finally, genes in the model were correlated
with cells in the tumor microenvironment, finding that they affected specific immune cells
in the model. Seven genes related to glycolysis were identified (PPARGC1A, DLAT, 6PC2,
P4HA1, STC2, ANKZF1, and GPC1), which affect the prognosis of patients with COAD and
constitute the model for prediction of survival of COAD patients.

Introduction
Colon adenocarcinoma (COAD) is a form of malignant gastrointestinal tumor that occurs most com-
monly in the left colon. It is most common in male patients and has the third-highest incidence of all
gastrointestinal tumors. According to a WHO 2018 report [1], there are approximately 1.8 million colonic
adenocarcinoma patients worldwide, of which 881,000 died of the disease in 2018. Due to the high-fat and
low-cellulose foods eaten in parts of China, patients with colon cancer have a high incidence [2–4].

It is currently known that a single gene or molecular marker does not provide a good diagnosis or pre-
dict the progression of a disease. Increasing numbers of institutions have adopted multiple genes to build
predictive models for disease diagnosis. With the development of high-throughput sequencing technol-
ogy, an increasing network of public databases have been established whose genetic and clinical data can
be exploited to build a prognostic model of related diseases [5].

Tumor microenvironments provide a survival environment for tumor cells, comprising a variety of ex-
tracellular matrix proteins and stromal cells that promote the growth and metastasis of tumor cells by a
variety of means [6]. The immune microenvironment can utilize glycolysis to promote tumor progres-
sion. Yajuan Zhang revealed that tumor-associated macrophages regulate the glycolysis of tumor cells by
modulating the phosphorylation of phosphoglycerate kinase PGK1 in tumor cells, thereby promoting the
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development of pleomorphic glioblastoma [7]. Highly glycolytic tumors exhibit an immunostimulatory tumor mi-
croenvironment that bypass immune checkpoints, such as PD-L1, in tumors [8].

Tumors are not controlled by the cell cycle and they promote cellular energy metabolism, as a result of which tumor
cells grow and differentiate. Due to the Warburg effect, tumor cells rely on glycolysis for metabolism in the presence
of oxygen and produce large quantities of lactic acid [9]. As the tumor adapts to the tumor microenvironment, the
tumor cells proliferate more efficiently. Finally, the Warburg effect plays an important role in maintaining the pathway
between oxygen-sensitive transcription factors and nutrition-sensitive signals [10]. Using the principal of the one
gene-one enzyme hypothesis, additional genes of glycolysis related to the prognosis of COAD were identified and
so reveal genes that control the glycolytic process, providing new targets for clinical diagnosis and treatment in the
future [10]. Thus, we further explored the relationship between glycolysis and the immune microenvironment to
better understand the glycolysis-related gene model constructed in the present study.

Firstly, the association of glycolysis genes with related COAD data downloaded from The Cancer Genome Atlas
(TCGA) were explored using gene set enrichment analysis (GSEA), and genes of glycolysis were further screened
to identify those that could affect the prognosis of COAD. A risk scores model of glycolysis-related genes was then
constructed, in order to predict the clinical prognosis of COAD and explore the mechanisms described by this model.
Finally, the relationship between glycolysis risk scores and the immune microenvironment was explored to determine
the identity of the relevant immune cells.

Through the analysis of various bioinformatics databases and related tools, we identified seven genes (PPARGC1A,
DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1) that affect the prognosis of COAD, allowing a glycolysis risk scores
model to be established.

Methods
mRNA expression and patient clinical data
mRNA expression data and the clinical data of patients were downloaded from the TCGA Genomic Data Commons
(GDC) database (https://portal.gdc.cancer.gov/). The mRNA expression data were recorded as fragments per kilobase
of transcript per million mapped reads (FPKM). The clinical data of 452 patients were represented by age, gender,
survival time, survival status, and TNM (tumor, lymph nodes, and metastasis) staging [11].

Definitions of relevant clinical information
T (Stage of primary tumor)T, T1-2: Colon adenocarcinoma had invaded the mucosa or muscle layer, T3-T4: Infil-
tration of the serosal layer of the colon or other surrounding organs. N (Lymph node metastasis stage), N0: Colon
adenocarcinoma has not metastasized into the lymphatic system, N1-3: Varying degrees of lymphatic metastasis. M
(Metastasis stage), M0: No distant metastasis, M1: The cancer has undergone distant metastasis. Stage I and II: rep-
resenting early colon adenocarcinoma. III and IV: advanced colon adenocarcinoma.

Enrichment analysis
Enrichment analysis was performed on the selected gene sets using GSEA (https://www.gsea-msigdb.org/gsea/login.
jsp), and the following pathways that included glycolysis selected, so as to determine the differences between the genes
of patients and healthy individuals: BIOCARTA GLYCOLYSIS PATHWAY, GO GLYCOLYTIC PROCESS, HALL-
MARK GLYCOLYSIS, KEGG GLYCOLYSIS GLUCONEOGENESIS, and REACTOME GLYCOLYSIS. Further-
more, genes for glycolysis were extracted from the analysis performed by GSEA, from which 326 genes were identi-
fied. The expression of glycolytic genes in tumor tissue was compared with that in normal tissue using a Wilcoxon
test. Where P<0.05 and logFC�0, differences were considered to be statistically significant. Finally, 253 differentially
expressed glycolytic genes were identified between tumor and normal tissues.

Standardization of data processing and construction of risk scores model
The analysis of mRNA was standardized by adopting the Log2 transformation method. Through univariate Cox
analysis, genes related to the prognosis of survival were screened out then multivariate Cox analysis was additionally
performed to obtain the coefficients associated with overall survival (OS). The mRNA was divided into two groups
according to whether or not the Hazard ratio (HR) value was greater than 1, then prognosis was calculated using the
formula: � (βn × expression of gene n), where “β” represents the correlation coefficient (coef) of a specific gene. The
patients with risk scores in the highest 50% were regarded as the high-risk group, whereas patients with the lowest
50% were considered low-risk.
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Analysis of the relationship between risk scores and survival rate
The survival analysis package available in the R programming environment was used to plot Kaplan–Meier curves
(K-M) for risk scores and survival rate. P-values<0.05 were considered statistically significant. The high-risk scores
group had a lower survival rate and so was considered clinically meaningful.

Receiver operating characteristic (ROC) curves for sensitivity and
specificity evaluation of the model
The survival ROC package within the R programming environment was used to plot ROC curves. The area under
the red curve (AUC) was used to evaluate the characteristics of the model. Values of 0.5–0.7 indicate an acceptable
level of accuracy of the model, 0.7–0.9 represents good accuracy, and >0.9 indicates that the accuracy of the model
is excellent.

Plotting of risk curves, survival status charts, volcano maps, and risk
heat maps
The R programming language was used to plot the appropriate volcano maps and heat maps of the risk value model
using the ggplot2 and pheatmap packages.

Correlation coefficient plots
The corrplot package of the R programming language was used to generate heatmaps of data correlation coefficients.

Cox regression analysis forest map and related gene mutation plots
Cox regression analysis forest maps were plotted using the R programming language, where HR values > 1 were
considered a risk factor, and P-values <0.05 were considered statistically significant. The gene mutation map was
derived from data from the cBioPortal database [12].

Gene expression and survival curve plots
The R programming language was used to generate scatter plots of gene expression and K-M curves of clinical
data-related survival rate.

Network diagrams of biological function enrichment analysis
Cytoscape 3.7.2 software and the ClueGo plugin was used to plot a network diagram of biological function enrichment
analysis for glycolysis-related genes from which a risk scores model was constructed [13].

Statistical analysis
Kaplan–Meier curves were used to evaluate the relationship between the survival data of each variable. Cox regression
analysis was used to assess the relationship between the various clinical data and risk scores. P-values <0.05 were
considered statistically different. The R packages and software described above were used to conduct all relevant
statistical analyses and generation of plots.

Results
GSEA for the screening of genes
A GSEA analysis was performed on the 56753 sets of mRNA expression data from 452 patients downloaded from
the TCGA database, and then differences in glycolytic gene expression in COAD compared with normal colon tissue
analyzed. Five glycolysis-related gene sets were verified (Table 1), among which GO GLYCOLYTIC PROCESS,
HALLMARK GLYCOLYSIS, and REACTOME GLYCOLYSIS were significantly expressed (P<0.05) (Figure 1A).
Using GSEA analysis, the expression of 326 glycolysis-related genes were obtained. The expression of glycolytic genes
in colon adenocarcinoma samples compared with normal colon samples was analyzed using a Wilcoxon test. P-values
<0.05 were considered to represent a statistical difference. Finally, 253 differentially expressed glycolysis genes were
identified, of which a volcano map was plotted (Figure 1B).

Screening of glycolytic genes related to the prognosis of survival
A total of 253 glycolysis-related genes were first linked with patient survival data and analyzed using univariate Cox
regression analysis to identify genes that affect the survival and prognosis of patients. The results indicated that 11
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Table 1 Gene sets enriched in COAD (452 samples)

GS<br> follow link to MSigDB SIZE ES NOM P-val
RANK AT

MAX

BIOCARTA GLYCOLYSIS PATHWAY 3 0.520 0.743 10233

GO GLYCOLYTIC PROCESS 106 0.572 0.004 10448

HALLMARK GLYCOLYSIS 200 0.516 0.049 9973

KEGG GLYCOLYSIS GLUCONEOGENESIS 62 0.267 0.763 10241

REACTOME GLYCOLYSIS 72 0.642 0.016 10241

Figure 1. Screen for glycolysis-related genes

(A) Enrichment plots of three gene sets that were significantly different (P<0.05) between normal and COAD tissues by performing

GSEA. (B) Volcano map of 253 glycolytic genes expressed differentially in tumor and normal tissues (P<0.05 and logFc�0).

Table 2 Glycolytic genes related to COAD prognosis

Gene HR HR.95L HR.95H P-value

ENO3 2.18927739 1.36149086 3.5203582 0.00122384

PPARGC1A 0.5975151 0.40841975 0.87416021 0.00798361

P4HA1 1.35025402 1.04160762 1.7503577 0.02333984

STC2 1.2672714 1.05212113 1.52641818 0.0125891

IDUA 1.38298719 1.0054061 1.90236915 0.04624992

ANKZF1 1.89498091 1.18238756 3.03703521 0.00790425

DLAT 0.66790451 0.45209452 0.98673267 0.0426581

G6PC2 9.80E-07 2.14E-12 0.44960029 0.03751194

ENO2 1.3152164 1.06439485 1.62514331 0.01114805

PPFIA4 3.7245012 1.75903092 7.8861088 0.00059143

GPC1 1.39015386 1.10054516 1.75597315 0.00571382

glycolysis-related genes satisfied this criterion (P<0.05), the results of which are displayed in Table 2. Secondly, multi-
variable Cox regression analysis was used to calculate the expression of 11 genes (ENO3, PPARGC1A, P4HA1, STC2,
IDUA, ANKZF1, DLAT, G6PC2, ENO2, PPFIA4, and GPC1), the results demonstrating that 7 (PPARGC1A, P4HA1,
STC2, ANKZF1, DLAT, G6PC2, and GPC1) fulfilled those conditions (Table 3), and their risk scores were calculated.
HR > 1 was a risk factor, while HR <1 was a protective factor.
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Table 3 Genes that constitute glycolysis models that predict COAD prognosis

id β (coef) HR

PPARGC1A -0.3541417 0.7017755

P4HA1 0.47509168 1.60816163

STC2 0.22913696 1.25751426

ANKZF1 0.65451593 1.92421085

DLAT -0.5339837 0.58626479

G6PC2 -10.47157 2.83E-05

GPC1 0.27174193 1.31224831

Relationship between risk scores, survival rate, and form of COAD
The risk scores of genes related to glycolysis were obtained using the formula: � (βn × expression of gene n). The
risk scores were allocated into two groups, either high or low, and the difference calculated and plotted on a survival
curve. A ROC curve was plotted to judge the reliability of the model and query the relationship between risk scores
and disease type. The results indicated that the prognosis of survival in the high-risk group was significantly lower
than that of the low-risk group (P = 1.348e-11), with an AUC of the ROC = 0.819, demonstrating that the model
had good sensitivity.

No significant difference in risk scores was found between the two common disease types of COAD, which confirms
that the model in the present study is suitable for the two types of COAD. The co-expression heat map indicates that
PPARGC1A has the greatest positive correlation with DLAT. Furthermore, adenomas and adenocarcinomas, and
cystic, mucinous and serous neoplasms are the two most common types of diseases in COAD. There was no apparent
difference in the risk scores between them, further confirming that the risk scores model can be used for these two
types of disease (Figure 2).

Analysis of seven genes and COAD clinical data for constructing a
glycolysis risk model
From the results of both univariate and multivariate Cox regression analyses, risk scores were found to be an indicator
of disease Progression. This establishes that the risk scores were risk factors for COAD with statistical significance
(Figures 3A,B).

Mutation and expression of glycolysis-related genes
The seven genes screened as described in the experiments above were evaluated and analyzed in 452 COAD samples
downloaded from the cBioPortal database. The results indicate that 12.2% of genes were mutated. The highest pro-
portion of mutations were in PPARGC1A and involved 7 missense mutation boxes and 2 truncating mutation boxes
(Figure 3C). A comparison of the expression levels of the above seven genes in COAD and healthy colon tissue demon-
strated that their expression levels were both significantly up-regulated (DLAT, 6PC2, P4HA1, STC2, ANKZF1, and
GPC1) and down-regulated (PARGC1A), as displayed in Figure 4.

Construction of an enrichment analysis network for biological function
Using the Cytoscape 3.7.1 software plug-in ClueGO, a biological function network of the seven glycolytic genes de-
scribed above was constructed. The results indicate that the mitochondria-associated ubiquitin-dependent protein
catabolic process interacts with the Cdc48p-Npl4p-Vms1p AAA ATPase complex; the cellular response to resveratrol,
positive regulation of the mitochondrial DNA metabolic process, the regulation of the glomerular visceral epithe-
lial cell apoptotic process, and positive regulation of the glomerular visceral epithelial cells apoptotic process jointly
comprised an interactive network. The positive regulation of glomerular visceral epithelial cell apoptotic process ac-
counted for the highest proportion of terms, accounting for 57.14%, with the Cdc48p-Npl4p-Vms1p AAA ATPase
complex accounting for 28.57%. Dihydrolipoyllysine-residue acetyltransferase activity accounted for 14.29% (Figure
5).

Construction of risk score related models of the seven glycolysis-related
genes
The risk scores of the related genes were obtained using the formula: � (coefficients of gene n × expression of gene
n), and a relevant visualization model was constructed using R.
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Figure 2. The build of risk scores correlation model

(A) Analysis of survival prognosis of the constructed glycolysis-related models. Red represents the high-risk group and blue repre-

sents the low-risk group. (B) Receiver Operating Characteristic (ROC) curve of the glycolysis-related model. (C) Differences in risk

scores for the two types of colon adenocarcinoma. (D) Relationship between the expression of genes of the glycolysis model, red

representing a positive correlation, and blue representing a negative correlation. The values represent the degree of correlation.

The risk scores were stratified into two groups (Figure 6A), a low-risk group to the left of the dashed line, and
a high-risk group to the right. As risk scores increased, the death of the patients was correspondingly shortened
(Figure 6B), verifying that higher risk scores led to poorer patient survival. Finally, genes conferring protection (Figure
6C), such as PPARGC1A, DLAT, and G6PC2 appear to be relatively less expressed in the high-risk group, while the
expression of those that confer risk, such as P4HA1, STC2, ANKZF1, and GPC1, was the converse.

Relationship between clinical data and prognosis of colon
adenocarcinoma
As displayed in Table 4, the clinical data for a number of patients was unknown, and so the associated gene expression
data were deleted. The data for the remaining 387 patients were analyzed and correlations between clinical data and
prognosis for survival calculated, from which K-M curves were plotted. Furthermore, the results indicate that age,
T, N, and M categories, and staging, are clinically and statistically significant for prognosis, and also accord with
well-known patterns of COAD progression. Although gender is not statistically significant, we found that after 3
years of survival, men fare significantly worse than women, and we believe that this may signify particular clinical
significance. Finally, the correlation between clinical data and risk scores was directly analyzed (Figure 7). Although
for M1 patients, where P>0.05, the trend suggests that the survival rate of the high-risk group was still lower than
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Figure 3. Analysis of risk factors

(A) Univariate Cox regression analysis of the relationship between glycolysis and related clinical data. (B) Multivariate Cox regression

analysis of the relationship between glycolysis and related clinical data. (C) Gene mutations that constitute the glycolysis model.

Table 4 Clinical data of patients with colon adenocarcinoma in the present study

Clinical information Number % Dead number

Age

≥65 283 0.63 65

<65 169 0.37 23

Gender

Male 238 0.53 51

Female 214 0.47 37

Stage

Stage I-II 254 0.56 30

Stage III-IV 187 0.41 53

Unknown 11 0.02 5

Disease type

Cystic, Mucinous and Serous Neoplasms 64 0.14 15

Adenomas and Adenocarcinomas 379 0.84 71

Unknown 9 0.02 2

T

T1-2 87 0.193 7

T3-4 364 0.805 81

Unknown 1 0.002

N

N0 269 0.60 34

N1-3 183 0.40 54

M

M0 334 0.74 46

M1 62 0.14 27

Unknown 56 0.12 15
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Figure 4. Analysis of mRNAs expression level

Expression of 7 mRNAs in colon adenocarcinoma and normal tissues. (A) The expression of ANKZF1 in tumors and normal tissue. (B)

The expression of DLAT in tumors and normal tissue. (C) The expression of G6PC2 in tumors and normal tissue. (D) The expression

of GPC1 in tumors and normal tissue. (E) The expression of P4HA1 in tumors and normal tissue. (F) The expression of PPARGC1A

in tumors and normal tissue. (G) The expression of STC2 in tumors and normal tissue (*P<0.05, **P<0.01, ***P<0.001).

that of the low-risk group, so it is judged that it still has clinical significance. In T patients, only those that are T3-4
do the high and low-risk groupings have clinical and statistical significance. Figure 8.

Relationship between the glycolysis risk scores model and cells in the
tumor microenvironment
Correlation analysis was conducted between the glycolysis risk scores model and cells in the tumor microenvironment
using the TIMER2.0 database, finding that the number of macrophages, myeloid dendritic cells, and resting CD4+
memory T-cells changed significantly with differences in risk score (Figure 9). The number of myeloid dendritic cells
was greatest in the selected samples, and macrophages most strongly correlated with myeloid dendritic cells (Figure
10) [14,15].
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Figure 5. Analysis of biological function

Interaction network diagram of biological function analysis of the seven genes that constitute the glycolysis model. The modules

represented by specific colors are displayed in the pie chart (*P<0.05, **P<0.01).

Discussion
Research and clinical studies have shown that simple clinical traits are not sufficient to predict the development of
tumors. Therefore, additional gene targets and detection markers are required to diagnose and predict tumor out-
comes. According to research performed by Li et al., the markers for tumors in COAD are CEA and CA19-9 [16].
These two tumor markers allow additional indicators for identification and would allow additional speculation about
COAD in clinical cases. However, current tumor markers are not particularly accurate for detecting the progression of
COAD. Individual genes or markers are susceptible to a variety of factors and the influence of related gene regulation.
It is difficult to accurately determine the information required to predict patient prognosis. Thus, researchers have
hypothesized that multiple genes could be used to reduce interference and improve diagnosis. In terms of predicting
tumor-related prognosis, the accuracy of statistical models and the reduction in interference are superior to single
genes or markers [17]. As high-throughput sequencing technology has developed and databases are increasingly de-
veloped, big data can be used to explore statistical models for prediction of tumor prognosis [5]. Expression data from
a large number of genes in each sample can be conveniently processed using big data analysis [18]. Research databases
can provide related gene expression data to build models to predict the prognosis of specific tumors [19].

The principal of the Warburg effect is for the energy supply of tumor cells to change from oxidative phosphoryla-
tion to glycolysis. This change is regulated by multiple factors, including the tumor microenvironment and genetic
changes [10]. The one gene-one enzyme hypothesis suggests that greater numbers of glycolysis-related genes associ-
ated with prognosis of COAD would result in greater numbers of genes that control the glycolytic process, providing
additional targets for its clinical diagnosis and treatment in the future [20]. To enrich the number of glycolysis-related
genes, 5 glycolysis-related datasets were queried using GSEA to identify glycolysis-related genes for study. In total,
326 glycolysis genes were identified. The expression of the glycolytic genes was compared in tumor tissues with tissue
that was healthy and analyzed using a Wilcoxon test. Finally, 253 glycolytic genes differentially-expressed in tumor
and normal tissue were obtained [21]. By linking clinical data with the expression of genes in the samples using Cox
regression analysis, 7 genes were identified that constitute glycolysis-related genes for prediction of survival. The
model can predict the difference in survival between high and low-risk score groups, with a sensitivity in the ROC
model that is relatively high, suggesting that the risk score model that was constructed was relatively reliable. There
are two principal forms of COAD (Adenomas and Adenocarcinomas; and Cystic, Mucinous and Serous Neoplasms).
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Figure 6. The seven-mRNA signature associated with risk scores predicts overall survival in patients with colon adenocar-

cinoma

(A) mRNA risk score distribution in each patient. (B) Survival in days of colon adenocarcinoma patients in ascending order of risk

scores. (C) Heatmap of the expression profile of the seven genes.
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Figure 7. Kaplan–Meier survival analysis for COAD patients in TCGA data set

Kaplan–Meier survival analysis of clinical features and survival rate. Clinical features included (A) (age), (B) (grade), (C) (M), (D) (N),

(E) (stage), and (F) (T).

The difference in risk scores between the two disease types was not statistically different (P=0.6471), suggesting that
the glycolysis risk scores model was applicable.

The co-expression heat map demonstrates that PPARGC1A has the greatest positive correlation with DLAT. When
considering Cox regression analysis of risk scores against clinically relevant traits, staging data was included rather
than T, N, M data due to the stage categories incorporating T, N, and M. The results show that for risk scores, P<0.001
and HR> 1, statistically and clinically significant differences existed. In terms of gene mutation, PPARGC1A con-
tains the highest proportion of mutations, accounting for 4% of the total. Gene expression data indicated that the
expression of genes was consistent with the results of the multivariate Cox regression analysis. The expression of
risk factor genes was higher in tumors, and the expression of protective factor genes higher in normal colon tissue.
The ClueGo plug-in was used to explore the biological function of the 7 genes identified in the study, finding that
57.14% of biological functions were enriched in the positive regulation of the mitochondrial DNA metabolic process,
28.57% of the biological functions were enriched in the Cdc48p-Npl4p-Vms1p AAA ATPase complex, and 14.29% in
dihydrolipoyllysine-residue acetyltransferase activity. Detailed information of the 7 genes from which the risk scores
model was constructed is shown in Table 5. Combined with this data, the overall trend suggests that increased pa-
tient risk scores are correlated with decreased survival time. The survival curve explores the relationship between
risk scores and clinical data. Some of the clinical data that are routinely considered to exacerbate tumor were also
consistent with the risk score trend of the model, further verifying its reliability.

Li et al. observed a direct correlation between PPARGC1A, zinc-finger transcription factor snail homolog 1
(SNAI1), and metastatic lung disease, which promotes the metastasis of lung cancer. It has been proposed that
this molecule is considered a potential biomarker for lung cancer prognosis [22]. Cao et al. established that the
P4HA1/HIF1+ feedback loop drives glycolysis and the malignant phenotype of pancreatic cancer, and that gene si-
lencing of P4HA1 significantly inhibited the proliferation of pancreatic ductal adenocarcinoma cells [23]. Li et al.
found that after STC2 was silenced, the survival capability, migration, and invasion of colorectal cancer cells declined
significantly [24]. Research by Zhou et al. demonstrated that high ANKZF1 expression was associated with low over-
all survival of colon cancer by participating in angiogenesis and a number of cancer signaling pathways [25]. Goh et
al. considered that DLAT is a subunit of the pyruvate dehydrogenase complex, and future mechanistic studies should

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 5 Detailed information of the seven genes that build the risk scores model

Official Symbol Official Full Name Biological function

PPARGC1A PPARG coactivator 1 alpha The protein encoded by this gene is a transcriptional coactivator that
regulates the genes involved in energy metabolism.

P4HA1 prolyl 4-hydroxylase subunit alpha 1 This gene encodes a component of prolyl 4-hydroxylase, a key
enzyme in collagen synthesis composed of two identical alpha
subunits and two beta subunits

STC2 stanniocalcin 2 This gene encodes a secreted, homodimeric glycoprotein that is
expressed in a wide variety of tissues and may have autocrine or
paracrine functions.

ANKZF1 ankyrin repeat and zinc finger peptidyl tRNA
hydrolase 1

The expression of this gene in lymph nodes is higher than other
tissues, and there is no detailed explanation of biological function.

DLAT dihydrolipoamide S-acetyltransferase This gene encodes component E2 of the multi-enzyme pyruvate
dehydrogenase complex (PDC).

G6PC2 glucose-6-phosphatase catalytic subunit 2 This gene encodes an enzyme belonging to the
glucose-6-phosphatase catalytic subunit family.

GPC1 glypican 1 Cell surface heparan sulfate proteoglycans are composed of a
membrane-associated protein core substituted with a variable
number of heparan sulfate chains.

Figure 8. K-M survival analysis for COAD patients in TCGA data set

K-M curves for prognosis of risk scores for the patients categorized by clinical feature. (A) (age), (B) (gender), (C) (M), (D) (N), (E)

(stage), (F) (T).

elucidate the mode of action of DLAT in human gastric cancer, establishing DLAT as a viable drug target [26]. Boortz
et al. demonstrated that the absence of G6pc2 limited the increase in fasting blood glucose and improved glucose
tolerance [27]. Melo et al. demonstrated that GPC1(+) crExos can be utilized as a potential non-invasive diagnostic
and screening marker for the detection of early stages of pancreatic cancer, thereby allowing the possibility of surgical
treatment [28]. GPC1 significantly affects the growth of pancreatic cancer cells in vivo and significantly attenuates
tumor angiogenesis and metastasis in athymic mice [29]. Although these genes lack detailed studies in the field of
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Figure 9. Trend between risk score of the glycolysis model and the number of cells that comprise the microenvironment

(A)(Macrophage M0 CIBERSORT), (B) (Macrophage M0 CIBERSORT-ABS), (C) (Macrophage M1 CIBERSORT-ABS), (D) (Myeloid

dendritic cell TIMER), (E) (T-cell CD4+ memory resting CIBERSORT).

colon adenocarcinoma, we can conclude from published studies that they possess the capability to promote tumor
progression. Further exploration of the biological function of genes revealed that PPARGC1A and G6PC2 are both
enriched in “gluconeogenesis”. DLAT, PPARGC1A, and G6PC2 are collectively enriched in “glucose metabolic pro-
cess” and “hexose metabolic process”. STC2 and PPARGC1A are both enriched in the “cellular response to hypoxia”.
We found that their biological function is esentially related to glucose metabolism and hypoxia, and related functions
such as glucose metabolism and hypoxia, as described earlier, can promote tumor progression. The co-expression
heat map indicates that PPARGC1A has the greatest positive correlation with DLAT, and they together regulate the
glucose and hexose metabolic processes [30]. However, detailed connections between these genes requires further
exploration. A more detailed study of the mechanisms of these genes in colon adenocarcinoma is required.

Research suggests that glycolysis in tumors is closely related to the tumor microenvironment [7,8,31]. Glycolytic
activity was previously correlated with active immune signatures in cancer, as highly glycolytic tumors present an
immune-stimulatory tumor microenvironment, and even correlating with immune checkpoints such as PD-L1 ex-
pression in tumors [8]. The 7 genes that constitute the glycolysis risk scores model were studied and their relationship
with the immune microenvironment further investigated. As mentioned above, the tumor microenvironment is cor-
related with the occurrence and development of tumors [6]. In additional research, we found that the number of
myeloid dendritic cells and macrophages increased as risk scores increased, and both are constituent cells of the im-
mune microenvironment. However, we also found that the number of resting CD4+ memory cells decreased with
increasing risk score. These observations suggest that COAD achieves this effect through the immune escape mecha-
nism. Twenty samples were selected, 10 with the highest risk scores and 10 samples with the lowest, and the numbers
of related immune cells measured. It was found that the number of myeloid dendritic cells in the 10 samples with the
highest risk score was relatively higher. Associated research indicates that myeloid dendritic cells are correlated with
the occurrence and development of many types of tumor, which may possibly affect risk score [32,33]. The results
of this research highlight that myeloid dendritic cells mainly results from lymphatic metastasis of COAD. Myeloid
dendritic cells can eliminate inflammation by inhibiting the activity of macrophages, but their regulatory mechanism
in colon cancer requires further study [34].
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Figure 10. Selection of the 10 groups (left) of samples with the highest risk scores and 10 groups (right) of samples with

the lowest risk scores in correlation analysis

(A) The difference in cell numbers in the 20 samples. (B) Heat map of immune cell expression of the 20 sets of samples. (C) Immune

cell correlation matrix, positive correlations displayed in purple, and negative correlations in gold.
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Conclusions
A total of seven genes (PPARGC1A, DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1) were found and used to
constitute the glycolysis risk scores model for COAD. The model was able to predict patient prognosis of survival in
colon adenocarcinoma.
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