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Abstract: This work proposes a new wave-period estimation (L-dB) method based on the power-
spectral-density (PSD) estimation of pitch and roll motional time series of a Doppler wind lidar buoy
under the assumption of small angles (±22 deg) and slow yaw drifts (1 min), and the neglection
of translational motion. We revisit the buoy’s simplified two-degrees-of-freedom (2-DoF) motional
model and formulate the PSD associated with the eigenaxis tilt of the lidar buoy, which was modelled
as a complex-number random process. From this, we present the L-dB method, which estimates
the wave period as the average wavelength associated to the cutoff frequency span at which the
spectral components drop off L decibels from the peak level. In the framework of the IJmuiden
campaign (North Sea, 29 March–17 June 2015), the L-dB method is compared in reference to most
common oceanographic wave-period estimation methods by using a TriaxysTM buoy. Parametric
analysis showed good agreement (correlation coefficient, ρ = 0.86, root-mean-square error (RMSE) =
0.46 s, and mean difference, MD = 0.02 s) between the proposed L-dB method and the oceanographic
zero-crossing method when the threshold L was set at 8 dB.

Keywords: wave; period; tilt; pitch; roll; PSD; Blackman–Tukey; IMU; lidar; buoy

1. Introduction

In the last few decades, there has been rising interest in offshore wind energy due
to higher and more homogeneous winds that can be found in open sea environments [1].
High investments in offshore-wind-farm deployment and operation have been made in
Europe in recent years [2]. However, offshore wind energy (WE) is still one of the most
expensive energy sources [3] and needs cost optimization in order to achieve commercial
competitiveness. One of the main concerns in the WE industry is obtaining trustworthy
data to assess the feasibility of future offshore-wind-farm locations. Meteorological masts
(metmasts) have been traditionally used for this purpose. However, their high cost has
produced the need for alternative atmosphere-assessment methods.

Floating Doppler wind lidars (DWLs) are one of the most suitable candidates to be
accepted in the WE industry [4] as a replacement for costlier metmasts. When placed
over platforms or buoys, DWLs can assess wind resources in a cost-effective way [5,6].
Moreover, they can be redeployed at multiple locations, being able to cover large areas and
offering high versatility [7]. On the other hand, floating DWLs suffer wave-induced errors
on wind measurements [8]. Sea waves induce translational (sway, surge, and heave for the
x, y, and z axes, respectively) and rotational (roll, pitch, and yaw for the x, y, and z axes,
respectively) motion to the floating DWL, which accounts for 6 degrees of freedom (DoF),
creating a Doppler effect over the wind vector retrieval and turbulence intensity (TI) [9–15],
with errors of about 10% in horizontal wind speed (HWS). and 40% in TI [11].

Sensors 2021, 21, 1310. https://doi.org/10.3390/s21041310 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7398-925X
https://orcid.org/0000-0001-8614-4408
https://orcid.org/0000-0003-3725-3880
https://orcid.org/0000-0001-8359-9378
https://doi.org/10.3390/s21041310
https://doi.org/10.3390/s21041310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041310
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1310?type=check_update&version=2


Sensors 2021, 21, 1310 2 of 18

Lidar buoys are usually wave buoys moored to the seabed by means of a clump.
The buoy’s design is a trade-off between accurate lidar wind measurements and attitude
measurements for wave-induced motion compensation [16]. Of the 6 DoF of a wave buoy
(sway, surge, heave, roll, pitch, and yaw), sway, surge, and yaw are mainly determined
by wind and current forces, whereas heave, roll, and pitch are mainly determined by
sea state [10] and are used to study sea waves [17]. Sea waves are a subject of interest
in various fields such as marine engineering [18], oceanography [17,19–21], and wind
engineering [22,23]. Waves can be studied from directional and nondirectional perspectives
by means of the directional and nondirectional spectra, which are estimated from measuring
a wave buoy’s heave, roll, and pitch records [17,24]. From spectrum estimations, wave
period and height variables are derived and studied.

In this study, we present a spectral-analysis methodology to estimate the wave pe-
riod from roll and pitch records (2 DoF) measured by a lidar buoy and reconcile our
methodology to classical oceanographic wave-period estimation methods in the state-of-
the-art, which usually rely on average and zero-crossing period computation. We assumed
quasistatic yaw rotation and neglected translational motion on account of the buoy’s
mooring topology.

Incipient studies addressed the topic as follows: in [25], the wave-induced buoy’s tilt
period was computed from the smoothed fast Fourier transform (FFT) of pitch and roll time
series. The most prominent peak of these 2 FFTs was chosen as the most relevant spectral
component, and the period was estimated as the inverse of the frequency corresponding
to it. In [11], the roll and pitch tilt periods were virtually correlated (ρ ' 0.5); thus, 1 DoF
was considered informative of the buoy’s motional wave period. In [26], two estimation
methods to assess the wave period from pitch and roll measurements based on Blackman–
Tukey power-spectral-density (PSD) estimation method were presented. Because the
correlation between pitch and roll periods showed up experimentally, estimations using
1 DoF (either roll or pitch) became meaningful for the study. The first, the peak method,
estimated the period as the inverse of the frequency of the maximum of the PSD. The
second, the 3 dB method, defined the 3 dB threshold as the frequency region containing
PSD values higher than half of the PSD maximum. In this method, the period was estimated
as the inverse of the average of the start and stop cutoff frequencies of the 3 dB region. The
3 dB method yielded much higher correlation coefficients (ρ = 0.62) than those of the peak
method (ρ = 0.37) when compared to the measured wave periods from reference buoys.
However, a formulation was missing explaining the 3 dB PSD approach in relation to the
different oceanographic definitions existing in the state-of-the-art for the wave period or
the underlying foundations.

Here, we present the sought-after formulation of the 3 dB method in relation to well-
established wave-period oceanographic definitions. We also extend our pitch and roll spec-
tral analysis (2 DoF) to the derivation of the tilt-angle PSD (so-called buoy eigenangle) rep-
resenting the combined rotation effects of pitch and roll angles on buoy rotation geometry.

This paper is structured as follows: Section 2 begins with a description of the experi-
mental setup at IJmuiden (North Sea) as part as of the validation trials of the lidar buoy
prototype and describes the used methodology. The latter revisits the spectral foundations
of the estimation of the sea-wave period (Section 2.2), presents our simplified 2 DoF buoy
motion model and related eigenangle PSD formulation (Section 2.3), and presents the so-
called L-dB PSD method (the name is derived from the 3 dB method; Sections 2.4 and 2.5).
Section 3 discusses the results and carries out a parametric study in order to quantita-
tively relate the L-dB threshold, which was used in the spectral context (PSD), to the
oceanographic context (wave sensors). Lastly, Section 4 gives concluding remarks.

2. Materials and Methods
2.1. Materials

In 2015, the validation campaign of the lidar buoy prototype test floating lidar buoy at
the IJmuiden test site (North Sea) took place [27]. IJmuiden is a coastal city that hosts the
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sea lock at the entrance of the North Sea Canal providing access to the Amsterdam (Nether-
lands) port region. The experimental campaign aimed to assess the wind measurement
accuracy of the lidar buoy against the reference meteorological mast (IJmuiden) [28]. Next
to the metmast, a TriaxysTM wave buoy measured the main wave and current parameters.
The main instruments used in this study were (i) a 3DM-GX3-45 inertial measurement unit
(IMU) on the lidar buoy measuring the buoy’s tilt (roll, pitch, and yaw); accelerations in
the x, y, and z axes; and global-positioning-system (GPS) position at a sampling rate of
approximately 8 Hz and (ii) a TriaxysTM wave buoy next to the metmast measuring the
reference wave parameters at a sampling period of 1 h [29]. Figure 1 shows the instrumen-
tation setup of the campaign and the location of IJmuiden’s test facilities. For this study,
1920 wave-buoy data records from 29 March to 17 June (80 days) were used.

Figure 1. IJmuiden test campaign: (a) experiment setup at IJmuiden’s test showing the lidar buoy prototype test Doppler wind lidar
(DWL) buoy and reference meteorological mast (metmast), adapted from [26], and (b) location map adapted from [30].

Lidar buoy prototype: the test buoy was a precommercial lidar buoy specially optimized
to host a ZephIRTM300 lidar [27]. It had 3.77 m width, weighed 3 tons, and had a modular
four-floater structure designed to satisfy wind-energy measurement requirements and
to perform wave measurements from buoy accelerations [16,31]. It was equipped with
additional sensors in order to measure a wide variety of wind- and sea-related data.
Specifically, it hosted a MicroStrain 3DM-GX3-45 IMU combining a high-precision GPS
unit, an accelerometer, and a gyro. The gyro measures Euler’s angles (roll, pitch, and yaw),
the accelerometer measures translational accelerations on these axes, and the GPS module
measures the position of the buoy. An extended Kalman filter was applied over the IMU
measurements in order to track the buoy’s attitude [31]. However, only altitude recorded
higher than 0 m were available. From one of the 4 corners of the buoy, a mounted tail
acted as a “stern” for the buoy, so that the opposite corner faced the wind direction. The
buoy was moored to the seabed by a mooring system consisting of two main parts: (i)
upper mooring consisting of four lines connected to each of the buoy’s floaters united in its
bottom to a single line and (ii) lower mooring consisting of a clump weight (see Figure 2).
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Figure 2. Mooring system scheme of the lidar buoy prototype used in the IJmuiden campaign.

Triaxys wave buoy: The TriaxysTM wave buoy is a wave sensor designed for accurate
measurement of directional waves and currents at a sampling period of 1 h. It is equipped
with 3 accelerometers, 3 gyroscopes, and a compass [32] in order to measure the most rele-
vant directional and nondirectional wave parameters. Some of the parameters yielded by
the wave sensor were wave-height definitions (Hmax, H10, Hsig, and Havg), wave-period def-
initions (Tmax, T10, Tsig, Tz, Tavg, Tp, and Tp5), MeanDirection, and MeanSpread. Subindices
max, 10, sig, avg, z, p, and p5 refer to the maximal wave height and its corresponding
period (Hmax and Tmax, respectively), the highest tenth of the waves’ average height and
period (H10 and T10, respectively), the highest third of the waves’ average height and
period (Hsig and Tsig, respectively), the average wave height and period (Havg and Tavg,
respectively), the average zero upcrossing period (Tz), the period corresponding to the
highest spectral component of the wave energy spectrum (Tp), and the peak wave period
computed by the READ method (Tp5), respectively [33]. Wave period parameters Tz, Tavg
and Tp are formulated in Section 2.2.

TriaxysTM computes these parameters from heave, pitch, and roll measurements
estimated from the 6 DoF measurements by 3 accelerometers and 3 gyros by solving the
nonlinear differential equations relating the buoy motion to accelerations and angular rates.
It follows a similar procedure to that in [34] to obtain heave, surge, and sway translational
motions and roll, pitch, and yaw rotational motions. Wave analysis was then carried out
on the buoy by performing zero-crossing analysis of wave elevation in the time domain,
nondirectional analysis by means of FFT methods, and lastly directional wave analysis [33].

2.2. Method (I): Estimation of Sea-Wave Period

Waves can be analysed from directional and nondirectional perspectives depending
on the purpose of the study and the available data. Directional wave analysis studies the
contribution of ocean waves propagating in different directions with different amplitudes
and periods by means of the directional spectrum (DS( f , θ)) of the wave heave by means
of the two slope components of the buoy, computed from roll and pitch records [35,36],
with techniques such as the Fourier expansion method (FEM) and the maximum entropy
method (MEM) [37]. Nondirectional wave analysis studies surface ocean waves from the
nondirectional energy spectrum (S( f ), computed from wave elevation) [17,21]. S( f ) is
defined as [38]

S( f ) = FT(H(t)) =
∫ T

0
H(t)e−i2π f tdt, (1)
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where H(t) is the wave elevation as a function of time, t, f is frequency, and T is the
study period.

Directional and nondirectional wave spectra are related in the following way:

DS( f , θ) = S( f )D( f , θ), (2)

where D( f , θ) is the directional spreading function and θ is the wave angular direction.
S( f ) in Equation (1) above can also be re-encountered by integrating DS( f , θ) over all
angular directions (θ from 0 to 2π), S( f ) =

∫ 2π
0 D( f , θ)dθ.

Spectral moments mn are defined as

mn =
∫ ∞

0
f nS( f )d f , (3)

where n stands for an nth order moment.
Different wave amplitude and period characterization parameters can be derived

from spectrum S( f ) and its spectral moments mn. Some of the most relevant wave-period
definitions are as follows [35]:

• mean zero-crossing period, which is defined as

Tz =

√
m0

m2
; (4)

• average period

Tavg =
m0

m1
; (5)

• and peak period

Tp =
1
fp

, (6)

where fp is the peak frequency of S( f ).

2.3. Method (II): Buoy-Motion Model

We defined the buoy’s moving body Cartesian right-handed XYZ coordinate system and
the global Cartesian right-handed north–east–down (NED) frame of reference (Figure 3).
Without external forces, the x, y, and z axes of the buoy’s moving body XYZ coordinate
system would be aligned with the north, east, and vertically down axes of the global NED
frame of reference.

In practice, such external forces can cause translational motion in the N, E, and D
directions (surge, sway, and heave, respectively), and rotational motion along the N, E, and
D axes (roll, pitch, and yaw, respectively) to the buoy [9,14]. The buoy’s mooring limits
surge and sway motion, while heave (Figure 4a) follows the wave altitude. Regarding
rotational motion, roll and pitch are mainly characterized by wave-motion behaviour,
whereas yaw motion is mainly determined by the wind and currents due to the buoy’s
tail acting as the stern. Therefore, heave (translational), and the roll and pitch (rotational)
motions are the most informative parameters of wave motion.
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Figure 3. Fixed and moving-body (buoy’s) coordinate systems used: the fixed coordinate system is
the right-handed north–east–down (NED) system (dashed arrows with unitary vectors n̂, ê, and d̂
plotted in blue, green, and red, respectively). The buoy’s coordinate system is denoted as XYZ (solid
arrows with unitary vectors x̂, ŷ, ẑ). α is the buoy’s eigenangle defined as the angle between unitary
vectors d̂ and ẑ.
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Figure 4. Motional temporal series (Ijmuiden campaign): (a) heave signal above sea level (a.s.l.) on 11 April 2015 and (b)
roll, pitch, and yaw signals on 10 April 2015).

The yaw motion showed slow variations with time (typically greater than 1 min;
quasistatic approximation) due to wind and current influence, whereas the roll and pitch
motions exhibited comparatively much faster oscillatory behavior due to wave influence
(see Figure 4b) on time scales of the order of seconds.

The IMU was set up to measure the buoy’s rotation angles on the basis of the fixed
global right-handed NED coordinate system (see Figure 3). We defined n̂, ê, and d̂ as
the unitary vectors aligned with the N, E, and D axes, respectively. On the other hand,
we defined the x̂, ŷ and ẑ unitary vectors along the rotated moving-body coordinate
system (XYZ).

Large-angle case: in order to express our rotation problem with a single angle (so-called
eigenvector-axis-associated angle or eigenangle for short in what follows, denoted α in
Figure 3) we resorted to Euler’s rotation theorem, which states that every rotation in three
dimensions is defined by its axis (a vector along this axis is unchanged by the rotation)
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and its angle (the amount of rotation about that axis). Euler’s theorem also states that
any 3D body rotation can be described by three angles. Therefore, the eigenangle can
be expressed from the roll, pitch, and yaw rotation angles. There are many different
mathematical conventions for these three angles depending on the axes where the rotations
are carried out and its order. We used the D-E-N convention defining the specific sequences
of axes rotation (D-E-N axes are the global-coordinate (GPS) axes or fixed counterparts of
Z-Y-X axes attached to a moving body, i.e., the buoy). In the D-E-N convention, we have
three composed elemental rotations carried out sequentially in the global fixed coordinate
axes: first, around the D axis (yaw motion, denoted by ψ); second, around the E axis
(pitch, θ); and third, around the N axis (roll, φ), see Figure 3. The angles were positive
counterclockwise. Considering these definitions, Euler’s rotation matrix can be formatted
as follows [39]:

R = RψRθ Rφ, (7)

where Rφ, Rθ , and Rψ are the counterclockwise extrinsic rotation matrices around the N
axis (roll), E axis (pitch), and D axis (yaw), respectively.

Rφ =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

,

Rθ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

,

Rψ =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

.

(8)

Then, any vector rotation can be described by multiplying it with the rotation matrix:

~rrot = R·~r, (9)

where ~r and ~rrot are vectors (before and after rotation, respectively) with coordinates
expressed in the fixed-coordinate system. We define α as the eigenvector-axis-associated
angle of the buoy’s combined motion in the roll, pitch, and yaw angles. Conceptually, α is
the angle between the down axis of the global coordinate system (NED) and the Z axis of
the buoy (moving body, XYZ) (see Figure 3). As previously mentioned, the D and Z axes
are described by unitary vectors d̂ = [0, 0, 1] and ẑ, respectively. Given d̂ (fixed coordinate
system), vector ẑ (moving coordinate system) can be expressed in the fixed coordinate
system using Equation (9):

ẑ = R· d̂ = RφRθ Rψ· d̂ =

 − sin θ
sin φ cos θ
cos φ cos θ

. (10)

This can be seen graphically in Figure 5a, where ẑ is the result of rotating d̂ by θ
deg around E (pitch) and φ deg around N (roll). Because of the D-E-N convention to
describe chained rotations, α was invariant to the yaw rotation around D axis. Similarly, α
is invariant to heave, which is translational motion along the D axis.

Then, α can be computed from the dot product between d̂ and ẑ as follows:

α = arccos (d̂· ẑ). (11)

Inserting d̂ = [0, 0, 1] and ẑ (Equation (10)) into Equation (11) yields

α = arccos (cos φ cos θ). (12)
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Because the cosine is an even function, α in Equation (12) above is always positively defined.

Figure 5. Geometrical representation of a buoy’s rotation in the roll and pitch dimensions of movement and vector
approximation for small angles: (a) three-dimensional geometry sketch showing eigenangle α, roll (φ), and pitch (θ) angles
and vectors d̂ and ẑ in an NED coordinate system. d̂ transforms into ẑ after the roll (φ) and pitch (θ) rotations about the N
and E axes, respectively (Equation (12)). (b) Representation of roll and pitch rotations ~rφ and ~rθ , respectively, on the NE
plane (Equation (10)) along with the resultant vector ~rzd (Equation (14)).

Small-angle case: Figure 6 plots 80 day histograms describing maximal and minimal,
and pitch and roll daily buoy records. Both angles were below ±22 deg (maximum).
The median of the minima and the median of the maxima yielded [−13, +10] deg in
pitch and [−12, +11] deg in roll, which are representative of roughly ± 13 deg (± 0.23-
rad) angular excursion. Considering first-order Taylor’s approximation, cos (x) ' 1 and
sin (x) ' x, x = θ, φ in Equation (10), this angular excursion yields cos (0.17) = 0.97 ' 1
and sin (0.23) ' 0.22, which are 2.5% and 0.8% errors, respectively. This enables us to
propose the small-angles approximation, applied to Equation (10), which leads to

ẑ '

−θ
φ
1

. (13)

We then define ~rzd as the vector difference between d̂ and ẑ (see Figure 5),

~rzd = d̂− ẑ '

 θ
−φ
0

 = θ

1
0
0

+ φ

 0
−1
0

 = ~rθ + ~rφ. (14)

Therefore, ~rzd can be expressed as the sum of the two linearly independent vectors
~rθ = θ[1, 0, 0] and ~rφ = φ[0,−1, 0] with modules

|~rθ | = θ,
∣∣~rφ

∣∣ = φ. (15)

This is shown on an NE plane in Figure 5b.
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Figure 6. Histograms of the daily minimal and maximal roll and pitch inertial-measurement-unit
(IMU) records (57,520,000 records between 29 Match and 17 June): (a) daily minimal tilt-record
histogram and (b) daily maximal tilt-record histogram. The dashed lines represent roll (blue) and
pitch (red) medians in both panels.

Moreover, if α→ 0, sin α ' α and

α ' sin (α) = sin
(
| ~rdz|
|ẑ|

)
= sin (| ~rdz|) ' | ~rdz|. (16)

Because we use unitary vector ẑ, Equation (15) means that the sought-after eigenangle
α is directly a modulus of difference vector rzd. Combining Equations (15) and (16),
we obtain

α '
√

φ2 + θ2. (17)

Equation (17) states that the eigenangle angle can be interpreted as the 1-DoF equiva-
lent formulation for the real 2 DoF problem posed by motion in the pitch and roll angles.
This equivalent formulation is in accordance with previous published work [26] in which
pitch and roll angular periods were shown experimentally to be correlated (ρ = 0.54 in
that case).

The PSD of the eigenangle random process, ααα, is given by a linear combination of
pitch and roll PSDs and pitch-to-roll cross-PSD (see Appendix A for details):

Sααα,ααα( f ) = Sθ,θ( f ) + Sφ,φ( f )− 2Im[Sθ,φ( f )]. (18)

Because roll(t) and pitch(t) were real-valued time series, Rφ,θ is also real-valued
and the associated cross-spectral density Sθ,φ is Hermitian, i.e., its complex conjugate is
equal to the original function with the variable f changed in sign, Sθ,φ(− f ) = S∗θ,φ( f ) or,
equivalently, the real part of Sθ,φ( f ) is an even function and the imaginary part is an odd
function. The latter is important to understand which PSD terms contribute “power” to the
random process ααα (power is computed in units of rad2, which is not actual physical power
but the squared value of signal ααα).

If we integrate both terms of Equation (18) from f =−∞ to ∞,
∫ ∞
−∞ Sααα,αααd f average

power (in units of rad2) is given by

σ2
ααα = σ2

θ + σ2
φ. (19)

Because Im(Sθ,φ( f )) is an odd function, integral
∫ ∞
−∞ Im(Sθ,φ)d f vanishes out and it

emerges that the cross-spectral density does not contribute power to eigenangle random
process ααα; only roll and pitch PSDs do.
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2.4. PSD Estimation

In order to estimate the PSD of random process ααα, the Blackman–Tukey method
was chosen on account of its computation simplicity and best trade-off between noise
rejection and spectral-resolution characteristics [40]. The Blackman–Tukey method SBT

xx ( f )
consists of smoothing periodogram Pxx( f ), here computed through the FFT algorithm, by
its convolution with a smoothing window W( f ) (rectangular window in this study). It can
be formulated as

SBT
ααα,ααα( f ) =

∫ 1/2

−1/2
Pααα,ααα(β)W( f − β)dβ, (20)

with

Pααα,ααα( f ) =
1
L

∣∣∣∣∣L−1

∑
n=0

ααα(n)e−j2π f n

∣∣∣∣∣
2

=
1
L
|FFT(ααα(n))|2, (21)

where L is the number of FFT samples and “n” is shorthand notation for nT, with T as the
sampling period (T ' 0.125 s).

From Equation (18), Blackman–Tukey estimation of the PSD is written as

SBT
ααα,ααα = SBT

φ,φ + SBT
θ,θ − 2Im[SBT

θ,φ]. (22)

Figure 7 shows PSD estimations of two 10 min tilt temporal series of eigenangle ααα com-
puted by using periodogram (Pαα( f ), grey) and the Blackman–Tukey method (SBT

ααα,ααα( f ), black).
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Figure 7. Two examples of power-spectral-density (PSD) estimation by periodogram and Blackman–Tukey method of
measured tilt data: (a) bimodal case and (b) multimodal case. The L-dB threshold and cutoff frequencies, f min

L−dB and f max
L−dB,

are also indicated by magenta dashed lines and arrows. L = 3 dB.

The IMU sampling frequency was 8 Hz, although some jitter showed up. Roll (φ)
and pitch (θ) were resampled at a fixed sampling frequency of 10 Hz to ensure a uni-
form sampling rate and a sampling period that were submultiples of 1 s for convenience.
Then, the PSD of ααα was computed following the Blackman–Tukey estimation method
(Equations (20) and (22)).

Figure 7a shows bimodal behaviour for the PSD of ααα, with two dominant or modal
frequencies at 0.22 Hz ( fpeak2) and 0.31 Hz ( fpeak1), equivalently, T2 = 1/0.22 = 4.5 s and
T1 = 1/0.30 = 3.2 s, respectively, while Figure 7b shows nearly unimodal behaviour with
a PSD peak at 0.22 Hz ( fpeak1). The L-dB threshold is also plotted, which was computed
as the relative level L-dB below the maximal peak level given by fpeak1. f min

L−dB and f max
L−dB

denote the minimal and maximal frequency components of the PSD content that were
higher than the L-dB threshold (see Section 2.5 for details).
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2.5. PSD Significant-Wave-Period Estimation

We define the PSD significant wave period as the period associated to the buoy’s
eigenangle (Equation (17)) and estimated it by imposing a threshold level on its PSD
(Section 2.4). This threshold is found in Section 3 in relation to different well-accepted
wave-period oceanographic definitions. Next, we formulated the PSD significant wave-
period concept.

Figure 7 shows the buoy’s eigenangle PSD for two different motional cases. In both, it
emerged that there was not a single relevant spectral component but multiple ones (labelled
fpeak,i, blue arrows). In order to consider all relevant spectral components contributing
power to the significant wave period, we defined an L-dB threshold (quantity “L” to be
found) as the relative level L-dB below the maximal peak level of the PSD. This L-dB
threshold (L = 3 dB in Figure 7) defines a frequency span, [ f min

L−dB, f max
L−dB], in which the

PSD content is higher than a power factor of 10−L/10 compared to the peak level. The
L-dB method computes the wave period as the average wavelength in the L-dB region.
We defined the average wavelength as the arithmetic mean between the maximal and
minimal wavelengths:

λL−dB =
λmax

L−dB + λmin
L−dB

2
. (23)

Introducing the concept of the phase velocity of a wave (vp), which is the rate at which
the wave propagates in the medium, and that any given phase of the wave (for example,
the crest) appears to travel at the phase velocity [41], we can write λ = vpT, where T
is the wave period. By inserting this relation into Equation (23) and by using T = 1/ f ,
Equation (23) can be rewritten as

TL−dB =

1
f min
L−dB

+ 1
f max
L−dB

2
, (24)

which gives the sought-after significant wave-period estimated from the fmin and fmax,
L-dB cutoff frequencies of the PSD. Equation (24) can also be interpreted as the harmonic
mean of the maximal and minimal cutoff frequencies, f max

L−dB and f min
L−dB, respectively, of the

L-dB region (Figure 7).

3. Results and Discussion

In order to validate the proposed methodology, TL−dB estimations (Equation (24)) were
carried out over tilt (eigenangle) experimental data measured during the whole IJmuiden
campaign (80 days) and then compared against reference wave periods measured by the
TriaxysTM buoy. Because the TriaxysTM buoy yielded multiple estimations of the wave
period according to the different oceanographic definitions (Section 2), we first needed
to assess which of these best matched the PSD wave period estimated by using the L-dB
method (TL−dB, Equation (24)).

To carry out this comparison, three statistical indicators were used: (i) correlation
coefficient (ρ), (ii) root-mean-square error (RMSE), and (iii) mean deviation (MD). In the
context of WE, a typical sampling period is 10 min; thus, TL−dB was estimated every 10 min.
When comparing the significant wave period estimated via the L-dB method and TriaxysTM,
TL−dB was resampled to the temporal resolution of TriaxysTM (1 h). Root-mean-square
error is defined as

RMSE =

√
∑i(TL−dB − Tz)2

N
(25)

and the mean deviation is defined as

MD =
∑i(TL−dB − Tz)

N
. (26)
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TL−dB was estimated at L− dB values ranging from 3 to 11 dB and compared against
oceanographic wave-period definitions Tz, Tavg, Tp, T10, Te, Tp5, and Tsig defined in
Section 2 and measured by TriaxysTM, which were used as references. Figure 8 shows
statistical indicators when comparing TL−dB as a function of L with each of these TriaxysTM

reference periods. Figure 8 shows the results of these comparisons in terms of ρ (Figure 8a),
RMSE (Figure 8b), and MD (Figure 8c). The zero-crossing and the average-period methods
(Tz and Tavg, respectively) from the experiment yielded identical statistical indicators,
which is evidenced by the overlapping blue and dashed black lines in the three subfigures
(Figure 8a–c). When comparing Tz and Tavg to TL−dB, maximal ρ, minimal RMSE, and MD
closest to 0 were evidenced. The largest differences occurred for the wave energy spectrum
peak methods (Tp5 and Tp). A possible explanation for that is that wave energy spectrum
peak methods measured the period corresponding to the peak spectral component and
did not consider wave multimodality. Lastly, T10 and Tsig, which consider the highest
tenth and third of the wave energy spectrum as the relevant wave spectral components,
respectively, showed better agreement than the latter set did (Tp5 and Tp), with Tsig showing
better indicators. Tsig showed higher ρ, lower RMSE, and MD closer to 0 than T10 due to
the broader frequency span. It emerged that the L-dB method best matched Tz and Tavg
(with virtually identical indicators). In the following, the L-dB method is compared with
reference to Tz.

L [dB] L [dB]

R
M

S
E

 [
s
]

L [dB]

M
D

 [
s
]

Tz

T
avg

T
p

Tp5

T
sig

T10

b)a)

c)

Figure 8. Comparison with 3 statistical indicators of agreement between estimated TL−dB and reference wave periods from
IJmuiden campaign’s experimental data at different L values: (a) correlation coefficient, ρ, as a function of threshold level, L;
(b) that for root-mean-square error (RMSE) (Equation (25)); and (c) that for mean deviation (MD) (Equation (26)).

Optimal threshold L was found heuristically using a parametric approach: TL−dB
estimations were computed as a function of threshold L spanning from L = 3 to 10 dB
for the whole measurement campaign and were then compared statistically against Tz.
Statistically, indicators relating both methods for each threshold value L were computed
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for each week and each month of the 80 day campaign and, lastly, for the whole campaign.
Then, weekly and monthly sets were averaged over all weeks and months, respectively,
to yield monthly and weekly ensemble averages (in what follows, the word “ensemble”
is skipped). The chosen statistically indicators were the ones above (ρ, RMSE, and MD)
along with the slope and intercept point of the linear regression (LR, y = mx + n) between
y = TL−dB and x = Tz.

Figure 9 shows the statistical indicators computed for the 80 day campaign as weekly
and monthly averages and for the whole campaign as a function of threshold L. ρ, RMSE,
and LR slope showed similar values for the two time averages considered and for the
whole campaign. ρ grew from 0.7 at L = 3 dB to a maximum of 0.86 at 8 dB and onwards.
On the other hand, RMSE showed parabolic behavior with minimal RMSE = 0.46 s around
L = 7.75 dB. The LR slope showed a linearly increasing trend, with the ideal value of
1 reached at L = 8.5 dB. The LR intercept reached 0 (ideality value) at L = 8.5 dB (weekly
averages) and L = 9.5 dB (campaign), although the LR intercept became less relevant
because slope deviations from unity (ideal value) are always associated with nonzero
intercepts in the regression procedure. Lastly, the MD showed decreasing linear trend
and cut the 0 dB baseline at L = 8 dB. Therefore, by choosing threshold L = 8 dB, virtually
all ideal indicators’ values were achieved: ρ = 0.86, RMSE = 0.47 s, LR slope = 0.97, and
MD ' 0.02.

L [dB]

S
ta

ti
s
ti
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In
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RMSE [s]

MD [s]

Slope

Y-Intercept

=0.86

Intercept=0.13

Slope=0.97

RMSE=0.47 s

MD=0.02 s

Figure 9. Statistical indicators comparing the L-dB method TL−dB and zero-crossing method Tz as a
function of threshold value L (dB) parameterized by averaging time (IJmuiden campaign, 29 March–
17 June 1920 records). The dashed dots indicate weekly averaged indicators. The dashed line indicates
monthly average. The solid trace indicates the indicators computed for the whole 80 day campaign.

Figure 10 shows the scatter plot between the PSD L-dB method with L = 8 dB, 8-dB
method T8−dB, and zero-crossing method Tz. With the chosen 8 dB threshold, both methods
reconciled, as evidenced by the indicator values above. Overall, narrowly scattered points
represent T8−dB points that did not fall out of the ideal 1:1 line by more than the RMSE
value. The straight-line fit had a slope equal to 0.97 and intercept equal to 0.13, all of which
yielded virtual coincidence with the ideal 1:1 line.
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Figure 10. Scatter plot comparing wave period estimated by 8 dB method T8−dB in reference to
zero-crossing method Tz. The red trace shows the linear regression modelling relationship between
both methods; the dashed black line is the 1:1 ideal line.

Despite the good agreement between both methods, which reconciled PSD 8 dB
method T8−dB to oceanographic zero-crossing method Tz, teh scatter-plot outliers account-
ing for an RMSE approximately equal to 10% of the mean wave period warrants some
comments. First, TriaxysTM computation of reference period Tz was affected by the buoy’s
translational and rotational movements; in our modelling, (Sections 2.3 and 2.5) only roll
and pitch were considered (2 DoF). Second, our methodology was experimentally tested
under the assumption of small angles, the median of maximal tilt excursion was ±13 deg
(Figure 6), which incurred 2.5% and 0.8% errors when using first-order cosine and sine
approximation, respectively. Lastly, the DWL and TriaxysTM reference buoys were 200 m
apart during the campaign, which may also have accounted for small wind, current, and
wave differences.

4. Summary and Conclusions

A new method (L-dB) to estimate the wave period using a spectral analysis of pitch
and roll time records measured on a DWL buoy was shown in the context of IJmuiden’s
campaign and in comparison to classical oceanographic wave-period estimation methods.
This 2 DoF approach assumes quasistatic yaw rotation compared to the wave period and
negligible translational motion (see, e.g., Figure 2 mooring scheme).

The 2 DoF buoy motion model enabled formulation of the so-called eigenangle, which
is the buoy tilt angle around the eigenaxis of rotation of the lidar buoy (Euler’s rotation
theorem). Specifically, the eigenangle is the angle between the down (D) component of the
north–east–down fixed coordinate system (IMU frame of reference) and the Z component
(downwards) of the buoy’s XYZ moving coordinate system.

Under the practical approximation of small angles, the eigenangle can be computed
as the quadratic sum of pitch and roll angles (Equation (17)), and it can be modelled
as a complex-number random process, hence assimilating into its real and imaginary
components both pitch and roll time series. Histograms records of daily maximal and
daily minimal pitch and roll angles (160 records) yielded angular excursions of [−22, +22]
deg (min/max values) and [−13, +11] deg (median values), with these values showing
quantitative description of the small-angle approximation used in our study.

Under these conditions, the PSD of the eigenangle Sααα,ααα was derived (see Appendix A
as the linear combination of pitch and roll PSDs (Sθ,θ and Sφ,φ, respectively) and the pitch-
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to-roll cross-PSD (Sθ,φ). PSD was computed by applying the Blackman–Tukey method over
10 min data segments, and wave period TL−dB was computed from the fmin and fmax cutoff
frequencies of the PSD (Equation (24)) at which the spectral components dropped off L
decibels from the peak level.

The proposed L-dB method, which is rooted in the spectral context, was compared
to different wave-period definitions from the oceanographic context, namely, the mean
zero-crossing, average, and peak periods, among others. The study was carried out by
using threshold L as parameterization, and the correlation coefficient, ρ, RMSE, MD, and
LR slope, and intercept as statistical indicators. The L-dB method was indistinctly in close
agreement with the zero-crossing and average wave-period definitions, and a threshold
value L = 8 dB exhibited the best indicators when comparing the L-dB and zero-crossing
methods over daily, weekly, and whole-campaign averages, hence reconciling the spectral
approach to the oceanographic one.

Lastly, when comparing our 8 dB method (T8−dB) with the zero-crossing one (Tz), the
LR slope was 0.97 and the intercept was 0.13, which virtually matched the ideal 1:1 line
(Figure 10). Regarding the statistical indicators above, the 8 dB method yielded fairly good
results with ρ = 0.86, RMSE = 0.46 s (compared to a mean wave-period over the campaign
of 4.39 s), and MD = 0.02 s. In spite of this low RMSE value, a few outliers departed up
to 2 s from the ideal line. We speculate that his misestimation was due to the assumption
of 2 DoF (pitch and roll) in our methodology in comparison to the 3 DoF (heave, roll, and
pitch) used by Triaxys (and in the literature) to compute the wave period, the small-angle
approximation, and the 200 m distance between the DWL and Triaxys buoy references.
All in all, the proposed L-dB method allows floating wind lidars to provide increased
knowledge on the sea state (i.e., sea period), which can enhance wind measurements and
reduce offshore wind farms deployment cost. Such knowledge could be assimilated into
offshore wind measurements and can be used to complement mesoscale wind prediction
models, which could help improve ship safety under strong wind conditions. Particularly,
the IJmuiden sea lock has recently been the object of a study in order to explore techniques
to improve the safety of ships mooring and navigating nearby [42], which could benefit
from these offshore wind lidar measurements.
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Abbreviations
The following abbreviations are used in this manuscript:

DOAJ Directory of open access journals
DoF Degree of freedom
DWL Doppler wind lidar
FEM Fourier expansion method
HWS Horizontal Wind Speed
LR Linear regression
MD Mean deviation
MEM Maximum entropy method
NED North–east–down
FFT Fast Fourier transform
IMU Inertial measurement unit
MDPI Multidisciplinary Digital Publishing Institute
Metmast Meteorological mast
PSD Power spectral density
RMSE Root-mean-square error
WE Wind Energy

Appendix A. Power-Spectral-Density Derivation

Next, we compute the PSD associated to the time variations of eigenangle α, given by
Equation (17). Using the superposition principle described by Equation (17) and illustrated
in Figure 5a, where pitch and roll contributions add up in quadrature, α can be described
in a straightforward form by means of time-varying complex function:

α(t)α(t)α(t) = θ(t)− jφ(t), (A1)

where bold is used to denote a complex number.
The PSD of a complex random process, α(t)α(t)α(t), is defined as the Fourier transform of the

autocorrelation function. Formally,

Sααα,ααα( f ) =
∫ ∞

−∞
Rα,α(τ)e−i2π f τdτ, (A2)

where Rααα,ααα(τ) is the autocorrelation of ααα [40], τ is the time lag, and f is the frequency. The
autocorrelation of a complex process is defined as [40]

Rx,x(τ) = E[x(t)x∗(t + τ)], (A3)

where * denotes the complex conjugate.
By inserting Equation (A1) into Equation (A3) above, the autocorrelation function of

random complex process α(t)α(t)α(t) yields

Rααα,ααα(τ) = Rφ,φ(τ) + Rθ,θ(τ) + j[Rθ,φ(τ)− Rφ,θ(τ)]. (A4)

Using Rφ,θ(τ) = R∗θ,φ(−τ) (using a similar definition to Equation (A3) but for the
cross-correlation between random processes θ(t) and φ(t) [43]), Equation (A4) above
reduces to

Rααα,ααα(τ) = Rφ,φ(τ) + Rθ,θ(τ) + j[Rθ,φ(τ)− R∗φ,θ(−τ)]. (A5)

By inserting Equation (A5) into the PSD definition of Equation (A2) and using

(i) the cross-PSD (also called cross spectral density) between two processes x(t) and y(t) is
the Fourier transform (FTFTFT) of the cross-correlation function, Sx,y =

∫ ∞
−∞ Rx,y(τ)e−i2π f τdτ,

and
(ii) R∗θ,φ(τ)→ S∗θ,φ( f ) according to the FT conjugation property, x∗(t)→ X∗(− f ), with

X the FT of signal x(t) and the arrow symbol denoting FT,
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the PSD of ααα is obtained as

Sααα,ααα( f ) = Sθ,θ( f ) + Sφ,φ( f ) + j[Sθ,φ( f )− S∗θ,φ( f )]. (A6)

The terms into square brackets on the right side of Equation (A6) can be recognized
as the complex subtraction, z − z∗ = 2iIm(z), with z = Sθ,φ( f ) and Im()̇ denoting the
imaginary part. Therefore,

Sααα,ααα( f ) = Sθ,θ( f ) + Sφ,φ( f )− 2Im[Sθ,φ( f )], (A7)

with units of [rad2/Hz].
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