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Abstract

Null hypothesis significance testing is the major statistical procedure in fMRI, but pro-

vides only a rather limited picture of the effects in a data set. When sample size and

power is low relying only on strict significance testing may lead to a host of false nega-

tive findings. In contrast, with very large data sets virtually every voxel might become

significant. It is thus desirable to complement significance testing with procedures like

inferiority and equivalence tests that allow to formally compare effect sizes within and

between data sets and offer novel approaches to obtain insight into fMRI data. The

major component of these tests are estimates of standardized effect sizes and their con-

fidence intervals. Here, we show how Hedges' g, the bias corrected version of Cohen's

d, and its confidence interval can be obtained from SPM t maps. We then demonstrate

how these values can be used to evaluate whether nonsignificant effects are really sta-

tistically smaller than significant effects to obtain “regions of undecidability” within a

data set, and to test for the replicability and lateralization of effects. This method allows

the analysis of fMRI data beyond point estimates enabling researchers to take measure-

ment uncertainty into account when interpreting their findings.

K E YWORD S

confidence interval, equivalence tests, functional magnetic resonance imaging, Hedge's g, null
hypothesis significance testing

1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) relies heavily on statis-

tical analyses to draw inferences and the use of null hypothesis signifi-

cance testing (NHST) is the major statistical approach in the field. A

major downside of the NHST framework is that it does not emphasize

the comparison of effects, but rather pits a point null hypothesis

against all alternatives, and thus provides only a rather restricted pic-

ture of the effects in a data set.

Without a priori constraints the large number of voxels that are

recorded in fMRI inevitably leads to a multiple testing problem that is

addressed by applying conservative corrections to the critical value
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and other methods for type I error control. However, this stringent

correction can lead to studies that have low power (i.e., large type II

error), especially when assuming weak distributed effects (Cremers,

Wager, & Yarkoni, 2017). This is especially critical since small sample

sizes tend to overestimate effect sizes in clusters passing the signifi-

cance threshold, which leads to unreasonable expectations towards

what constitutes a meaningful effect in fMRI research (Button

et al., 2013; Ioannidis, 2008; Lindquist & Mejia, 2015; Reddan,

Lindquist, & Wager, 2017). This problem is especially critical when try-

ing to replicate findings.

In contrast, with a very high number of participants an analysis

will in most cases deliver a large number of significant voxels. In most

cases it is also conceptually more interesting to know whether the

activation of a brain region is more or less strongly associated with a

specific behavior or intervention (see e.g., Bowring, Telschow,

Schwartzman, & Nichols, 2019; Bowring, Telschow, Schwartzman, &

Nichols, 2021).

To harness such information, it has been suggested for some time

to supplement thresholded statistical parametric maps from NHST with

maps of effect sizes (ES) (Jernigan, Gamst, Fennema-Notestine, &

Ostergaard, 2003). However, rather than relying just on point estimates

for ESs, the construction of their confidence intervals (CIs) provides the

means to conduct more formal equivalence testing (Lakens, Scheel, &

Isager, 2018; see Figure 1 for an example explaining our approach using

simulated data). Equivalence tests are able to show whether the data

suggest that there is no effect larger (in absolute terms) than a specified

threshold, the equivalence threshold. This can be achieved by using two

one-sided tests, that is, the first one-sided test is calculated against the

positive equivalence threshold and the other one-sided test is calculated

against the negative equivalence threshold. If both tests are significant,

the measured effect is assumed to be between the two equivalence

bounds. If only one of the bounds is used for testing, it is an inferiority

test, as the procedure establishes that the effect is smaller than this

bound. Importantly, instead of calculating one-sided tests against the

equivalence bounds, a 90% confidence interval (CI) around the mea-

sured effect size can be calculated and equivalence is established if this

confidence interval only contains values between the equivalence bou-

nds. For a more detailed explanation of the procedures in equivalence

and inferiority testing see for example, Lakens et al. (2018),

Schuirmann (1987), Walker and Nowacki (2011) andWellek (2010).

Such approaches have so far rarely been applied to MRI data (see

e.g., Bowring et al., 2021; Pardoe et al., 2016; Reggev, Brodie,

Cikara, & Mitchell, 2020). With this paper we want to contribute to

the use of this important statistical method in fMRI research. As a step

towards this goal, we demonstrate here how Hedges' g, the bias-

corrected version of Cohen's d, and its CI can be obtained using brain-

wide t-maps from group analyses with one-sample and two-sample t-

tests in statistical parametric mapping (SPM) with relative ease. We

then provide concrete use cases that highlight how different inferior-

ity and equivalence bounds allow different types of relevant infer-

ences in fMRI data. We think that these procedures can provide a tool

to further capture the richness of information in fMRI data and foster

our understanding of brain processes.

2 | METHODS

In this section, we first discuss standardized ES and their CIs for t-

tests in general and then specifically for fMRI group analyses.

2.1 | Standardized effect sizes for t-tests

One of the best known “families” of standardized ES is the “d”-family

where a mean difference is standardized by a respective standard

deviation:

d¼m2�m1

s
ð1Þ

with subscripts referring to experimental groups. Different “flavors”
of d exist that differ in the exact estimation of the standard deviation.

One specifically useful form for estimating effect sizes is based on the

pooled standard deviation sp

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�1ð Þs21þ n2�1ð Þs22

n1þn2�2

s
ð2Þ

which gives dp

dp ¼m2�m1

sp
ð3Þ

Please note that dp is a version of Cohen's d, but is also sometimes

called Cohen's g or Hedges'g. Here, we keep to the suggestion of

Cohen (1988) to use subscripts for naming (see also Lakens, 2013). dp

is closely related to the t-test and can be directly calculated from

t values by:

dp ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

s
ð4Þ

in the case of a two-sample t-test (Equation [16.21] in

Rosenthal (1994); Equation [2] in Hentschke and Stüttgen (2011);

Nakagawa & Cuthill (Nakagawa & Cuthill, 2007), and equivalently by:

dp ¼ t

ffiffiffi
1
n

r
ð5Þ

in the case of a one-sample t-test (see e.g., Bossier, Nichols, &

Moerkerke, 2019, p. 16).

dp is, however, a biased estimate of the population effect size,

especially when it is based on a small sample size of n < 20 per group,

and needs to be corrected by a correction factor J (Hedges, 1981;

Hedges & Olkin, 1985) to provide the unbiased effect size Hedge's g

g¼ dp� J ð6Þ
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(Hedges, 1981) provides the following approximation to J by

J≈ 1� 3
4DoF�1

� �
ð7Þ

where DoF are the degrees of freedom used to estimate s.

CIs for ES can be estimated by bootstrap, exact analytical, or

approximate analytical procedures (Hentschke & Stüttgen, 2011).

Bootstrap and exact analytical procedures are computational much

more demanding, while approximate analytical procedures are quite

fast, but not always available (see Hentschke & Stüttgen, 2011). For

the two-sample t-test an approximate analytical procedure is available

which provides the standard error for the calculation of the CI of g

seg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

þ g2

2 n1þn2�2ð Þ

s
ð8Þ

(Nakagawa & Cuthill, 2007, Equation [17] in table 3).

F IGURE 1 Legend on next page.
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In all cases, also when no approximate analytical procedure exists,

CIs can be estimated by an exact analytical procedure based on the

noncentral t-distribution (Cumming & Finch, 2001; Smithson, 2003,

p. 34; Steiger & Fouladi, 1997). This procedure uses computationally

intensive routines to estimate the CI for the noncentrality parameter Δ

of the noncentral t-distribution with Δ = t and the respective DoF.

Because the cumulative distribution function of the noncentrality

parameter is strictly increasing and monotonic, and the effect size is a

monotonic, strictly increasing continuous function of this function, the

obtained lower and upper limit Δl and Δu of the noncentrality parameter

CI can directly be inverted to the limits of the CI of the ES g by

CIg ¼ Δl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

,

r
Δu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

,

r� �
¼ Δl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

s
, Δu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

s" #
ð9Þ

for the two-sample t-test (Smithson, 2003, Equation [4.7]) and by

CIg ¼ Δl

ffiffiffi
1
n

r
, Δu

ffiffiffi
1
n

r" #
ð10Þ

for the one-sample t-test (Smithson, 2003, Equation [4.4]). Please see

Steiger and Fouladi (1997) and Cumming and Finch (2001) for com-

prehensive explanations of the procedure.

The limits of the CI of the ES are estimated based on the empirical

test statistic t and thus similar values would be obtained with this proce-

dure for Cohen's d and Hedges'g. It is however important to note that

the CI limits do not require bias correction and that Hedges'g is the

unique unbiased estimator of δ for which the CI is valid (Hedges, 1981).

Because of the correspondence between classical NHST and the ES CI

where a significant result is equivalent to the CI not including 0, applying

bias correction to the CI limits or recalculating t from Hedges'g would

mean that either the criteria for statistical testing or the test statistic

need to be bias corrected. This is however not the case because the test

distribution for significance testing and the noncentral t distribution for

CI estimation are chosen with the correct DoF. Thus, only the Cohen's

d point estimator does not take the DoF into account, and needs to be

corrected by Equation (7).

For estimating the limits of the CI of the noncentrality parameters

we use the “ncpci.m” function of the Measures of Effect Size Matlab

toolbox (Version 1.6.1; https://github.com/hhentschke/measures-of-

effect-size-toolbox) by Hentschke and Stüttgen (2011).

2.2 | Standardized effect sizes for t-tests in fMRI

In fMRI analyses, however, t-tests are usually implemented in a gen-

eral linear model (GLM) approach in which specific contrasts are

tested for significance. Fortunately, the procedures based on “the
noncentral t-distribution can be used to obtain confidence intervals

for the standardized effect-size measure Cohen's d in any situation

where a t test is legitimate” (Smithson, 2003, p. 62). However, unlike

standard t-tests, in the GLM imaging analyses additional covariates,

for example to correct for age and sex, are commonly included in the

model and thus have to be taken into account when the procedures

described above should be applied.

In SPM t-tests are implemented by:

t¼ c0bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c0 X0Xð Þ�c

p ð11Þ

where X is the (pre-whitened and filtered) design matrix, c the con-

trast vector, b the estimated regression coefficients, c' the transpose

of c, (X'X)� the pseudoinverse of X'X, and s2 the residual variance (see

e.g., Penny, Friston, Ashburner, Kiebel, & Nichols, 2011,

Equation [8.12]). s2 is given by

s2 ¼ e0e
DoF

ð12Þ

where e'e are the residual sum of squares and DoF = N-p where N is

the number of samples (i.e., the number of rows of X) and p is the rank

of X. These DoF are used in SPM to test for the significance of t.

F IGURE 1 Data simulation. (a) Three effects located at I, II, and III (d = 0.28, d = 0.50, and d = 0.50, respectively) were generated for one
fMRI-slice in a simulated dataset that compared two conditions (two sample t-test, see supplement for details). (b) The left panel shows the effect
size per voxel for a large sample (n = 500 per group) drawn from the simulated population. The plane cuts the 3-d graph at voxel 200, where the
effects were inserted, and the red line marks the maximum effect size. In the right panel, all effect sizes lying on the plane are shown with the
90% and 99.9% CI added. The lower bound of the 99.9% CI in location I, II, and III is above 0 indicating that these voxels would be significant in
an uncorrected whole-brain t-test with α = 0.001. This means that in a large sample all three effects that were inserted into the data can be
recovered. In addition, the maximum effect size (red line, effect at III) is larger than the 90% CI of the effect located I, which following the logic of
equivalence testing, would enable to conclude that the effect in I is smaller than the effect in III. The same is not true for effects III and II as the
red line cuts the 90% CI of effect II. (c) This panel shows the same as (b) however of a smaller sample (n = 50 per group). On the left it is evident
that the effect sizes that are being estimated are much noisier, which is a result of the smaller sample size. On the right side it is evident that the

CIs are also much enlarged, showing that the point estimate of the effect is much more uncertain. Consequently, only the effect in II is significant
at the whole-brain threshold (p < .001). Importantly, we are also able to determine that most other voxels on this plane have effects that are
smaller than the maximum effect found in the significant cluster of voxels. However, there is a cluster of voxels that are not significantly different
from 0 at III, but that can also not be determined to be smaller than the effect present at II. Since the ground truth of the simulation is known this
makes sense. Our method enables to identify such clusters in the whole brain and thereby allows deciding which brain areas can be excluded
from being a relevant driver of certain behaviors and which cannot. Of course, the chosen threshold (peak voxel in this simulated case) will
strongly influence the interpretation. Please see our use cases for indications on useful thresholds
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The ES d for a specific contrast c in this case would have the

form of

d¼ c0b
s

ð13Þ

From Equations (11) and (13), it follows that

d¼ c0b

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�c

q
¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�c

q
ð14Þ

See also Bowring et al. (2021). Please note that for conventional one-

sample t-tests
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�cp ¼

ffiffi
1
n

q
and DoF = n�1, and for conven-

tional two-sample t-tests
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q
and DoF = n1�1

+ n2�1. In the case that covariates are added to the model, the DoF

are decreased by the number of covariates and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�cp

will take

into account correlations of the covariates with the regressors

included in the contrast.

Bias correction depends on the DoF and can be conducted in this

case as in Equation (6)

g¼ d� J

with the respective DoF entered in Equation (7). Also, the estimation

of the limits of the CI of the noncentrality parameter of the noncentral

t-distribution depends on the DoF and can be conducted accordingly.

The limits of the CI of the noncentrality parameter can then be

converted to the limits of the CI of g by

CIg ¼ Δl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�c

q
, Δu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 X0Xð Þ�c

q� �
ð15Þ

The script to estimate ES and their CI from SPM t maps is available on

Github at https://github.com/Fungisai/g_ci_spm.

3 | RESULTS

In this section, we provide results for selected examples to demon-

strate how the described methods can be used to obtain further

insight into fMRI data. All participants were fully informed about the

procedures and provided written informed consent.

3.1 | Within-sample comparison: “maps of
undecidability”

Relying overly on NHST to separate activated from not activated

brain regions in an (underpowered) fMRI study provides a distorted

picture of the present effects. Here, we suggest a formal strategy to

address the question, which brain areas have ES that are statistically

indistinguishable from the effects in a detected cluster above the sta-

tistical threshold. The resulting maps of such an analysis identify

areas, which are “empty” in NHST, but where the suggestive conclu-

sion of a smaller ES than in a detected cluster is not valid. Therefore,

we call the obtained results “maps of undecidability”. More technically

speaking, we test in every voxel whether the upper bound of its ES

90% CI is including or exceeding a reference ES representative for a

detected cluster. Obviously, the results depend on the selected repre-

sentative ES. In our example, we use the voxel with the median ES in

the detected clusters as the reference.

We reanalyzed data from a monetary incentive delay task experi-

ment performed by participants with Alcohol Use Disorder (AUD;

nAUD = 32) and healthy controls (HC; nHC = 35) reported in Becker,

Kirsch, Gerchen, Kiefer, and Kirsch (2017). We conducted analyses for

the main effect (money > control) over both groups with a one-sample

t-test (Figure 2) and for the group comparison (AUD > HC) with a

two-sample t-test (Figure 3).

The one-sample t-test revealed a main effect of money > control

in the bilateral ventral striatum at a threshold of p < .05 whole-brain

FWE corr. (Figure 2a); corresponding ES in Figure 2b). “Undecidable”
regions were for example found in the anterior cingulate cortex (ACC),

right insula, and cerebellum (yellow in Figure 2c). Interestingly, in this

example and at the chosen reference ES the undecidable areas were

largely consistent with, and only minimally smaller than, the effect at

p < .001 unc. (red in Figure 2c).

In the group comparison, the picture was quite different. Here,

we identified a more localized effect by ROI analyses in the left and

right nucleus accumbens at a threshold of p < .025 FWE ROI analysis

(p < .05 corrected for two hemispheres; Figure 3a; corresponding ES

in Figure 3b). Here, this effect was largely consistent with the results

at p < .001 unc. (red in Figure 3c), and the areas of undecidability

extended well beyond to, for example, striatum, ACC, posterior cingu-

late cortex, and insula (yellow in Figure 3c), reflecting a high uncer-

tainty in the analysis about the uniqueness of the apparently very

local effect. This result makes sense given the lower power of

between-subjects comparisons to detect significant effects and

corresponding larger confidence intervals of the effect sizes.

The comparison with p < .001 unc. in the two examples shows

that there is no conceptual similarity of our approach with just using a

more liberal statistical threshold, although the results might coincide

in some cases.

3.2 | Replication

Another directly apparent application of ES and their CIs in fMRI is

testing for the replicability of detected effects. A voxel-wise strategy

can be applied either with a general reference ES or with a reference

map. For demonstration, we reanalyzed a data set from an episodic

memory task (Gerchen & Kirsch, 2017; see Supplement for further

information) with two subsamples (N = 136; n1 = 54, n2 = 82)

scanned with the same protocol at different sites. Reflecting the situa-

tion that might occur in a replication study we use the smaller sample

as the reference data set and the larger sample as the replication set.

Both samples were originally analyzed together with the same analysis
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pipeline, which enables us to conduct voxel-wise comparisons. As rep-

lication criterion we tested whether the ES obtained with the refer-

ence sample fall into the voxel's ES 90% CI in the replication sample.

Following the usual approach in fMRI, we focused on effects in one

contrast direction (encoding > control), and restricted our analyses to

voxels that had an ES g > 0 in the reference data set. Similar tests

could be added for the opposite contrast direction.

T maps thresholded at p < .05 whole-brain FWE corrected for the

two samples are shown in Figure 4a,b, the ES map for the reference

sample is shown in Figure 4c. The task leads to broadly distributed

activations which are largely overlapping between the two samples.

Interestingly, the voxel-wise test reveals further details beyond the

overlap of significant effects (Figure 4d). First, small ES were repli-

cated in large areas where no significant effect was detected. More

importantly, very large ES in the original sample failed to replicate (red

circles in Figure 4d), although the voxels were detected as significant

in both samples, suggesting that the initial ES estimates in these areas

were biased in the positive direction and should thus not be taken as

representative of the underlying effect. It is important to note that

this information could not have been detected by NHST and concerns

F IGURE 3 “Maps of Undecidability”—Two-Sample t-test. Results of the group comparison for the monetary incentive delay task comparing
participants with Alcohol Use Disorder and healthy controls. (a) Activation for the group comparison (AUD > HC) based on ROI analyses in the
left and right nucleus accumbens (p < .025 FWE ROI analyses in each of the two ROIs). Participants with Alcohol Use Disorder showed stronger
reactions in the nucleus accumbens than healthy controls. See Becker et al. (2017) for further details and discussion. (b) Map of ES g for the
activations shown in (a). (c) Areas of undecidability in yellow are marking voxels for which ES 90% CI included the median ES (g = 0.7289) in the
significant clusters. For comparison, uncorrected activation (p < .001 unc.) is shown in red. In this example, the uncorrected activation is very
restricted and the areas of undecidability are rather large and extend well beyond. Reanalyzed data from Becker et al. (2017)

F IGURE 2 “Maps of Undecidability”—One-Sample t-test. Results for a monetary incentive delay task in a sample of n = 32 participants with
Alcohol Use Disorder and n = 35 healthy controls. (a) Activation (p < .05 whole-brain FWE corr.) for the main effect of the anticipation of
monetary reward compared to the anticipation of verbal feedback in the whole sample showing a strong activation in bilateral striatum. (b) Map
of ES g for the activations shown in (a). (c) Areas of undecidability in yellow are marking voxels for which ES 90% CI included the median effect
size (g = 0.66) in the significant clusters. For comparison, uncorrected activation (p < .001 unc.) is shown in red. In this specific example the areas
of undecidability are largely overlapping with the uncorrected activation and are just slightly more spatially restricted. Please note that this
correspondence depends on the exact chosen reference value and the properties of the specific data set for a given analysis. Reanalyzed data
from Becker et al. (2017)
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ES beyond plain statistical significance. It is a well-described phenom-

enon that ES are declining over replications (see for example,

Ioannidis, 2005a, 2005b; Open Science Collaboration, 2015), and this

approach allows for formal testing of such phenomena in fMRI data.

Importantly, the question whether or not a finding has replicated is far

from trivial as is demonstrated by the five different definitions of

replication success used by the Open Science Collaboration (2015):

(1) statistical significance of the replication, (2) whether the 95% CI

included the point estimate of the original study, (3) comparison of

the original and the replication effect sizes, (4) meta-analytical com-

parison of the effect sizes, and (5) subjective assessment by the

researchers. Our approach allows researchers to assess replication by

F IGURE 4 Replication of Effects. Results from the encoding phase of an episodic memory task are shown. (a) Activation (p < .05 whole-brain
FWE corr.) for the contrast encoding > control in the reference sample of n1 = 54 participants. (b) Activation (p < .05 whole-brain FWE corr.) for
the contrast encoding > control in the replication sample of n2 = 82 participants. Both samples were acquired in the same project with the same
protocol but at different sites. (c) Map of ES g for the activations shown in (a). (d) Yellow marks voxels where the ES 90% CI in the replication
sample includes the ES of the voxel in the reference sample, which we define as a replication of the original effect size. Red circles: Area where
the effect was significant in both samples but the reference ES did not replicate. Please note that only voxels are shown where the reference
effect size was g > 0. Data from Gerchen and Kirsch (2017)
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asking whether the 95% CI included the point estimate of the original

study, but this must be weighed against other indicators of replication

success.

3.3 | Lateralization

An important question that arises in numerous contexts in functional

neuroimaging is whether a detected effect is lateralized, that is, more

pronounced in one of the two hemispheres. Often a lateralization

index is calculated (see e.g., Bradshaw, Bishop, & Woodhead, 2017;

Bradshaw, Thompson, Wilson, Bishop, & Woodhead, 2017), but for-

mal testing is difficult. Inferiority tests against a reference ES repre-

sentative for a detected cluster offer a straightforward approach to

address this question.

As an example, we use unpublished data from a statement judg-

ment task where short written statements were presented to healthy

right-handed participants (N = 30) and rated as true or false (See Sup-

plement for further information). Here, we did not focus on any spe-

cific experimental effect but analyzed the main effect of sentence

presentation, which, beside others, showed strong activation in the

left ventral occipito-temporal cortex and Broca's area (Figure 5a,b)

associated with language processing (e.g., Bradshaw, Thompson,

et al., 2017). Language processing has traditionally been described as

lateralized to the left hemisphere in right-handed individuals

(e.g., Bradshaw, Thompson, et al., 2017). Thus, we tested for these

two clusters whether comparable effects are present in contralateral

areas. For this we selected a reference ES reflecting a rather strong

activation in the detected cluster and take the voxel with the 75th

percentile ES in the reference cluster as the criterion. In other words,

we test whether voxels whose ES 90% CI upper limit exceeds or

includes the 75th percentile ES in the reference cluster are present in

the respective contralateral region.

For the FWE corrected significant reference clusters, the 75th

percentile ES was g = 1.3242 for left Broca's area, and g = 1.454 in

the left superior temporal cluster. Voxels with 90% ES CIs including

the respective reference ES could be identified in the right inferior

frontal cortex (Figure 5c), but not in the left ventral occipito-temporal

cortex (Figure 5d). These results demonstrate how ES and their CIs

can be used to provide evidence for, as well as against, lateralization

in fMRI studies.

4 | DISCUSSION

In this paper, we described the construction of the standardized ES

Hedges' g and its CI for t-tests in statistical parametric mapping and

demonstrated in selected examples how these can be used to identify

“regions of undecidability”, to conduct voxel-wise replication tests,

and for formal testing of lateralization of effects. Overall, our exam-

ples further demonstrate that NHST alone does not provide a conclu-

sive picture about the effects contained in fMRI data, especially about

the equivalence or inferiority of effects, and that complementary

analyses as described allow important further insight into the results.

Importantly, by sharing only the group level statistics (i.e., the t map

and design matrix) for a specific contrast researchers can enable other

researchers to apply these analyses without having to grant access to

the raw data.

Obviously, a central decision for the described procedures with

strong influence on the results and conclusions is the selection of the

reference ES. Therefore, it is of uttermost importance that this selec-

tion is made a priori based on justifiable reasons related to the goal of

the analysis and preregistered before the analysis is conducted.

Within a data set, a number of possible criteria are for example the

minimum, maximum, median, or quantile effect sizes in a reference

cluster. As the ES are estimated in a voxel-wise manner, it might not

be advisable to choose the mean or other summarizing values here.

It should be noted that very large sample sizes would lead to high

precision and small CIs, and thus would for example reduce the num-

ber of replicated effects in the “replication” example. This might, how-

ever, be regarded as a somewhat ideal situation because the

discussion could then focus on the meaning of the detectable effect

size differences and the real underlying effect size, overcoming sev-

eral of the well-known shortcomings of NHST.

It is further important to note that the smaller the reference ES

(and the larger the CI) gets, the larger are the areas with overlapping

CIs. It depends on the goal of the intended analysis what determines a

liberal or conservative procedure.

In our examples, we did not use a correction for multiple compari-

sons because such a correction has more complex consequences than

in NHST and a more conservative thresholding can work in favor or

against the interpretation a researcher might prefer. In general, what a

multiple comparison correction algorithm would do is to widen the

confidence interval (corresponding to a smaller statistical threshold) to

ensure that the overall level of confidence is controlled. In our “maps

of undecidability” analyses, a widening of the confidence interval

would lead to more voxels becoming non-separable from the detected

significant results, and thus would enlarge the undecidable areas. The

reported uncorrected results are therefore representing the lower

bound of the size of the undecidable regions. In the “replication” anal-
ysis, a widened CI would lead to less voxels being identified as “not
replicated”. Stricter control of false positives would thus have the

somewhat contradictory effect to increase the replicability of effects.

In the “lateralization” sample, a widened CI would make it more likely

to identify contralateral effects where the reference effects falls into

the CI, while it would be more difficult to demonstrate lateralized

effects. Because we are demonstrating both directions in our example,

we also report uncorrected results here.

Our paper is closely related to the work of Bowring

et al. (2021) who developed an approach to identify confidence

sets based on Cohen's d to identify brain regions with effects above

and below a specified effect size. While we derive Hedges'g and its

CI in a generalized way from the SPM GLM and thus cover in prin-

ciple all cases for which SPM provided t values, Bowring

et al. (2021) emphasize on implementing multiple comparison cor-

rection for one-sample t-tests by a Wild t-Bootstrap procedure
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which controls the overall level of false positives in their confi-

dence sets. A combination of the approaches might thus provide a

way to implement equivalence and inferiority tests in fMRI with

multiple comparison correction.

In the “maps of undecidability” approach, we are selecting a refer-

ence value within a data set. This is however no circular analysis

because this procedure is not biasing the analyses in the remaining

part of the brain where the relevant comparisons of interest are con-

ducted. However, when using such a data driven approach to choose

the reference value, we advocate strongly for precisely documenting

the selection procedure via preregistration to prevent biasing the

results.

F IGURE 5 Lateralization of Effects. Results for a written statement presentation task are shown. (a) Activation (p < .05 whole-brain FWE
corr.) for the main effect of written statement presentation in N = 30 healthy participants. (b) Map of ES g for the activations shown in (a).
(c) Regions (yellow) that cannot be assumed to be smaller than the 75th percentile ES in the reference cluster (red) including Broca's area. Red
circles: Area in the right inferior frontal gyrus, suggesting contralateral effects in our data that cannot be shown to have a smaller effect than the
reference cluster. (d) Regions (yellow) that cannot be assumed to be smaller than the 75th percentile ES in the reference cluster (red) in the left
ventral occipito-temporal cortex. Red circles: Inferior effects in the corresponding right left ventral occipito-temporal cortex, suggesting
lateralization of effects in our data. Unpublished data by M.F. Gerchen
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If a data set should be used for replication of an external effect

from another study, our procedures would for example allow to imple-

ment a voxel-wise small telescope approach in which one could tests

for the existence of effects that an original study could have meaning-

fully examined (Simonsohn, 2015). Another interesting application for

our method is using a smallest effect size of interest (SESOI) as the

threshold (Lakens et al., 2018). In practice, it may be hard to deter-

mine the SESOI, but in large samples, it would allow excluding those

voxels that have a significant activation that is too small to matter

conceptually.

While our treatment covers only Hedge's g as a specific ES for t-

tests in SPM, these tests nonetheless cover a substantial part of ana-

lyses in the fMRI field. If other ES are needed, the MES toolbox

(Hentschke & Stüttgen, 2011) provides a comprehensive library of ES

and their CIs, which could be adapted for fMRI data in a similar way

as we demonstrated here. Overall, we strongly believe the field of

neuroimaging will benefit from providing evidence for absence of

effects as much as for their presence and we hereby provide a

method using a NHST-approach that can complement other

approaches such as Bayesian statistics. Since this method is applied at

the group level, data to perform these analyses can be shared without

invoking data protection issues. Sharing t maps and design matrices of

every effect that is reported in a paper would thus enable other

researchers to use this method, for example, to scrutinize the robust-

ness of the reported focal effect.
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