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Abstract

Haplotype-based methods compete with “one-SNP-at-a-time” approaches on being pre-

ferred for association studies. Chromosome 6 contains most of the known genetic biomark-

ers for rheumatoid arthritis (RA) disease. Therefore, chromosome 6 serves as a benchmark

for the haplotype methods testing. The aim of this study is to test the North American Rheu-

matoid Arthritis Consortium (NARAC) dataset to find out if haplotype block methods or sin-

gle-locus approaches alone can sufficiently provide the significant single nucleotide

polymorphisms (SNPs) associated with RA. In addition, could we be satisfied with only one

method of the haplotype block methods for partitioning chromosome 6 of the NARAC data-

set? In the NARAC dataset, chromosome 6 comprises 35,574 SNPs for 2,062 individuals

(868 cases, 1,194 controls). Individual SNP approach and three haplotype block methods

were applied to the NARAC dataset to identify the RA biomarkers. We employed three hap-

lotype partitioning methods which are confidence interval test (CIT), four gamete test (FGT),

and solid spine of linkage disequilibrium (SSLD). P-values after stringent Bonferroni correc-

tion for multiple testing were measured to assess the strength of association between the

genetic variants and RA susceptibility. Moreover, the block size (in base pairs (bp) and num-

ber of SNPs included), number of blocks, percentage of uncovered SNPs by the block

method, percentage of significant blocks from the total number of blocks, number of signifi-

cant haplotypes and SNPs were used to compare among the three haplotype block meth-

ods. Individual SNP, CIT, FGT, and SSLD methods detected 432, 1,086, 1,099, and 1,322

associated SNPs, respectively. Each method identified significant SNPs that were not

detected by any other method (Individual SNP: 12, FGT: 37, CIT: 55, and SSLD: 189

SNPs). 916 SNPs were discovered by all the three haplotype block methods. 367 SNPs

were discovered by the haplotype block methods and the individual SNP approach. The P-
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values of these 367 SNPs were lower than those of the SNPs uniquely detected by only one

method. The 367 SNPs detected by all the methods represent promising candidates for RA

susceptibility. They should be further investigated for the European population. A hybrid

technique including the four methods should be applied to detect the significant SNPs asso-

ciated with RA for chromosome 6 of the NARAC dataset. Moreover, SSLD method may be

preferred for its favored benefits in case of selecting only one method.

Introduction

Many researchers associate RA disease with genetic biomarkers through individual SNP stud-

ies. Recently, the availability of high genomic density of SNPs allows the application of the hap-

lotype block methods. These methods discover a group of SNPs within an associated block in

only one test [1, 2].

The main advantages of haplotype block methods over individual SNP approaches are: (a)

the reduction of the association testing dimension by using a single test for a block containing

more than one SNP; (b) leading to power preservation and ensuring accepted false-positive

rates [3]; (c) acquiring the synergy among SNPs. The main disadvantages of haplotype block

methods are: (a) the more haplotypes within a block leads to a higher degree of freedom of the

block ending in scaled down power; (b) each partitioning method ends up with haplotype

blocks that differ from the others. Therefore, a comparison study should be performed to eval-

uate all partitioning methods’ performance [1, 4].

Singular SNP approaches achieve inspiring results if there should be an occurrence of

monogenetic disorders (for example, sickle cell anemia). Then again, they don’t achieve a simi-

lar accomplishment in complex diseases. The power of association was studied for individual

SNP approaches and haplotype block methods resulting in contradictory findings. This incon-

sistency may be arisen from the dependency of the method’s performance on the nature of the

experimented dataset itself [1, 5].

RA is a chronic autoimmune disease that is prevalent in women more than in men (with a

ratio of about 3:1) [6–9]. The MHC (major histocompatibility complex) region extends on the

short arm of chromosome 6 (6p21.3) from 26 to 34 Mb (mega base pair) [10]. The MHC

region contains the HLA (human leukocyte antigen) region [11] which includes about 50% of

the detected biomarkers for RA susceptibility. The association between HLA region and RA

disease has been verified in multiethnic populations [12].

There are two objectives of this study. The first objective is comparing the association

results of haplotype block methods and individual SNP approach on chromosome 6 of the

NARAC dataset. The second objective is selecting the best haplotype block method suitable for

the NARAC dataset (if applicable).

Materials and methods

Study population

The NARAC dataset consisted of 2,062 participants (1,493 females and 569 males), 868 RA

patients and 1,194 healthy controls. All cases and controls were of European descent. All par-

ticipants were genotyped on the HumanHap500 v1, Human Hap500 v3, HumanHap300, and

HumanHap240 Illumina arrays [13]. The studied genetic variants were 35,574 SNPs included

in chromosome 6. After removing 1,452 SNPs, 34,122 SNPs were retained for further analysis.
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The reasons for excluding the 1,452 SNPs were the biomarker checks: (a) less than 75% geno-

type percent, (b) less than 0.001 Hardy-Weinberg equilibrium (HWE) P-value or (c) less than

0.001 minor allele frequency (MAF) in the total sample.

Materials

The chromosome 6 data file was extracted from the NARAC data file using the programming

language (Perl). The chromosome 6 data file was reformatted to be ready for processing by the

program (PLINK) by the statistical package (R 3.1.0). Moreover, the R language was used to

extract the chromosome 6 map file from the NARAC map file (SNP ID, physical position, and

chromosome number). The chromosome 6 reformatted data and map files were processed by

(PLINK 1.07) and (gPLINK 2.05) programs to be ready for processing by the program (Haplo-

view) [14].

The computer program (Haploview 4.2) was used to partition chromosome 6 into successive

blocks using CIT, FGT, and SSLD methods and to calculate the corresponding P-value for each

haplotype in each block. The default parameters for the three methods were used. In addition,

the program (Haploview 4.2) was used to apply the individual SNP approach and to provide the

corresponding P-value for each SNP [15]. The distribution of P-values on chromosome 6 for

the individual SNP approach was presented using the Integrative Genomics Viewer (IGV

2.3.72) [16, 17]. The significant blocks and the associated SNPs were selected using the pro-

gramming language (Matlab Release 2010a). Fig 1 showed a block diagram for the whole chro-

mosomic association analysis process.

Haplotype block methods

The haplotype blocks have been defined through more than one method. Several algorithms

for haplotype partitioning have been proposed, among which the CIT, FGT, and SSLD have

been implemented in HaploView 4.2. Each method differs greatly from the others in its scope

of the definition of the haplotype blocks. Therefore, an objective has been arisen for comparing

the results of these methods which was studied through this research paper [18].

Confidence interval test. A haplotype block is defined by the CIT method as a region

over which a very small fraction (� 5%) of the measures among the informative SNP pairs are

in weak linkage disequilibrium (LD). The informative SNP pairs are pairs showing strong LD

or weak LD. Biological and artefactual forces in addition to recombination events are the rea-

sons for allowing 5% of weak LD in the haplotype block. These forces could be recurrent muta-

tion, gene conversion, or errors of the genome assembly or genotyping.

D´ (normalized deviation) is used to measure the LD between a pair of SNPs. CI is used to

assess the reliability of the estimate of D´. Strong LD is defined as the upper limit of the 90%

CI is (0.98), and the lower limit is (0.7). In contrast, weak LD is defined as the upper limit of

the 90% CI is (0.9), as shown in S1 Fig. The thresholds were obtained by Gabriel et al. Short

blocks (2–5 SNPs) were treated with different thresholds for different populations to select the

used thresholds [19].

Four gamete test. The FGT is a haplotype block partitioning method that assumes recom-

bination events are not allowed within each block. When the four gametes are identified, a

recombination event has been occurred. The rare gamete must be observed at a frequency

greater than 0.01 to count a recombination event. The recombination events are only accepted

between blocks. The FGT method differs from other haplotype block definitions that it does

not require a threshold for D´.

The recombination events interrupt the continuity of the testing process. When a recombi-

nation event is observed between the (kth) locus and any preceding locus, the locus (k-1) is
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Fig 1. Experimental design of the proposed system.

https://doi.org/10.1371/journal.pone.0209603.g001
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considered the ending point of the tested block. The block size could be measured as the dis-

tance between the start locus and the end locus. In this situation, the locus (k) is considered

the starting point to search for a new block [20].

Solid spine of linkage disequilibrium. The SSLD method defines the haplotype block as a

region at which a (spine) of strong LD (D´> 0.8) moving from one allele to the next allele

along the legs of the triangle in the LD chart, as shown in S2 Fig. In other words, for each

block, there must be a strong LD between (the first SNP and the last SNP) and all the interme-

diate SNPs. However, the intermediate SNPs should not be in strong LD with each other [15].

Table 1 represents the concept of the SSLD method. Five SNPs are tested, having the same

results as in S2 Fig. Here, (SNP2 and SNP3), (SNP3 and SNP4), and (SNP2 and SNP4) are not

in strong LD. All other combinations of SNPs are in strong LD. Thus, there is a haplotype

block extends from SNP1 to SNP5. Table 2 shows a comparison among the three haplotype

block definitions.

Testing for associations with disease status

Both the individual SNP associations and the haplotype associations were measured with the

aid of the P-values. The statistically significant SNPs were detected using their corresponding

P-values after stringent Bonferroni correction for multiple testing (< 0.05/# of tests) [21]. The

Bonferroni thresholds were 8.49 × 10−6 for the CIT method, 7.95 × 10−6 for the FGT method,

9.41 × 10−6 for the SSLD method, and 1.47 × 10−6 for the individual SNP approach where the

total number of tests were 5,888 for the CIT method, 6,293 for the FGT method, 5,313 for the

SSLD method, and 34,122 for the individual SNP approach.

Results

The testing algorithms were applied on Intel Core i7-4720HQ 2.6 GHz system with 16 GB of

RAM. S1 Table provided the processing time for each used program. A total working time was

181 minutes.

The distribution of the observed P-values for all the used models showed evidence for popu-

lation stratification (Fig 2) [22, 23]. The reason for this stratification might be the selection of

chromosome 6 that contains the HLA region where many highly significant associations

occur. The distribution of the P-values across chromosome 6 was presented in Fig 3 for the

individual SNP approach. The top SNP (rs660895) in the HLA region (32,685,358 bp) had the

lowest P-value (1.03 X 10−113) as previously reported in Arya et al. [24].

The results related to the haplotype block methods are shown in Table 3. The associated

SNPs properties are included in S1 Spreadsheet for the CIT method, S2 Spreadsheet for the

FGT method, S3 Spreadsheet for the SSLD method, and S4 Spreadsheet for the individual SNP

approach.

The SSLD significant blocks included more associated SNPs (1,322) than FGT (1,099) and

CIT (1,086) blocks. Moreover, the number of the associated SNPs by the individual SNP

Table 1. Example on the solid spine of linkage disequilibrium (SSLD) method.

SNP# SNP1 SNP2 SNP3 SNP4 SNP5

SNP1 - 0.97 0.99 0.93 0.96

SNP2 - 0.18 0.67 0.98

SNP3 - 0.03 0.94

SNP4 - 0.95

SNP5 -

https://doi.org/10.1371/journal.pone.0209603.t001
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approach was (432). The SSLD method did the best job of representing the hits of the individ-

ual SNP approach with (415) SNPs. While, the CIT method represented (381) SNPs, and the

FGT method represented (387) SNPs (S5 Spreadsheet). Interestingly, the SSLD method totally

represented the top 50 associated SNPs by the individual SNP approach from (P-values) point

of view. In addition, the CIT and FGT methods represented (47) and (48) SNPs respectively

from the top 50 SNPs, as shown in Table 4.

Table 2. A comparison among haplotype block definitions.

Items FGT CIT SSLD

Recombination Event within

Block

Not Allowed � 5% Allowed only between intermediate

SNPs

Strong LD LD is not used D´ upper limit = 0.98

D´ lower limit = 0.7

D´ > 0.8

Weak LD LD is not used D´ upper limit = 0.9 D´� 0.8

Morphology in the LD Chart No recombination event between all SNPs in the

block

> 95% Strong LD between all SNPs in the

block

Strong LD in the legs of the LD chart

https://doi.org/10.1371/journal.pone.0209603.t002

Fig 2. Quantile–quantile (Q–Q) plots of the chromosome 6 association results for all the used methods. Q-Q plot shows

the observed distribution of–log10(P-values) on the Y-axis compared to the expected distribution of–log10(P-values) on the X-

axis. The red line (X = Y) represents the null distribution. SNP refers to the individual SNP approach.

https://doi.org/10.1371/journal.pone.0209603.g002
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From Table 4, the intergenic region between HLA-DQB1 and HLA-DQA2 –at the p21.32

band of chromosome 6 (MHC class II)–contained blocks with the largest number of RA-associ-

ated biomarkers by the individual SNP approach. Within this region, the SSLD method had two

blocks with thirteen (P-value = 1.49 X 10−53, no. of SNPs = 20) and twelve (P-value = 1.55 X 10−52,

no. of SNPs = 17) biomarkers. The CIT method was represented by a block (P-value = 3.68 X

10−54, no. of SNPs = 31) having twenty-two biomarkers. The FGT block (P-value = 3.26 X 10−52,

no. of SNPs = 28) was detected containing nineteen biomarkers.

Discussion and conclusions

In this study, 34,122 SNPs were used to examine the association with RA susceptibility in the

NARAC dataset. The examined SNPs belonged to chromosome 6. The surveyed SNPs on

chromosome 6 of the NARAC dataset were dense enough for the application of the haplotype

block methods. Four methods were applied to assign the associations (three haplotype block

Fig 3. Manhattan plot for the associations between genotyped SNPs (chromosome 6 of the NARAC dataset) and

RA susceptibility using individual SNP approach. The upper part represents chromosome 6 ideogram and its

genomic coordinates. The Y-axis shows–log10(P-values), which represent the strength of association. The larger the

point and the higher the point on the scale, the more significant the association with RA susceptibility.

https://doi.org/10.1371/journal.pone.0209603.g003

Table 3. A comparison among haplotype block methods results.

Items CIT FGT SSLD

Total number of blocks 5,888 6,293 5,313

Maximum block size (bp) 480,781 351,442 430,369

Maximum significant block size (bp) 209,236 142,115 198,772

Median block size (bp) 8,456 9,582 13,943

Median significant block size (bp) 8,671 7,447 10,122

Minimum block size (bp) 6 6 6

Minimum significant block size (bp) 25 25 76

Median number of SNPs within each block 3 4 5

Median number of SNPs within each significant block 5 5 7

Percentage of uncovered SNPs by the block method 19.46% 10.25% 3.3%

Percentage of significant blocks from the total number of blocks 2.72% 2.84% 2.73%

Total number of significant haplotypes 307 343 302

Total number of significant SNPs 1,086 1,099 1,322

Intersection with SNPs detected by individual SNP approach (432 SNPs) 381 387 415

Intersection with top 50 SNPs (lowest P-values) detected by the individual SNP

approach

47 48 50

https://doi.org/10.1371/journal.pone.0209603.t003
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Table 4. The top 50 associated SNPs discovered by the individual SNP approach with the corresponding haplotype blocks.

SNP ID Position

(bp)

Assoc.

Allelea

AAFb (Case,

Control)

P-value Gene / Nearest

Genes

Haplotype Block (Method, P-

value, No. of SNPs in Block)

Haplotype Block Position

(bp) (Start, End, Size)

Previously Studied in

rs1033500 32415360 A 0.619, 0.393 2.1 E-45 C6orf10 CIT, 3.49 E-44, 15 32415360, 32445664, 30305 [25]

FGT, 3.12 E-44, 8 32398932, 32425613, 26682

SSLD, 1.48 E-97, 26 32390832, 32445664, 54832

rs1980495 32454772 C 0.511, 0.269 3.45 E-52 C6orf10 / BTNL2 CIT, 4.08 E-59, 9 32454772, 32471794, 17023 [26, 27]

FGT, 4.08 E-59, 9 32454772, 32471794, 17023

SSLD, 1.46 E-81, 3 32449376, 32456123, 6748

rs2076530 32471794 G 0.699, 0.444 2.97 E-59 BTNL2 CIT, 4.08 E-59, 9 32454772, 32471794, 17023 [28–32]

FGT, 4.08 E-59, 9 32454772, 32471794, 17023

SSLD, 4.62 E-59, 7 32462406, 32471794, 9388

rs2395157 32456123 G 0.528, 0.276 8.58 E-60 C6orf10 / BTNL2 CIT, 4.08 E-59, 9 32454772, 32471794, 17023 [33]

FGT, 4.08 E-59, 9 32454772, 32471794, 17023

SSLD, 1.46 E-81, 3 32449376, 32456123, 6748

rs2395163 32495787 G 0.509, 0.203 1.61 E-94 BTNL2 /

HLA-DRA

CIT, 5.66 E-95, 11 32495758, 32512856, 17098 [34–39]

FGT, 4.41 E-95, 5 32491086, 32495787, 4702

SSLD, 4.86 E-95, 14 32491086, 32512837, 21752

rs2395185 32541145 A 0.589, 0.315 1.01 E-68 HLA-DRA /

HLA-DRB5

CIT, 6.63 E-131, 11 32541145, 32713862, 172718 [32, 36, 37, 40, 41]

FGT, 5.2 E-72, 4 32536263, 32678378, 142116

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs2516049 32678378 G 0.576, 0.305 2.61 E-67 HLA-DRB1 /

HLA-DQA1

CIT, 6.63 E-131, 11 32541145, 32713862, 172718 [32, 33, 36, 37, 42, 43]

FGT, 5.2 E-72, 4 32536263, 32678378, 142116

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs2647012 32772436 G 0.837, 0.624 1.76 E-50 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [32, 44, 45]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs2856717 32778286 G 0.838, 0.624 6.97 E-51 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs2856725 32774716 A 0.837, 0.623 1.05 E-50 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 46]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs2858305 32778442 A 0.838, 0.624 6.97 E-51 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [33, 45]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs3129871 32514320 C 0.835, 0.631 2.14 E-46 BTNL2 /

HLA-DRA

SSLD, 5.38 E-41, 2 32512856, 32514320, 1465 [31, 46, 47]

rs3763309 32483951 A 0.507, 0.209 6.48 E-89 BTNL2 /

HLA-DRA

CIT, 1.99 E-89, 8 32483951, 32491201, 7251 [35–38, 48]

FGT, 1.46 E-87, 7 32483951, 32488240, 4290

SSLD, 1.46 E-87, 6 32481290, 32487361, 6072

rs3763312 32484326 A 0.505, 0.207 1.05 E-88 BTNL2 /

HLA-DRA

CIT, 1.99 E-89, 8 32483951, 32491201, 7251 [35, 36, 39, 46]

FGT, 1.46 E-87, 7 32483951, 32488240, 4290

SSLD, 1.46 E-87, 6 32481290, 32487361, 6072

rs3817963 32476065 G 0.534, 0.294 1.23 E-54 BTNL2 CIT, 1.07 E-54, 3 32474399, 32476065, 1667 [31, 37, 39, 49–52]

FGT, 2.51 E-42, 4 32476065, 32481676, 5612

SSLD, 1.54 E-54, 4 32474399, 32477466, 3068

rs3817973 32469089 A 0.698, 0.440 5.48 E-61 C6orf10 / BTNL2 CIT, 4.08 E-59, 9 32454772, 32471794, 17023 [31, 32, 39]

FGT, 4.08 E-59, 9 32454772, 32471794, 17023

(Continued)
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Table 4. (Continued)

SNP ID Position

(bp)

Assoc.

Allelea

AAFb (Case,

Control)

P-value Gene / Nearest

Genes

Haplotype Block (Method, P-

value, No. of SNPs in Block)

Haplotype Block Position

(bp) (Start, End, Size)

Previously Studied in

SSLD, 4.62 E-59, 7 32462406, 32471794, 9389

rs3957148 32790115 G 0.277, 0.094 1.88 E-53 HLA-DQB1 /

HLA-DQA2

CIT, 6.72 E-54, 7 32788906, 32790115, 1210 [53, 54]

FGT, 2.32 E-53, 4 32789654, 32790286, 633

SSLD, 6.72 E-54, 7 32788906, 32790115, 1210

rs4424066 32462406 G 0.698, 0.440 1.18 E-60 C6orf10 / BTNL2 CIT, 4.08 E-59, 9 32454772, 32471794, 17023 [32, 55]

FGT, 4.08 E-59, 9 32454772, 32471794, 17023

SSLD, 4.62 E-59, 7 32462406, 32471794, 9389

rs477515 32677669 A 0.575, 0.304 2.72 E-67 HLA-DRB1 /

HLA-DQA1

CIT, 6.63 E-131, 11 32541145, 32713862, 172718 [32, 36, 42, 56]

FGT, 5.2 E-72, 4 32536263, 32678378, 142116

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs5000634 32771542 G 0.614, 0.382 1.09 E-48 HLA-DQB1 /

HLA-DQA2

CIT, 2.62 E-81, 3 32767856, 32771829, 3974 [32, 33, 57]

FGT, 1.03 E-48, 4 32766602, 32771829, 5228

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs547077 32397296 G 0.622, 0.397 3.98 E-46 C6orf10 CIT, 3.14 E-98, 18 32332366, 32406350, 73985 [39]

FGT, 1.5 E-98, 15 32332366, 32397296, 64931

SSLD, 1.48 E-97, 26 32390832, 32445664, 54833

rs6457617 32771829 A 0.803, 0.508 2.55 E-82 HLA-DQB1 /

HLA-DQA2

CIT, 2.62 E-81, 3 32767856, 32771829, 3974 [32, 33, 36, 43, 48, 58–75]

FGT, 1.03 E-48, 4 32766602, 32771829, 5228

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs660895 32685358 G 0.529, 0.192 1.03 E-

113

HLA-DRB1 /

HLA-DQA1

CIT, 6.63 E-131, 11 32541145, 32713862, 172718 [33, 35–43, 46, 47, 51, 60, 65,

68, 71, 76–92]

FGT, 1.84 E-113, 8 32680229, 32713862, 33634

SSLD, 8.37 E-108, 11 32680229, 32760295, 80067

rs6903608 32536263 A 0.882, 0.688 2.84 E-48 HLA-DRA /

HLA-DRB5

FGT, 5.2 E-72, 4 32536263, 32678378, 142116 [32, 33, 40, 55]

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs6910071 32390832 G 0.506, 0.195 1.25 E-98 C6orf10 CIT, 3.14 E-98, 18 32332366, 32406350, 73985 [33, 35–40, 43, 46–48, 50, 65,

68, 71, 79, 86–89, 93, 94]

FGT, 1.5 E-98, 15 32332366, 32397296, 64931

SSLD, 1.48 E-97, 26 32390832, 32445664, 54833

rs6932542 32488240 G 0.769, 0.527 1.06 E-56 BTNL2 /

HLA-DRA

CIT, 1.99 E-89, 8 32483951, 32491201, 7251 [33, 95]

FGT, 1.46 E-87, 7 32483951, 32488240, 4290

SSLD, 4.87 E-53, 3 32487714, 32488240, 527

rs7192 32519624 C 0.826, 0.608 1.68 E-51 HLA-DRA CIT, 2.05 E-25, 3 32519501, 32521295, 1795 [31, 33, 39, 46, 96, 97]

FGT, 2.05 E-25, 3 32519501, 32521295, 1795

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs9268528 32491086 G 0.596, 0.365 8.28 E-49 BTNL2 /

HLA-DRA

CIT, 1.99 E-89, 8 32483951, 32491201, 7251 [98–100]

FGT, 4.41 E-95, 5 32491086, 32495787, 4702

SSLD, 4.86 E-95, 14 32491086, 32512837, 21752

rs9268542 32492699 G 0.597, 0.371 1.56 E-46 BTNL2 /

HLA-DRA

FGT, 4.41 E-95, 5 32491086, 32495787, 4702 [98, 99]

SSLD, 4.86 E-95, 14 32491086, 32512837, 21752

rs9268832 32535767 G 0.819, 0.597 1.82 E-52 HLA-DRA /

HLA-DRB5

CIT, 8.33 E-54, 2 32522251, 32535767, 13517 [32, 39, 41, 96]

FGT, 8.33 E-54, 2 32522251, 32535767, 13517

SSLD, 3.47 E-77, 9 32519501, 32678378, 158878

rs9275224 32767856 G 0.804, 0.511 1.74 E-81 HLA-DQB1 /

HLA-DQA2

CIT, 2.62 E-81, 3 32767856, 32771829, 3974 [32, 36, 39, 99, 101]

FGT, 1.03 E-48, 4 32766602, 32771829, 5228

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

(Continued)
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Table 4. (Continued)

SNP ID Position

(bp)

Assoc.

Allelea

AAFb (Case,

Control)

P-value Gene / Nearest

Genes

Haplotype Block (Method, P-

value, No. of SNPs in Block)

Haplotype Block Position

(bp) (Start, End, Size)

Previously Studied in

rs9275312 32773706 G 0.297, 0.121 7.05 E-45 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [33, 41]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275371 32776274 G 0.488, 0.259 2.57 E-47 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [46, 99]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275374 32776504 A 0.482, 0.246 1.69 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 47, 102]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275383 32776824 A 0.261, 0.085 6.20 E-50 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [103]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275388 32777062 G 0.482, 0.241 7.21 E-57 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [33, 45]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275390 32777134 G 0.482, 0.246 1.69 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [47, 51, 57, 64, 75, 99, 104]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275393 32777417 A 0.482, 0.246 2.72 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 99]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275406 32777933 A 0.482, 0.246 1.38 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [41, 45, 51, 105]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.49 E-53, 20 32767856, 32777978, 10123

rs9275407 32778015 A 0.483, 0.245 9.06 E-56 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 99]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275408 32778088 G 0.463, 0.231 6.75 E-52 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 -

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275418 32778222 G 0.482, 0.246 1.4 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 106–108]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275424 32778554 G 0.482, 0.246 1.4 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 99]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275425 32778852 A 0.477, 0.244 5.74 E-54 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 99]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275427 32778893 A 0.482, 0.246 1.86 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45]

(Continued)
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methods and individual SNP approach). The three used haplotype block methods were CIT,

FGT, and SSLD. The individual SNP analysis was to point to chromosome regions that are

genetically linked to the disease. The haplotype block methods were to further expand from

the single SNPs with the strongest signal to the actual causal variants [112].

The aim of this study is to test the NARAC dataset to find out if haplotype block methods

or single-locus approach alone can sufficiently provide the significant biomarkers associated

with RA. Our research failed to select the best method as each method yielded significant

results that were not detected using any of the other methods. S2 Table showed the SNP IDs

that were uniquely identified by each method. The individual SNP, CIT, FGT, and SSLD meth-

ods exclusively detected 12, 55, 37, and 189 SNPs, respectively. Our findings were in line with

Shim et al. conclusion (but they didn’t test the SSLD method) that both the individual SNP

approach and the haplotype block methods should be applied side by side to discover the valu-

able associations in the NARAC dataset [5].

In addition, the 367 SNPs- that were significantly associated with RA susceptibility by the

individual SNP approach and the haplotype block methods- represent potent candidates for

further investigations (S6 Spreadsheet). The three haplotype block methods were able to detect

916 associated SNPs in common. The SSLD method detected more significant SNPs (1,322)

than CIT (1,086), FGT (1,099), and individual SNP (432) methods. This observation could be

understood, as the SSLD does not take into account the LD between the intermediate SNPs.

Therefore, the SSLD method is the lowest conservative method in including SNPs inside it’s

blocks.

The block similarity for the three applied methods were shown in Table 5. The similarity

measure represented the intersected SNPs divided by the union SNPs for the two studied

Table 4. (Continued)

SNP ID Position

(bp)

Assoc.

Allelea

AAFb (Case,

Control)

P-value Gene / Nearest

Genes

Haplotype Block (Method, P-

value, No. of SNPs in Block)

Haplotype Block Position

(bp) (Start, End, Size)

Previously Studied in

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275428 32778956 G 0.482, 0.247 3.3 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 99, 109]

FGT, 3.26 E-52, 28 32772436, 32778956, 6521

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275439 32779499 G 0.479, 0.245 9.76 E-55 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [41, 45, 99]

FGT, 2.66 E-54, 2 32779081, 32779499, 419

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275555 32785066 A 0.475, 0.222 3.04 E-63 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [45, 46]

FGT, 3.19 E-61, 3 32785066, 32786977, 1912

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275572 32786977 G 0.822, 0.599 7.07 E-53 HLA-DQB1 /

HLA-DQA2

CIT, 3.68 E-54, 31 32772436, 32786977, 14542 [40, 45, 110]

FGT, 3.19 E-61, 3 32785066, 32786977, 1912

SSLD, 1.55 E-52, 17 32778015, 32787668, 9654

rs9275595 32789333 G 0.462, 0.218 2.59 E-61 HLA-DQB1/

HLA-DQA2

CIT, 6.72 E-54, 7 32788906, 32790115, 1210 [39, 40, 45, 104, 111]

SSLD, 6.72 E-54, 7 32788906, 32790115, 1210

aAssoc. Allele: Associated Allele.
bAAF: Associated Allele Frequency.

https://doi.org/10.1371/journal.pone.0209603.t004
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methods. The highest block similarity was between the CIT method and the FGT method.

While, the lowest block similarity was between the CIT method and the SSLD method. The

results showed that the FGT method had the most similarity with the other methods.

Fig 4 demonstrated the overlapping of the significant blocks resulted from the three haplo-

type block methods. Nearly, all chromosome 6 regions that were associated with RA were in

Table 5. Block similarity among the used haplotype block methods.

Block Method CIT FGT SSLD

CIT 1 0.76 0.71

FGT 1 0.74

SSLD 1

https://doi.org/10.1371/journal.pone.0209603.t005

Fig 4. Comparison of the haplotype blocks obtained by the three methods. Each circle conistituted a significant haplotype block

associated with RA susceptibility. The plot area represented chromosome 6, then zooming in on the MHC region.

https://doi.org/10.1371/journal.pone.0209603.g004
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blocks that were detected by more than one method. Most of the haplotype blocks that showed

significant associations with RA disease were in the MHC region or near it (+ 3 Mb). Most of

the 916 SNPs that were detected by the three block methods were in the MHC region. These

outcomes confirmed the strong association between the MHC region and RA susceptibility.

For further analysis of the results, a comparison between the properties of the SNPs that

were detected by all the methods (intersection) and that were uniquely detected by one method

(unique) was shown in Table 6. The properties of all the associated SNPs detected by the corre-

sponding method (reference) were added to Table 6 for more clarification. For all the methods,

the P-values of the (intersection) were lower than that of the (reference) and more lower than

that of the (unique). This observation confirmed that the 367 SNPs (intersection) represents

potent candidates for further investigations. For the CIT and FGT methods, the median block

size (bp) of the (unique) was greater than that of the (intersection) and more greater than the

(reference). However, this observation might be due to the small number of blocks represent-

ing the (unique) in comparison to the (intersection) and the (reference). While, when the

number of blocks representing the (unique) (53) was sufficiently comparable to that of the

(intersection) (104) and the (reference) (145) in the SSLD method, the median block size (bp)

of the (intersection) was greater than that of the (unique) and more greater than that of the

(reference).

Some associated SNPs were discovered using all the methods but others were observed by

only one method. This finding might be explained by some reasons. For the associations that

were observed using individual SNP approach only, it may be that only one SNP represent

strong LD with the causal SNP. Therefore, studying haplotypes could decrease the power of

association as they consist of several SNPs.

Table 6. A comparison between the associated SNPs detected with different categories.

Method Items Significant SNPs detected by all methods

(intersection)

All significant SNPs detected by a

method (reference)

Significant SNPs detected by only one

method (unique)

CIT # SNPs 367 1,086 55

# blocks 127 160 8

Average P-values 1.63 E-07 7.20 E-07 3.33 E-06

Median Block Size

(#SNPs)

5 5 7

Median Block Size

(BP)

9,755 8,671 17,021

FGT # SNPs 367 1,099 37

# blocks 134 179 12

Average P-values 1.37 E-07 5.6 E-07 7.84 E-07

Median Block Size

(#SNPs)

6 5 7

Median Block Size

(BP)

9,227 7,447 11,394

SSLD # SNPs 367 1,322 189

# blocks 104 145 53

Average P-values 1.86 E-07 6.57 E-07 9.34 E-07

Median Block Size

(#SNPs)

9 7 8

Median Block Size

(BP)

17,054 10,122 11,604

Individual

SNP

# SNPs 367 432 12

Average P-values 1.25 E-07 1.35 E-07 3.26 E-07

https://doi.org/10.1371/journal.pone.0209603.t006
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For the associations that were observed using the haplotype block methods only, Individual

SNP approach required approximately 83% more tests than the haplotype block methods.

Consequently, the Bonferroni correction was more severe for the individual SNP approach.

Moreover, the haplotype block methods were able to capture the interactions among many

causal SNPs. In addition, haplotypes could capture rare alleles that individual SNPs may not

detect. This reason could be clarified as the power to observe associations is maximized when

the frequencies of the studied biomarker and the causal SNP are similar.

For the associations that were observed using a haplotype block method but not by the

other haplotype block methods, each method differs greatly from the others in its scope of the

definition of the haplotype blocks. At last, we conclude that the application of the individual

SNP approach and the three haplotype block methods altogether on chromosome 6 of the

NARAC dataset will in turn maximize the system’s ability for discovering crucial associations.

In case of selecting one method, the SSLD would be the most appropriate method for the

NARAC dataset. The SSLD method has valuable advantages such as the highest genomic cov-

erage, the largest minimum, median, and maximum significant block sizes, the biggest number

of significant SNPs included in blocks, and the biggest number of associated SNPs discovered

exclusively by a method.

The limitations of this study are as follows: a) the effects of population stratification were

not accounted for; b) a replication study in other datasets was not performed. In addition, fur-

ther investigations of other haplotype block methods, such as hidden Markov model [113,

114], dynamic programming-based algorithm [115–119], wavelet decomposition [120], greedy

algorithm [121], minimum description length [122, 123], spatial correlation of SNPs [124],

sequence kernel association tests [125], and block entropy [126] should be applied and com-

pared to show the effect of the changes in block partitions on the resulting associated

biomarkers.

Supporting information

S1 Fig. The confidence interval test (CIT) method showing the definition of strong LD and

weak LD.

(TIF)

S2 Fig. LD block structure as found by the solid spine of linkage disequilibrium (SSLD)

method.

(TIF)

S1 Table. The processing time for each performed step.

(DOCX)

S2 Table. SNP IDs that were uniquely identified by each method.

(DOCX)

S1 Spreadsheet. Properties for the associated SNPs using CIT method. Sheet1 “ID” repre-

sents SNPs IDs, and each row represents a block. Sheet2 “Bp” represents SNPs physical posi-

tions in base pairs, and each row represents a block. Sheet3 “No. of SNPs in Block” represents

the number of SNPs in each block. Sheet4 “Start-Stop”–first column represents blocks start

physical positions in base pairs. Sheet4 “Start-Stop”–second column represents blocks end

physical positions in base pairs. Sheet4 “Start-Stop”–third column represents blocks sizes in

base pairs. Sheet5 “Block no.” represents the block numbers (positions) from all blocks parti-

tioned by CIT method. Sheet6 “P-values” represents the P-values of the blocks.

(XLS)

Does the method of haplotype partitioning affect the association results of chromosome 6 of the NARAC dataset?

PLOS ONE | https://doi.org/10.1371/journal.pone.0209603 December 31, 2018 14 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209603.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209603.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209603.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209603.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209603.s005
https://doi.org/10.1371/journal.pone.0209603


S2 Spreadsheet. Properties for the associated SNPs using FGT method. Sheet1 “ID” repre-

sents SNPs IDs, and each row represents a block. Sheet2 “Bp” represents SNPs physical posi-

tions in base pairs, and each row represents a block. Sheet3 “No. of SNPs in Block” represents

the number of SNPs in each block. Sheet4 “Start-Stop”–first column represents blocks start

physical positions in base pairs. Sheet4 “Start-Stop”–second column represents blocks end

physical positions in base pairs. Sheet4 “Start-Stop”–third column represents blocks sizes in

base pairs. Sheet5 “Block no.” represents the block numbers (positions) from all blocks parti-

tioned by FGT method. Sheet6 “P-values” represents the P-values of the blocks.

(XLS)

S3 Spreadsheet. Properties for the associated SNPs using SSLD method. Sheet1 “ID” repre-

sents SNPs IDs, and each row represents a block. Sheet2 “Bp” represents SNPs physical posi-

tions in base pairs, and each row represents a block. Sheet3 “No. of SNPs in Block” represents

the number of SNPs in each block. Sheet4 “Start-Stop”–first column represents blocks start

physical positions in base pairs. Sheet4 “Start-Stop”–second column represents blocks end

physical positions in base pairs. Sheet4 “Start-Stop”–third column represents blocks sizes in

base pairs. Sheet5 “Block no.” represents the block numbers (positions) from all blocks parti-

tioned by SSLD method. Sheet6 “P-values” represents the P-values of the blocks.

(XLS)

S4 Spreadsheet. Properties for the associated SNPs using individual SNP approach. Sheet1

“ID” represents SNPs IDs. Sheet2 “Bp” represents SNPs physical positions in base pairs. Sheet6

“P-values” represents the P-values of the SNPs.

(XLS)

S5 Spreadsheet. Intersection between haplotype methods and individual SNP approach.

Sheet1 “CIT” represents SNPs IDs detected by both CIT method and Individual SNP

Approach. Sheet2 “FGT” represents SNPs IDs detected by both FGT method and Individual

SNP Approach. Sheet3 “SSLD” represents SNPs IDs detected by both SSLD method and Indi-

vidual SNP Approach.

(XLS)

S6 Spreadsheet. The SNPs IDs identified by all the used methods.

(XLS)
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