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Abstract

Genomic prediction exploits single nucleotide polymorphisms (SNPs) across the whole

genome for predicting genetic merit of selection candidates. In most models for genomic

prediction, e.g. BayesA, B, C, R and GBLUP, independence of SNP effects is assumed.

However, SNP effects are expected to be locally dependent given the presence of a nearby

QTL because SNPs surrounding the QTL do not segregate independently. A consequence

of ignoring this dependence is that SNPs with small effects may be overly shrunk, e.g.

effects from markers with high minor allele frequencies (MAF) that flank QTL with low MAF.

A nested mixture model (BayesN) is developed to account for the dependence of effects of

SNPs that are closely linked, where the effects of SNPs in every non-overlapping genomic

window a priori follow a point mass at zero for all SNPs or a mixture of some SNPs with non-

zero effects and others with zero effects. It can be regarded as a parsimonious alternative to

the existing antedependence model, antiBayesB, which allow a nonstationary dependence

of SNP effects. Illumina 777K BovineHD genotypes from 948 Angus cattle were used to sim-

ulate 5,000 offspring, with 4,000 used for training and 1,000 for validation. Scenarios with

300 common (MAF > 0.05) or rare (MAF < 0.05) QTL randomly selected from segregating

SNPs were replicated 8 times. SNPs corresponding to QTL were masked from a 600k panel

comprising SNPs with MAF > 0.05 or a 50k evenly spaced subset of these. Compared with

BayesB and a modified antiBayesB, BayesN improved the accuracy of prediction up to

2.0% with 50k SNPs and up to 7.0% with 600k SNPs, most improvements occurring in the

rare QTL scenario. Computing time was reduced up to 60% with 50k SNPs and up to 75%

with 600k SNPs. BayesN is an accurate and computationally efficient method for genomic

prediction with whole-genome SNPs, especially for traits with rare QTL.

Introduction

Genomic prediction exploits single-nucleotide polymorphisms (SNPs) across the whole

genome for predicting genetic merit of selection candidates. It has been successfully applied in
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animal breeding using panels with about 50k SNPs (medium-density, MD) [1–3]. High-den-

sity (HD) SNP panels, such as those with more than 500k SNPs, are expected to include a large

number of SNPs that are physically proximal to every causal variant or quantitative trait locus

(QTL). An HD panel must contain a subset of informative markers that provide more accurate

prediction than an equivalent number of markers from an MD panel. The challenge is to

develop a prediction equation that derives most of its predictive ability from that informative

subset. The advantage of using HD rather than MD SNP panels has been small in practice [4–

6], demonstrating either insufficient data or inadequacies of currently applied methods.

One possible explanation for the failure to improve predictive ability using an HD rather

than MD panel is that the QTL underlying the trait may have low minor allele frequency

(MAF), whereas the markers are typically chosen to avoid low MAF [7]. In the absence of bal-

ancing selection, ancient mutations will have low MAF, as will any recent mutation. High link-

age disequilibrium (LD) cannot exist between a SNP and QTL that have widely varying allele

frequencies [8]. Such a SNP alone cannot capture the effect of QTL with rare alleles.

Compared to QTL with high MAF, QTL with low MAF will need more SNPs to jointly cap-

ture the QTL effect. Informative priors can be used to allow multiple SNPs that are linked to

the QTL to jointly capture its effect. As shown in S1 Appendix, the cosegregation of QTL and

linked SNPs will result in these SNP effects being dependent. Modeling such dependence of

SNP effects in the prior will improve the ability the SNPs close to a QTL to jointly capture its

effect. Note that in most models used for genomic prediction [9–13], SNP effects are assumed

to be independently and identically distributed. For instance, the BayesB model [9] assumes a

prior distribution that is an i.i.d. mixture of a point mass at zero and a t-distribution for each

SNP effect to accommodate situations where only a fraction of SNPs have nonzero effects. Pri-

ors that model the dependence of SNP effects allow SNPs surrounding a QTL to jointly capture

its effect better than priors that assume independence of SNP effects.

Furthermore, the dependence between SNP effects is expected to increase with panel den-

sity, in that the multi-locus LD with the QTL increases, although the pairwise LD between sin-

gle SNPs and QTL may be low for QTL with rare alleles. In mixture models that ignore the

dependence of SNP effects, the prior probability that a SNP has a nonzero effect decreases as

panel density increases, since the number of QTL is a characteristic of the trait and population

but not of the panel density. As a consequence, the effects of SNPs with small effects will be

shrunk toward zero, as the prior probability that a SNP has nonzero effect decreases. But in

models that account for the dependence of SNP effects, the effects of SNPs that are linked to a

QTL are expected to be shrunk less because modeling the dependence of SNP effects will facili-

tate these SNPs to be included in the model jointly.

Gianola et al. [14] and Yang and Tempelman [13] have proposed models to account for the

dependence of SNP effects along the chromosome. They were motivated by the evidence of

coexpression of genes on the same chromosome [14, 15]. Coexpression of QTL will increase

dependence of their effects, and thus, the effects of QTL and those closely linked SNPs are

expected to be correlated [14]. However, as discussed above, SNP effects can be correlated

even without coexpression due to cosegregation of SNP and QTL alleles. Gianola et al. [14]

proposed several approaches to model the covariance between marker effects, but all of them

have a stationary structure [13]. The model of Yang and Tempelman [13] is a first-order ante-

dependence model that allows for a nonstationary covariance structure. In their model, besides

the first SNP on a chromosome, each following SNP has an independent effect in addition to a

regression on the effect of its anterior neighbor. Thus, the number of effects in the model is

twice the number of SNPs on a chromosome minus one. This doubles the number of effects to

be estimated. The BayesB model with antedependence covariance structure was referred to as

anteBayesB [13].

Genomic prediction using BayesN
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In this study, a nested mixture model (BayesN) is developed to account for the dependence

of effects for SNPs that are closely linked. The effects of SNPs within an arbitrary non-overlap-

ping chromosomal segment, e.g. 1 or 0.2 megabase (Mb), are collectively considered as a win-

dow. The prior for the collective SNP effects in window i follows a point mass at zero for all

SNPs with known or unknown probability P or a mixture of some SNPs with nonzero effects

and others with zero effects with probability (1 − P). The dependence of SNP effects is mod-

eled through such a window hierarchy. Furthermore, the Markov chain Monte Carlo

(MCMC) sampling is expected to be more efficient with BayesN because with probability P all

SNPs in the window are sampled to have zero effects, instead of sampling each SNP effect

from a mixture distribution as in BayesB. This benefit will increase with SNP density and be

greatest for genomic prediction using next-generation sequence density.

The objective of this paper is to introduce the nested model and compare its predictive and

computational performance with that of anteBayesB and BayesB. Training and validation pop-

ulations were simulated offspring derived from 948 Aberdeen Angus cattle that had been gen-

otyped using the Illumina 777k BovineHD BeadChip. Two scenarios corresponding to trait

variation being determined by QTL with common or rare MAF were investigated for each of

two different SNP densities, corresponding to 50k and 600k panels.

Methods

The general model for genomic prediction is a mixed linear model [9, 16]:

y ¼ Xβþ Zuþ e; ð1Þ

where y is a vector of n phenotypes, X is an incidence matrix for the fixed effects, β is a vector

of fixed effects with a flat prior, Z is an n × m matrix of SNP genotype scores 2{0, 1, 2}, u is a

vector of random effects of m SNPs with mixture priors, and e is a vector of residuals

with each element� Nð0;s2
eÞ with prior distribution for s2

e is neS2
e w� 2

ne
, where scale factor

S2
e ¼

VEðne� 2Þ

ne
for a given residual variance VE and νe is the degrees of freedom associated with

the prior. In this study, the only fixed effect was the population mean. Complete specification

of the model requires prior specification of the SNP effects, and there are a number of com-

monly used alternative priors [9–13]. First, the prior specification for BayesB, which assumes

independence of SNP effects, is briefly introduced, and then the prior specifications for BayesN

and anteBayesB, which account for the dependence of SNP effects, are described.

BayesB

It is assumed that each SNP effect in Eq (1) is independently and identically distributed as:

uj �
i:i:d:

0;

tna
ð0; S2

a
Þ;

with probability p;

with probability 1 � p;

8
<

:

where the degrees of freedom να, the scale factor S2
a

and the probability π are assumed known

hyperparameters.

Following [16], for computational convenience, uj can be written as the product of a t-vari-

able and a Bernoulli indicator variable:

uj ¼ ajdj: ð2Þ

The prior for αj is a normal distribution conditional on a locus-specific variance s2
j , which has
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a scaled inverse Chi-square distribution [9]:

ajjs
2
j � Nð0; s2

j Þ;

s2
j � naS2

a
w� 2

na
:

The resulting marginal distribution for αj is a univariate-t [17]:

aj � tna
ð0; S2

a
Þ:

A fat-tailed t-distribution with να = 4 was chosen to accommodate some SNPs with large

effects. The value of S2
a

is calculated as

S2
a
¼

VA

2pqð1 � pÞm
na � 2

na

; ð3Þ

where VA is the additive genetic variance and pq is the mean product of alternate allele fre-

quencies for all SNPs [16]. Simplification of this prior for αj that specifies a common variance

for all SNPs, ajjs
2
a
� Nð0; s2

a
Þ, is known as BayesC [10].

The prior for δj is,

dj ¼

0

1

with probability p;

with probability 1 � p:

8
<

:

Usually, for m� n, a value close to one is given to π to account for the fact that the majority of

SNPs are not expected to be associated with the trait. To better demonstrate the meaning of π,

we calculated it based on the number s of QTL obtained from the simulation, assuming that

on average each QTL is associated with k = 2 or 10 SNPs,

p ¼
m � s � k

m
: ð4Þ

We will see later that this expression for π is also useful to compare methods at the same level

of π. In practice, there may not be sufficient information on the values of s and k. However, π
can be considered as unknown with a uniform prior between zero and one. But, we have

observed that BayesB with this prior has a mixing problem when sample size is small. Thus,

Habier et al. [11] used BayesC with π was treated as unknown, and this approach is called

BayesCπ. Thus, the posterior mean of π from BayesCπ is often used as the value of π in BayesB

[18–20].

Substituting uj by αj δj, Eq (1) can be written as

y ¼ Xβþ
Xm

j¼1

Zjajdj þ e: ð5Þ

It is straightforward to sample αj and δj from their full conditional distributions with this

model as both have closed forms [16].

BayesN

According to the map positions of SNPs, SNP effects are nested within non-overlapping win-

dows. As described below, hierarchical mixtures at the window and SNP levels are used to

account for the dependence of SNP effects within a window but independence between win-

dows. Let Δi be a Bernoulli indicator specifying whether window i is in or out of the model. As

Genomic prediction using BayesN
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in Eq (2), the effect uij for SNP j in window i can then be parameterized as the product of three

variables:

uij ¼ aijdijDi: ð6Þ

The prior for αij is a normal conditional on a window-specific common variance s2
i that has a

scaled inverse Chi-square distribution:

aijjs
2
i � Nð0; s2

i Þ;

s2
i � naS2

a
w� 2

na
;

which results in a multivariate-t distribution [17] for αi:

αi � tna
ð0; IS2

a
Þ:

With this prior, the effects are uncorrelated but dependent. BayesN is similar to BayesB in that

the conditional prior for the window effect has a window-specific variance, just as the condi-

tional prior for the SNP effect in BayesB has a locus-specific variance. On the other hand,

BayesN is similar to BayesC in that the conditional prior for effects within a window have a

common variance just as the conditional prior for SNP effects in BayesC have a common

variance.

The prior for the locus effect indicator in Eq (6) is

dij ¼

0

1

with probability pi;

with probability 1 � pi;

8
<

:

where πi is the window-specific probability calculated as

pi ¼
mi � k

mi
;

where mi is the number of SNPs in window i, and k is the number of SNPs to be fitted per win-

dow. Assuming a window contains at most one QTL, k is the average number of SNPs associ-

ated with a QTL, as defined in Eq (4). The window-specific probability accounts for the

variability of SNP density across windows. It allows the probability of inclusion for the SNP

effect to be invariant to the SNP density outside the window.

The prior for the window effect indicator in Eq (6) is

Di ¼

0

1

with probability P;

with probability 1 � P;

8
<

:

where P is the proportion of windows that contain no QTL. Let w denote the total number of

windows in the genome. Again with the assumption of at most one QTL per window,

P ¼
w � s

w
;

where s is as defined in Eq (4). The window effect indicator introduces another source of

dependence for the SNP effects by forcing SNPs in a window to be fitted or dropped out of the

model jointly.

It can be shown that with these specifications for πi and P, when the number of SNPs in the

window mi is constant across all windows, the prior proportion of nonzero effects will be

Genomic prediction using BayesN
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equivalent to that specified in BayesB given the same value of k:

ð1 � PÞð1 � piÞ ¼
s � k

w �mi

¼
s � k
m

¼ 1 � p:

As in BayesCπ, P can be considered as unknown with an uniform prior. Because mixing was

an issue when BayesB was used with an unknown π, we conjectured that BayesN with win-

dow-specific variances may run into a similar mixing problem. Thus, results from BayesN

with window-specific variance s2
i is compared to those from BayesN with a common variance

s2
a

for all SNPs in the genome, which is referred to BayesNC, when P is treated as unknown.

For BayesN, Eq (1) can be written as

y ¼ Xβþ
Xw

i¼1

Xmi

j¼1

ZijaijdijDi þ e; ð7Þ

where Zij is the vector of genotypes for SNP j in window i. The SNP will have a nonzero effect

only when both δij = 1 and Δi = 1.

anteBayesB

The antedependence model described here is a modified version of anteBayesB [13]. As in

BayesB, the SNP effect uj can be factored into an underlying effect αj and a Bernoulli indicator

δj. In contrast to BayesB, it is further assumed that each αj can be modeled as:

aj ¼

g1

tjaj� 1 þ gj

if j ¼ 1;

if 2⩽ j⩽m;

8
<

:

or in matrix notation,

α ¼ Tα þ g

¼ ðI � TÞ� 1
g;

where T is an m × m matrix,

T ¼

0 0 0 � � � 0

t2 0 0 . .
.

0

0 t3 0 . .
.

0

..

. . .
. . .

. . .
.

0

0 0 0 tm 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:
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Conditional on T, the dependence of α is modeled by Var (α|T) = (I − T)−1 Var (γ)

(I − T)−T where

ðI � TÞ
� 1
ðI � TÞ

� T
¼

1 � � �
Qm

j¼2
ð� tjÞ

..

. . .
. ..

.

Qm
j¼2
ð� tjÞ � � � 1þ

Pm
j¼2

Qm
k¼j t2

k

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð8Þ

The conditional covariance structure shows that the effects of SNPs on the same chromo-

some are mutually correlated, and since tj < 1 for all j, the covariance between any two SNPs

diminishes to zero when they are far apart in location. Since the covariance variable tj is a nui-

sance parameter in anteBayesB, just like the variance variable s2
j is a nuisance parameter in

BayesB, which can be integrated out, the marginal variance-covariance structure of α is

VarðαÞ ¼ E½Varðα jTÞ�

¼

1 0

. .
.

0 1þ
Pm

j¼2

Qm
k¼j s2

t

2

6
6
6
6
4

3

7
7
7
7
5

s2
g
:

assuming tj has mean zero and variance s2
t and VarðgÞ ¼ Is2

g
. As expected (S1 Appendix), the

effects of SNPs are marginally uncorrelated, but the dependence of effects still holds because

the effects are not normally distributed as shown below. A downside of this model is that the

variance of SNP effects increases over SNPs, although the increment becomes negligible as the

product of s2
t approximates to zero. This is known as a non-stationary autoregressive model

for longitudinal analysis that are widely used in many fields. The covariance matrix for SNP

effects u is sparser than that shown above for α, as rows and columns are zero for SNPs with

δj = 0.

We specify gj � tng
ð0; S2

g
Þ with νγ = 4, the same as να in BayesB, and S2

g
¼ S2

a
in Eq (3). The

only difference between this model and Yang and Templeman’s anteBayesB, is that they

assumed a mixture distribution for γj instead of for the marginal marker effect. As a result, in

their model, variable selection is less related to the number of SNPs in the model, because a

SNP may still have an effect even if γj = 0, depending on the effect for the anterior SNP. The

prior for tj is also a t-distribution tnt
ð0; S2

t Þ, with νt = 4 and S2
t ¼ 0:1, such that the expected

value of the variance of tj is Eðs2
t Þ ¼

nt S2
t

nt � 2
¼ 0:2, following the results in their paper (S2 Fig in

Yang and Templeman).

MCMC

Gibbs sampling was used to construct a Markov chain that has a stationary distribution identi-

cal to the posterior distribution of the marker effects. The chain length was 21,000 or 101,000

and the first 1,000 samples were discarded as burn-in. Convergence of the chain was tested by

comparing results for two chain lengths on a subset of the scenarios. In order to improve

MCMC mixing, the SNP genotype matrix Z was centered so that Z1 = 0. The full conditional

distributions for BayesN are given in S2 Appendix. Statistical inference for the parameters and

predictions of breeding values were based on posterior means computed from the post-burn-in

Markov chain. Accuracy of prediction was calculated as the correlation between genomic esti-

mated breeding values (GEBV) and true breeding values (TBV) for validation individuals.

Genomic prediction using BayesN
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Paired t-tests were used to compare mean accuracies between marker panels or between meth-

ods, where pairs were based on the two accuracies of prediction obtained for the same replicate.

Data simulations

Our simulations were based on 948 Aberdeen Angus beef cattle that were genotyped with the

Illumina 777K BovineHD BeadChip [21]. These records were obtained from an existing indus-

try database, so no specific animal care and use committee approvals were required. The HD

chip included 774,268 SNPs on 30 chromosomes, among which 609,870 segregating SNPs

with MAF > 0.05 were used in the analyses referred to as comprising a 600k HD panel. A 50k

MD panel containing 51,094 SNPs was obtained by selecting every 12th SNP from the 600k

HD panel based on the physical map position for each SNP provided by Illumina. The average

distance between adjacent SNPs was 4.4 kilo-base (kb) for the 600k HD panel and 50.5 kb for

the 50k MD panel. The whole genome was divided into 2,649 non-overlapping 1 Mb windows,

with about 20 SNPs per window for the 50k panel and 230 SNPs per window for the 600k

panel, or 12,813 non-overlapping 0.2 Mb windows, with about 5 SNPs per window for the 50k

panel and 50 SNPs per window for the 600k panel. The haplotype phase for each genotype was

resolved via FImpute [22] without accounting for pedigree information. Fig 1 shows the aver-

age LD calculated from the haplotypes within 0.2 Mb distance, which are similar to what have

been found in other cattle populations [23]. The average LD between adjacent SNPs was 0.241

in the 50k panel and 0.567 in the 600k panel. The above information was summarized in

Table 1.

Phased haplotypes were used to simulate SNP genotypes for 5,000 offspring by simulated

random mating and allele dropping from the parents to the offspring; 4,000 of these were used

for training and the remaining 1,000 were used for validation. The number of crossovers per

meiosis was modeled by a binomial map function with an expectation of one crossover per

Morgan [24]. Mutation was ignored. Three hundred SNPs were randomly selected according

to MAF > 0.05 or < 0.05 to represent common or rare QTL, and these loci were masked from

the marker panels. The QTL effects were sampled from a standard normal distribution and

then divided by the realized additive genetic variance in the 5,000 offspring. The true breeding

values (TBV) were the sum of the QTL genotypes 2 {0, 1, 2} multiplied by the standardized

QTL effects. Trait phenotypes with heritability 0.5 were simulated by adding random standard

normal deviates to TBV. The simulation was carried out for eight replicates for each scenario

of the common versus rare QTL alleles.

Our simulation scheme resulted in some training and validation animals being half sibs.

Usually, ancestors and descendants are simulated for training and validation, respectively.

However, repetition of such a multi-generational simulation would have required greater

computational resources in our setting. We didn’t simulate a generation or time effect, there-

fore whether the training and validation animals are siblings or ancestors and descendants

should have a negligible impact on the results of model comparison. We have verified that

with simulations using only one chromosome.

Results

The change in accuracy of prediction was negligible for 100,000 compared to 20,000 post-

burn-in iterations of samples from the Markov chain. Accordingly, all subsequent results

reflect the 20,000 post-burn-in samples.

Genomic prediction using BayesN
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Fig 1. Average linkage disequilibrium (LD) between any two SNPs within 0.2 Mb distance across the genome. The shaded areas indicate one

standard deviation departures from the average. The average distance between adjacent SNPs for the MD 50k and HD 600k SNP panel are indicated as

broken vertical lines.

https://doi.org/10.1371/journal.pone.0194683.g001

Table 1. Information for the 50k MD and 600k HD panels in the analyses.

50k MD Panel 600k HD Panel

Number of SNPs 51,094 609,870

Distance between adjacent SNPs 50.5 kb 4.4 kb

LD between adjacent SNPs 0.241 0.567

Number of 1 Mb windows 2,649

Number of SNPs per 1 Mb windows 19.8 229.7

Number of 0.2 Mb windows 12,813

Number of SNPs per 0.2 Mb windows 4.6 47.5

https://doi.org/10.1371/journal.pone.0194683.t001
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Accuracy of prediction

Fig 2 shows the accuracy of prediction for common versus rare MAF for QTL alleles, SNP den-

sities (50k versus 600k), assumptions for the number of SNPs (2 versus 10) associated with

each QTL in the analysis, and different methods (BayesB, anteBayesB and BayesN with 1 or 0.2

Mb windows).

The accuracies were much lower when QTL alleles were all rare rather than common. The

average accuracy over all methods for the 50k panel was 0.589 for the rare QTL scenario versus

0.727 for the common QTL scenario. The 600k SNP panel resulted in an increase in the aver-

age accuracy by 0.076 (12.9%, p-value < 2e-16) for the rare QTL scenario and by 0.049 (6.7%,

p-value < 2e-16) for the common QTL scenario. Fitting 10 rather than 2 SNPs per QTL with

the 50k panel required a lower π value but tended to give higher average accuracy (by 0.006 or

0.8%, p-value = 7e-7). In contrast, with the 600k panel, results were most accurate when fitting

only 2 SNPs per QTL with a gain of 0.012 (1.7%, p-value = 1e-14) in average accuracy. We

therefore recommend to use k = 2 for HD panels and k = 10 for MD panels in practice.

Different window sizes for BayesN gave similar results, except in the case of rare QTL alleles

with the 600k panel. A small advantage was observed for BayesN over BayesB with the 50k

panel. For the common QTL scenario, using BayesN with 1 Mb windows increased accuracy

by 0.007 (1.0%, p-value = 0.031) for the high π value and by 0.005 (0.7%, p-value = 0.187) for

the low π value. For the rare QTL scenario, using BayesN with 1 Mb windows increased accu-

racy by 0.010 (1.8%, p-value = 0.025) for the high π value and by 0.012 (2.0%, p-value = 0.009)

Fig 2. The accuracy of prediction using BayesB, anteBayesB or BayesN with 1 or 0.2 Mb windows for two values of π or πi corresponding to 300

QTL each being associated with either 2 (red) or 10 (blue) SNP markers. Results are separated for common (row 1) versus rare (row 2) QTL alleles

with the MD 50k (column 1) versus HD 600k (column 2) SNP panel. Dots represent accuracies from each of the eight replicates, and the bar indicates

the mean.

https://doi.org/10.1371/journal.pone.0194683.g002
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for the low π value. Differences between models were negligible for the common QTL scenario

with 600k SNPs, due to the high LD between SNPs and the QTL. The advantage of BayesN was

maximized when all QTL were rare and the 600k panel was used. In this case, the accuracy

from BayesN with 1 Mb windows was greater than that from BayesB by 0.026 (4.0%, p-

value = 0.002) for the high π value and by 0.031 (4.9%, p-value = 9e-5) for the low π value. The

advantage from BayesN was even greater with 0.2 Mb windows, with increases in accuracy by

0.041 (6.3%, p-value = 3e-4) for the high π value and by 0.045 (7.0%, p-value = 3e-4) for the

low π value. The anteBayesB model was not competitive with BayesN and had almost the same

accuracies as BayesB for all cases.

When P and π were considered as unknown, similar results of prediction were observed

because the posterior distribution of P or π closely resembled the starting value due to a poor

mixing. However, the advantage of BayesN over BayesB in prediction still holds regardless of

estimation error in P and π.

Bias of prediction

Bias of predictions was represented by the deviation of the regression coefficient of TBV on

GEBV from one. In most cases, bias was small, in the range of −0.1 to 0.1, and not significant

at p< 0.001 (Fig 3). There was more variation in estimates of bias for the rare QTL scenario

(row 2) compared to the common QTL scenario (row 1). Overall, fitting 2 rather than 10 SNPs

per QTL in the model resulted in lower bias, especially for anteBayesB. In the case of common

QTL alleles, the GEBV from BayesN tended to be biased downward, with the mean of regres-

sion coefficients (1.024) exceeding one (p-value = 0.017) when fitting 2 SNPs per window in

the model.

Number of windows included in the model

If each window contains at most one QTL, the posterior mean of the number of windows with

nonzero effects reflects the number of the detected QTL. In each MCMC sample, a window

has a nonzero effect if Δi = 1 for BayesN, or if any SNP in that window has a nonzero effect for

BayesB and anteBayesB. When P was determined based on knowing the actual number of

QTL, the posterior mean for the number of windows with nonzero effects from BayesN was

always about 300, which was the number of simulated QTL, regardless of the SNP density and

the number of SNPs in the model (Fig 4). In contrast, for BayesB and anteBayesB, the number

of windows with nonzero effects was proportional to the number of SNPs in the model. For

example, the posterior mean of the number of windows with nonzero effects for BayesB was

about twice the number of QTL with the 50k panel. For BayesB with the 600k panel, the num-

ber of windows with nonzero effects was about six times the number of QTL simulated. In

BayesN, each window could not fit more SNPs than existed in the window, which explains

why the number of SNPs with nonzero effects was much lower for the 50k panel when 0.2 Mb

windows were used, as only 4 SNPs existed per window.

Computing time

Fig 5 shows the average computing time for different models implemented in C++ language

on the CyEnce cluster of Iowa State University with 2.0 GHz 8-Core Intel E5 2650 processors.

In general, fitting 10 SNPs (low π value) per QTL rather than 2 (high π value) demanded more

computing time for any model. For BayesN, smaller windows or more SNPs per window

increased computing time but this difference became marginal with high density SNPs. Using

50k SNPs, 1 Mb windows and k = 2, it took only 0.46 hr for BayesN, which was half the time

needed for BayesB (1.1 hr, 60% reduction) or for anteBayesB (1.2 hr, 62% reduction). BayesN
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was even more efficient with 600k SNPs. It took only 2.9 hr for BayesN with 0.2 Mb windows,

which was about one fourth of the time taken by BayesB (11.6 hr, 75% reduction) or ante-

BayesB (11.7 hr, 75% reduction) for k = 2.

Posterior distribution of P

If the posterior distribution of P has a sharp peak at the true value, then considering P as

unknown would be as good as using the true value for P in the analysis. The posterior distri-

bution of P was examined by computing the average value of the posterior mean and its stan-

dard deviation across replicates (Fig 6), when different starting values were used for the

sampler. These starting values were also used to calculate the scale factor of variance of SNP

effects, similar to the calculation in BayesB (Eq 3), but our experience is that small differences

in the scale factor only have negligible influence on the results. Assuming window-specific var-

iances s2
i for the SNP effects, the posterior mean of P largely depended on the starting value

for P for both MD and HD panels (top row). When the alternative prior (BayesNC) was used

with 50k SNPs (bottom-left), where a common variance s2
a

was assumed for all SNPs in the

genome, rather than window-specific variances, the posterior distribution closely reflected the

true value regardless of the starting values. In this case, fitting ten rather than two SNPs per

window resulted in the posterior mean to be even closer to the true value. When 600k SNPs

were used, however, BayesNC tended to fit almost all windows in the model (bottom-right).

Fig 3. Regression coefficient of true on estimated breeding values using BayesB, anteBayesB or BayesN with 1.0 or 0.2 Mb windows for two values

of π or πi corresponding to 300 QTL each being associated with either 2 (red) or 10 (blue) SNP markers. Results are separated for common (row 1)

versus rare (row 2) QTL alleles with the MD 50k (column 1) versus HD 600k (column 2) SNP panel. Dots represent regression coefficients from each of

the eight replicates, and the bar indicates the mean. Regression coefficients closer to one (dashed horizontal line) reflect less prediction bias.

https://doi.org/10.1371/journal.pone.0194683.g003
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Discussion

Advantages of BayesN in genomic prediction

The nested mixture model, BayesN, accounts for the dependence of SNP effects. It comprises

two levels of variable selection—window selection and selection of each locus within the

selected windows. Our window selection approach that collectively considers the effects of all

SNPs within that window has two favorable effects. On one hand, it reduces the probability of

spurious effects entering the model. On the other hand, it increases the probability for true

effects entering the model, particularly in the case of high density SNPs. Compared to BayesB,

noise is shrunk more heavily towards zero, while real signals are shrunk less. The second level

of variable selection within a window that has been selected has two favorable effects. On one

hand, it eliminates the noise that comes along with the signal due to linkage. On the other

hand, fitting the selected SNPs jointly in the model expands the column space of SNP geno-

types to better allow them to capture the genotypes of the QTL in the window. Although the

QTL may not be in high LD with any single SNP, such as in the case rare QTL and common

MAF SNPs, it may be in high LD with a linear combination of the SNPs in the window. Thus,

the signal detected during window selection is refined during the subsequent within-window

selection.

This may explain why in the case of common QTL alleles, BayesN had no advantage over

BayesB with 600k SNPs but a small advantage with 50k SNPs (Fig 2). With 600k SNPs, some

Fig 4. The posterior mean of number of the SNPs (light bar) and windows (dark bar) with nonzero effects from BayesB, anteBayesB or BayesN

with 1.0 or 0.2 Mb windows. Results are separated for k = 2 (row 1) versus k = 10 (row 2) SNPs associated with each of the 300 QTL with the MD 50k

(column 1) versus HD 600k (column 2) SNP panel. The capped error bar indicates the standard deviation of the posterior means from 8 replicates of

the scenario with common and 8 replicates of the scenario with rare QTL alleles. The red dashed line shows the number of QTL simulated, which was

300.

https://doi.org/10.1371/journal.pone.0194683.g004
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SNPs are in very high single locus LD with the QTL and these can be detected with any of the

methods and, thus, additional SNPs were not needed in the model. Decreasing π to fit more

SNPs actually impaired accuracy of prediction because this forced spurious SNPs into the

model (Fig 2, top-right graph). However, with 50k SNPs, multiple SNPs from the window

were needed to jointly capture the QTL effect. In contrast, in the case of rare QTL alleles, no

Fig 5. Average computing time in hours for BayesB, anteBayesB or BayesN with 1.0 or 0.2 Mb windows for two values of π or πi corresponding to

300 QTL each being associated with either 2 (red) or 10 (blue) SNP markers. The capped error bar indicates the standard deviation from 8 replicates

of common and 8 replicates of rare QTL scenarios.

https://doi.org/10.1371/journal.pone.0194683.g005
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such SNPs in high single locus LD with QTL exist, in which case BayesN was much more bene-

ficial. This is particularly the case with 50k SNPs because multi-locus LD with rare QTL was

too low to be useful, such that fitting ten SNPs per window in BayesN was slightly better than

that fitting only two (Fig 2, bottom-left graph). In contrast, with 600k SNPs, there were many

candidate SNPs available in a window to select from and a small set can have sufficient multi-

locus LD to capture the effect of rare QTL. Thus, BayesN was specially useful with the high-

density SNP panel for capturing rare QTL alleles. In other cases, BayesN was no worse than

BayesB. Note that there has been controversial about whether rare or common QTL contribute

most of the genetic variance with supporting evidence on both sides [7, 25].

In BayesB, SNPs that entered the model were sparsely distributed across many windows,

including those containing no QTL (Fig 4). The SNPs that enter the model from outside of the

QTL windows are likely to be spurious, and when spurious SNPs are included in the model,

those with true effects are likely left out.

Fig 6. Posterior mean of P when P was considered as unknown in the nested model with window-specific variance s2
i (BayesN) or with a

common variance s2
a

for all SNPs in the genome (BayesNC). The capped error bar indicates the standard deviation from 8 replicates of simulation for

the scenario of common QTL alleles. The true P value, i.e. the proportion of windows that contained QTL (300/2649), is shown by red dashed line,

assuming at most one QTL per window. The two starting values 100/2649 and 1000/2649 are shown by black dashed lines.

https://doi.org/10.1371/journal.pone.0194683.g006
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Comparison with anteBayesB

Both BayesN and anteBayesB attempt to account for the dependence between SNP effects.

However, unlike BayesN, anteBayesB did not give a higher accuracy than BayesB. In ante-

BayesB, the covariance between SNP effects, conditional on tj in Eq (8) with a t prior distribu-

tion, is assumed to be specific to each marker pair. This is analogous to the so-called locus-

specific variance in BayesB, conditional on which each SNP has a normal distribution. Thus,

in BayesB, the marginal distribution of each SNP effect is an infinite mixture of normals. Simi-

larly, in anteBayesB, the marginal distribution of a pair of SNP effects is an infinite mixture of

bivariate normals.

In contrast to BayesB, where a SNP effect has an infinite mixture of normals, in ridge-

regression BLUP, which is simply referred to BLUP in [9], a SNP effect has a univariate normal

distribution. Although BayesB is expected to be perform better than BLUP as demonstrated by

simulation in [9], it has been shown that the advantage of BayesB over GBLUP, which is equiv-

alent to ridge-regression BLUP, is not observed when the training dataset is not sufficiently

large [26]. As anteBayesB is even more complex than BayesB, it is not expected to be outper-

form BayesB when the training dataset is not sufficiently large.

In the study of Yang and Tempelman [13], where a good gain in accuracy of prediction

was reported using an antedependence model, either a small number of QTL (30 QTL) was

simulated such that each had a biggish effect, or the number of observations for training was

comparable to or even greater than the number of markers. Jiang et al. [27] followed Yang

and Tempelman [13]’s simulation scheme, with training size remained small (i.e. 500) but

doubled number of markers (*4k), and found that for a trait with heritability of 0.5 differ-

ence between BayesA and anteBayesA in prediction accuracy became negligible when the

number of QTL increased from 30 to 300 or when LD between loci was lowered (both cases

reduced QTL effects to be captured by markers). Our results on anteBayesB, with a practical

problem dimension, are in agreement with those from an analysis of 30k SNPs on *4k pigs

[28], where the antedependence model was about equal to GBLUP but inferior to BayesA

and BayesB for accuracy of prediction. Another possible reason for the poor performance of

anteBayesB in this study could be inadequacy of capturing multiple nonadjacent SNPs in LD

with the QTL, as the covariance decayed fast with the recursive decay function. On the con-

trary, BayesN better captured wide-range LD within a window with a parsimonious

parameterization.

Comparison with a haplotype model

It has been reported that fitting haplotypes improves the accuracy of genomic prediction

[29, 30], especially for rare QTL [31]. Using simulated data comprising sufficiently high

density SNPs, QTL alleles were found to be in complete concordance with haplotype alleles

[31]. BayesN and a model that fits haplotype alleles both have the same goal of reducing the

number of parameters and exploit multi-locus LD. However, knowledge of haplotype phase

is not needed for BayesN. In addition, the haplotype model fits the whole window, which

may result in more haplotype alleles than SNPs. Different haplotype alleles may be associ-

ated with the same QTL allele, which unnecessarily increases the number of effects to be fit-

ted. Rare haplotype alleles may also be due to genotyping and imputation errors. In

contrast, with BayesN, only those few SNPs with signals are selected and fitted jointly,

which may reduce the model complexity as compared with the haplotype model. Empirical

comparisons between BayesN and the haplotype model will be investigated in a following

study.
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Application with mixed SNP density

Saatchi and Garrick [32] showed that using a mixed density SNP panel, where genotypes were

imputed only in pre-identified candidate regions, gave higher accuracies of prediction than

using the original panel without imputation. In that particular beef cattle dataset, 50k geno-

types were enriched with imputed 770k SNPs only in windows contributing the highest pro-

portion of genetic variance in a genome-wise association study. The construction of a mixed

density panel takes two steps. First, whole genome scans are carried out using an MD panel to

identify regions that explain a significant proportion of genetic variance. Next, the identified

regions are enriched with HD SNPs or sequence variants. For such mixed density analyses,

BayesN has unique advantages. With BayesB, the probability of a SNP to have a nonzero effect,

π, is common to all SNPs, which is subject to the SNP density across the entire genome. In the

case of mixed density, π will increase if more regions are enriched with high density SNPs, and

vice versa. With BayesN, due to the window-specific probability of inclusion πi, the effect of a

change in “local” density is constrained within the window. In other words, signals from the

identified regions will be independently enhanced with enriched SNP density. Furthermore,

BayesN can be easily modified to fit different numbers of SNPs per window for the low and

high density regions, as it has been observed that fewer SNPs were needed to capture the QTL

effects with high density than low density SNPs (Fig 2).

Computational benefit

Bayesian methods for genomic prediction commonly rely on MCMC sampling for statistical

inference. The computing time for these methods increases linearly with the number of SNPs

and the number of observations. Non-MCMC algorithms, such as EM algorithm [33–35], vari-

ational Bayesian approximation [36], or other iterative methods [37, 38]. have been developed

to speed up the analysis of large datasets. But the accuracy of prediction was either lower than

or close to BayesB or the MCMC-based counterpart. Another strategy to reduce computing

time is to use parallel computing. Cheng et al. [39] parallelized MCMC using independent

Metropolis-Hastings samplings. Fernando et al. [40] distributed the computation for Gibbs

sampling across cores and nodes. Significant speedup was achieved when genotypes were

available for millions of individuals, which could occur with real or imputed genotypes. The

nested mixture model is another strategy to reduce computing time by reducing the effort to

sample if SNPs have zero effect. In BayesB, the conditional probability of zero effect is com-

puted for every SNP, whereas in BayesN, all SNPs in a window have zero effect if the window

has zero effect, which depends only on a subset of SNPs with δj = 1 (Eq 6). The reduction in

computing time was proportional to the SNP density (Fig 5); compared with BayesB, comput-

ing time was decreased two fold with 50k SNPs and four fold with 600k SNPs. Thus, the

computational efficiency of BayesN over BayesB will even be greater for sequence variant

analyses.

Alternative prior for BayesN

Most of the results in this study were based on analyses where π or P were assumed to be

known. It is difficult to infer π when BayesB-like priors are used for marker effects [12],

because BayesB has two methods to shrink the effect of a SNP; either by fitting the effect with a

small variance or by including the effect in the zero effect distribution [12, 41]. The fraction of

SNPs with zero effects, π, can be considered as unknown in method BayesC and estimated

from the data because all fitted markers share the same variance ratio [11]. BayesN with

BayesB-like priors between windows, i.e. window-specific variances, has a similar problem of

estimating P for windows, as the problem of estimating π for SNPs in BayesB. The posterior
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mean of P was heavily influenced by the starting value of P (Fig 6, top row). This lack of

“Bayesian learning” can be attributed to the difficulty of sampling Δi due to having window-

specific variances. That is, a window can have a small or zero effect by either a very small vari-

ance or a high P value. The alternative prior, BayesNC, removed this “uncertainty” with 50k

SNPs (Fig 6, bottom-left), where the effects of SNPs across windows shared a common vari-

ance such that they jointly follow a multivariate-t distribution. The reason for the overestima-

tion of P in BayesNC with 600k SNPs was that, with 4k observations versus 600k SNPs, the

model was so overparameterized such that windows could enter the model by picking up

residual effects. The same phenomenon was observed when fewer observations were used for

50k SNPs. This problem will dissipate with more data or less SNPs. One suggestion is to use

the value of P estimated from 50k SNPs and consider that value as fixed in the analysis with

600k SNPs. It is easy to see that the number of windows rather than the number of SNPs with

nonzero effects is a better estimator for the number of QTL affecting the trait.

SNP selection incorporating biological information

In our application of BayesN, all windows had equal width of 1 or 0.2 Mb. A better choice

could be to define windows with unequal widths. Beissinger et al. [42] adopted smoothing

spline techniques to define window boundaries. Alternatively, they might be determined by

QTL regions, haplotype diversity, recombination hotspots or functional information of SNPs.

For instance, SNPs in a intergenic region could be grouped into a single or several windows

depending on the size of the intergenic region. A gene region can be partitioned into intronic

and exonic windows, and the SNPs in an exon could be further partitioned into the coding or

non-coding segments. Synonymous and non-synonymous SNPs could be considered to be in

separate windows. MacLeod et al. [43] developed BayesRC to incorporate biological informa-

tion on SNPs for QTL discovery. They classified SNPs prior to the analysis based on the com-

mon biological properties such as non-synonymous SNPs versus synonymous SNPs. The

classified SNPs were then fitted to a model where the SNP effect is a mixture of four normals.

Compared with the method without biological information, the BayesRC method resulted in

more precise mapping of QTL effects and improved accuracy of genomic prediction [43]. If

each window is regarded as a “class”, BayesN is similar to BayesRC in that the mixing probabil-

ities for a SNP effect are specific to the window or the class in both models. In addition, BayesN

has variable selection on windows or classes, which allows finer classifications, as described

before, to better distinguish signal from noise.
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