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Abstract

Automated labelling of radiology reports using natural language processing

allows for the labelling of ground truth for large datasets of radiological studies

that are required for training of computer vision models. This paper explains

the necessary data preprocessing steps, reviews the main methods for

automated labelling and compares their performance. There are four main

methods of automated labelling, namely: (1) rules‐based text‐matching

algorithms, (2) conventional machine learning models, (3) neural network

models and (4) Bidirectional Encoder Representations from Transformers

(BERT) models. Rules‐based labellers perform a brute force search against

manually curated keywords and are able to achieve high F1 scores. However,

they require proper handling of negative words. Machine learning models

require preprocessing that involves tokenization and vectorization of text into

numerical vectors. Multilabel classification approaches are required in

labelling radiology reports and conventional models can achieve good

performance if they have large enough training sets. Deep learning models

make use of connected neural networks, often a long short‐term memory

network, and are similarly able to achieve good performance if trained on a

large data set. BERT is a transformer‐based model that utilizes attention.

Pretrained BERT models only require fine‐tuning with small data sets. In

particular, domain‐specific BERT models can achieve superior performance

compared with the other methods for automated labelling.
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1 | INTRODUCTION

Computer vision, with object detection or image seg-
mentation algorithms, is gaining prominence in its
ability to augment radiologists in interpretation of scans.
Large, labelled data sets of many thousands of images are
needed for the development of object detection or
segmentation models using machine learning or deep
learning. However, it is laborious for expert radiologists
to manually label ground truth in such a large collection
of images [1]. Employing natural language processing
(NLP) to automatically label radiology reports presents a
solution to this problem [2].

NLP is a branch of Artificial Intelligence (AI) in
which computers are able to intelligently understand,
interpret and generate text. NLP systems need to be able
to overcome ambiguity in natural language to reliably
extract information and interpret phrases in a context‐
dependent manner [3]. Specifically, biomedical texts
present an additional challenge with its own set of
terms, acronyms and shorthand that differs from the
structure of typical language [4].

Automated labelling requires parsing the text of a
radiology report to extract information about the
presence or absence of prespecified pathologies. Within
this remit, negation handling is especially important [5].
Various NLP techniques have developed over the years,
with increasing ability to take context into account for
greater accuracy of information extraction. Accordingly,
newer models of NLP are increasingly complex, building
on their predecessors. This paper aims to review the
major NLP techniques involved in automated labelling,
starting from (1) a simple rules‐based text‐matching
method, (2) the basic conventional machine learning
model, (3) a neural network model that affords greater
memory for context and (4) the Bidirectional Encoder
Representations from Transformers (BERT) model,
which incorporates the concept of attention and calcu-
lates a context vector to pass along information about
how much significance should be assigned to each
input word.

Within the medical context, beyond automated
reports, NLP and its applications to medicine remains
an important field of research. NLP models can be used
to extract, aggregate and condense information from
electronic health records both for research purposes and
for routine clinical care [6]. It has also been employed in
summarizing key insights from the corpus of biomedical
literature. More recently, Large Language Models have
been developed, which are large pretrained AI systems
that can be fine‐tuned and repurposed to specific tasks,
such as mimicking patient–doctor interactions [7] or
answering clinical questions [8].

2 | DATA SETS

Although there are a number of publicly available
radiology image data sets available, there are only a
few data sets that contain full radiology reports. MIMIC‐
CXR Database v2.0.0 [9, 10] and the Indiana University
Chest X‐Ray Collection [11] are two notable data sets
that contain full radiology reports. The MIMIC‐CXR
Database contains more than 200,000 radiology reports,
whereas the IU X‐ray data set contains almost 4000
radiology reports from two large hospital systems. There
is a paucity of publicly available radiology reports for
other imaging modalities (ultrasound, computed tomog-
raphy, magnetic resonance imaging and so on) and other
anatomical locations other than the chest.

Human‐labelled reports are important as ground
truth for determining the performance of the various
methods for automated labelling of radiology reports
[12]. However, in radiology, as with all other medical
fields, subject matter experts may be both difficult to find
and expensive to engage [13]. To address this problem,
some researchers have attempted to use weak supervi-
sion to label the data in place of humans [14]. In weak
supervision, a set of labelling functions in the form of
rules, dictionaries, ontologies and pretrained machine
learning or deep learning models may be used. A
statistical model takes the labels from the functions as
input and outputs the probabilistic labels to be used as
ground truth. By adding more functions, the labelling
performance would improve, but it may not be able to
achieve the same performance as labels generated by
expert radiologists. Hybrid models that use weak
annotations together with few strongly annotated labels
have been implemented as an improved means of
labelling the data, rather than using weak annotations
alone [15].

3 | DATA PREPROCESSING

The text in radiology reports requires preprocessing to
ensure that the data is in a suitable format for feeding
into conventional machine learning models for multi-
label classification. The report is first segmented into
individual sentences, and then tokenized into individual
words. All text is also converted into lowercase as this
does not affect their meaning. Stop words, which connect
keywords together to form coherent and grammatically
correct sentences, but have no intrinsic relevance and
meaning, are removed. However, negative words such as
‘no’ and ‘not’ are retained.

Negation handling is an important aspect [5] in the
automated annotation of radiology reports. There are
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several approaches, which can be used to handle
negation in medical texts for machine learning classifi-
cation tasks. A simple way would be to concatenate the
prefix ‘no_’ with every word in a sentence in which a
negative word is detected. Alternatively, specialized
dependency parsers such as the Negbio package [16],
which was trained on Biomedical text, can be utilized to
account for negation in radiology reports.

As most machine learning algorithms are unable to
process text, the text data has to be vectorized.
Vectorization (also known as word embeddings) is the
process of converting text data into numerical vectors
[17]. The data are converted into a matrix of term
frequency‐inverse document frequency (TF‐IDF) fea-
tures, whereby the top features are incorporated and
ordered by term frequency. TF‐IDF is a measurement of
the importance of a word, with the idea being that a term
with more significance in a particular report will occur
more frequently in that context as compared with its
relative frequency across the entire corpus of reports. N‐
grams, which consider a sequence of n words in the text,
can be used as potential features. N‐grams are preferred
to other vectorization techniques such as Bag of Words.

GloVe [18] word embeddings that were developed using
Radiopedia as a general radiology corpus [19] can also be
used to convert text into vectors. GloVe takes into account
global word–word co‐occurrences in the entire corpus.

Special data processing is required to apply the pre‐
trained BERT [20]. The BERT tokenizer provided by the
library must be used, as the BERT model has a specific
and fixed vocabulary and the BERT tokenizer is able to
handle out‐of‐vocabulary words. The BERT tokenizer
splits the radiology text into tokens, adds the required
tokens of [CLS] and [SEP] to the start and end of each
sentence, and then converts the tokens into indexes of
the tokenizer vocabulary. The BERT tokenizer then pads
or truncates all sentences to a single constant length, and
lastly creates an attention mask.

4 | EVALUATION METRICS

In automated annotations of radiology reports, the F1
score is frequently used to evaluate the success of the
classifier [21, 22, 23]. The F1 score is the harmonic mean
of precision and recall, and measures the classifier's
performance for both positive and negative cases.
Precision is the fraction of true positives divided by the
total number of test positives. Recall is the fraction of
true positives divided by the total number of disease
positives. The classification report is also frequently
generated to display the precision, recall and F1 score for
each class label. Similarly, the area under the precision
recall curve score can also be used as an evaluation
metric to compare the performance of various models.

The accuracy score should preferably not be used as
an evaluation metric [24] as the datasets used are
typically imbalanced (with the minority class occurring
<40% of the time). Most disease labels will be negative in
a radiology report. The accuracy score can be mislead-
ingly high for certain classes if a model predicts negative
100% of the time [24]. Similarly, the area under the
receiver operating characteristic curve score can be
misleadingly high in imbalanced data sets if the model
predicts the majority class 100% of the time.

5 | RULES ‐BASED TEXT ‐
MATCHING ALGORITHM

Labelling of radiology reports begins with the identifica-
tion of related keywords that map onto a particular label.
Table 1 shows a sample list of relevant keywords for
common class labels in chest X‐ray reports. The most
basic form of automated labelling involves a text‐
matching algorithm, which searches the report text for
predefined keywords and assigns corresponding labels
based on certain rules.

TABLE 1 Common class labels in chest X‐ray reports with a sample list of relevant keywords.

Label Related keywords

Air‐space opacity Consolidation, ill‐defined increased parenchymal opacity,
obscured vascular markings, pneumonia

Nodular opacity Nodule, nodularity, cannon‐ball lesion

Interstitial opacity Reticular opacity, reticulation, reticulo‐nodular opacity,
honeycombing

Cardiomegaly Enlarged cardiac silhouette, enlarged heart, increased
cardiothoracic ratio

Pleural effusion Blunted costophrenic angles, fluid in pleural space, pleural fluid

Pneumothorax Gas in pleural space
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Medical reports (which include clinical summaries,
radiology reports and pathology reports) often contain
negative words [5]. These negative words are used to
communicate that important diagnoses have been
excluded. For example, a sample radiology report may
contain the following sentences: ‘The heart is not
enlarged. There is no evidence of oedema’. A rules‐
based text‐matching algorithm that simply identifies the
keyword ‘oedema’ in the labelling process while neglec-
ting the negative modifier of ‘not’ or ‘no’ would lead to
misclassification of the report.

It is crucial that rules‐based text‐matching algorithms
identify related negative modifiers within the same
phrase or sentence [5]. Figure 1 illustrates the typical
logic flow in such algorithms.

Expert systems were one of the first AI tools to be
developed for the automated annotation of radiology
reports [21]. An expert system comprises two subsystems,
namely the knowledge base and the inference engine.
The knowledge base contains facts and rules, created
with the specialized knowledge from human domain
experts. In the field of Medicine, the inference engine
applies the rules to known facts, and the output is used
for medical diagnosis or to guide treatment decisions. As
early as 1989, a knowledge‐based data acquisition tool
(Special Purpose Radiology Understanding System) was

successfully implemented [21]. The system used seman-
tic information from a diagnostic knowledge base to
drive the understanding of chest radiology reports.

Rule‐based labellers that brute‐force search against
manually curated keywords are technically easy to
implement and do not require heavy computational
power or memory. Furthermore, such classifiers can
achieve unexpectedly high performance [22]. For exam-
ple, the CheXpert rules‐based classifier achieved state‐of‐
the‐art performance with the highest F1 scores of 0.743
(95% confidence interval [95% CI]: 0.719–0.764) among
all the algorithms, including that of machine learning
and deep learning models [22], with the exception of
CheXbert [23].

6 | CONVENTIONAL MACHINE
LEARNING MODEL

Although outpatient radiological investigations typically
have normal findings, a single inpatient image may
contain multiple lesions. This necessitates techniques
that allow for multilabel classification. Possible multi-
label classification approaches [25] include Binary
Relevance, Classification Chain, Label Powerset and
Multilabel K‐Nearest Neighbour. Binary relevance is less
suitable, as it ignores correlations between class labels,
which occur frequently in radiology reports. For exam-
ple, the labels ‘cardiomegaly’ and ‘oedema’ are corre-
lated, as both findings occur together in congestive
cardiac failure. Label Powerset provides a more optimal
approach by transforming a multilabel classification
problem into a multiclass problem, with one multiclass
classifier trained on all unique label combinations in the
training data. Label Powerset maps each combination to
a unique combination identification number and per-
forms multiclass classification using the combination
identification numbers as classes.

Conventional machine learning models that can be
employed as classifiers in automated labelling of
radiology reports include Naive Bayes, Logistic Regres-
sion and Random Forest ensemble. Naive Bayes algo-
rithm is a classic algorithm used in NLP [26]. It is a
probabilistic algorithm based on applying Bayes theorem
with the ‘naive’ assumption of conditional independence
between every pair of features. The multinomial Naive
Bayes algorithm is widely used for assigning documents
to classes by calculating the probability of each label for a
given text and outputs the label with the highest
probability. Naive Bayes classifiers work better than
expected, considering their naive design and simplified
assumptions of independence. However, the simplicity of
the Naive Bayes algorithm results in it having poorer

FIGURE 1 Example flow diagram of rules‐based text‐matching
algorithms.
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performance compared with ensemble methods such as
Random Forest classifiers [27]. In addition, radiology
class labels are frequently correlated and not indepen-
dent, thus making the Naive Bayes classifier a less ideal
choice.

Random Forest [28] is a versatile model and the data
does not need to be rescaled or transformed. It is fast to
train as the model works with only a subset of features.
The Random Forest algorithm also balances errors in
imbalanced data sets, which is especially helpful in
labelling radiology reports as some labels occur infre-
quently. In a study on the automated annotation of 1295
magnetic resonance imaging reports of the knee, the F1
scores for the Naive Bayes and Random Forest classifiers
were 73.8% and 82.2%, respectively [29].

Machine learning models are able to achieve high F1
scores if they have access to a large training set of reports
that have been manually labelled by expert radiologists,
with at least 1000 positive samples per class. However, if
the data is insufficient, particularly in the case of
uncommon labels, training will be compromised and
the predictive model may be inaccurate [30].

7 | DEEP LEARNING (NEURAL
NETWORK) MODEL

Recurrent neural networks (RNNs) [31] are ideal for
sequential data [32] such as text and time series data, where
the sequence is more important than the individual items. In
NLP, the next word is commonly dependent on the previous
words and there is a need to remember the previous words.
Hence, as opposed to feed‐forward neural networks (where
the inputs and outputs are independent), the output from
the previous step in RNNs is used as input to the current
step. RNNs have a hidden state to capture information about
a sentence. RNNs also have a memory that retains
information about the calculations made so far for a period
of time. A shortcoming of RNNs is that they are unable to
handle long‐range dependencies due to vanishing gradi-
ents [31].

Deep learning models for text classification typically
use a long short‐term memory (LSTM) network. LSTM
[31] is a type of RNN that performs better than a
conventional RNN in text classification tasks, as an
LSTM network has superior memory ability and can
handle long‐term dependencies. LSTMs can overcome
the vanishing gradient problem seen in RNNs [31].

LSTMs consist of three parts, the Forget gate [31], the
Input gate and the Output gate. The Forget gate determines
if the information from a previous period is relevant and to
be remembered, or irrelevant and to be forgotten. The Input
gate learns new information from the input. The Output gate
passes the updated information to the next timestamp.
Similar to RNNs, LSTMs have hidden states (short‐term
memory) of the previous timestamp and the current
timestamp. LSTMs also have cell states (long‐term memory)
of the previous and current timestamps.

A possible deep learning model for this task of
automated annotation of radiology reports would have 1
input layer, 1 embedding layer, 1 LSTM layer with 128
neurons and 1 output layer. The number of neurons in
the output layer should correspond to the number of
labels required in the output. Figure 2 shows an example
of such a deep learning model.

In a study of automated annotation of 1295 magnetic
resonance reports of the knee, a neural network model
was able to achieve an overall superior F1 score of 0.867,
compared with conventional machine learning models
such as logistic regression (F1 0.846), random forest (F1
0.822) and naive Bayes (F1 0.738) [29]. However, as
neural networks require large amounts of training data,
the neural network model performed notably worse than
the conventional machine learning models on the
underrepresented classes with few training instances.

8 | BERT MODEL

The Transformer [33] is a novel NLP architecture that is
able to undertake sequence‐to‐sequence tasks while
accounting for long range dependencies. The Transformer

FIGURE 2 Example configuration of deep learning model. LSTM, long short‐term memory.
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utilizes self‐attention to convert input sequences into
output sequences without the need for RNNs or convolu-
tional neural networks. Self‐attention (also known as
intra‐attention) relates different areas of a sequence to
compute a representation of the sequence. The Trans-
former performs multihead attention, where self‐attention
is computed both in parallel and independently many
times. Although the Transformer is able to learn longer‐
term dependencies and is a marked improvement over
RNN‐based sequence‐to‐sequence models, the Trans-
former is limited as its attention can only handle fixed‐
length text strings. The input text has to be split into
segments or chunks and such chunking results in context
fragmentation. The context will be lost if the sentence is
split in the middle.

The release of BERT [20] by Google AI heralded a
new era in NLP. Although neural networks can be
implemented for text classification, they need to be
trained on a large number of manually labelled texts to
achieve accurate results. In contrast, BERT has been
pretrained on large quantities of unlabelled data by its
developers and can subsequently be fine‐tuned on a
small number of manually labelled texts to achieve
accurate results for a wide variety of tasks including text
classification, language inference and question answer-
ing systems. The code for BERT is open‐sourced and
freely available for download and reuse, saving research-
ers computational time and resources from the need to
repeat the training of a large data set.

BERT has substantially outperformed benchmarks in
multiple NLP tasks. The superior performance of BERT
can be attributed firstly to its use of transfer learning. As
earlier explained, the base BERT model has been
pretrained, allowing it to learn about text structure and
language patterns. In addition, the BERT model is deeply
bidirectional and is able to learn the meaning of the word
in a sentence based on the words preceding and
following the word, whereas other NLP models are
unidirectional or shallowly bidirectional. Furthermore,
BERT models have more encoder layers, larger feed‐
forward networks and more attention heads when
compared to the original Transformer as a point of
reference [20]. With BERT, each layer applies self‐
attention and the results are passed through a feed‐
forward network to the next encoder.

To utilize the pretrained BERT, the text has to be split
into tokens, which are then mapped to indexes of the
tokenizer vocabulary. All the sentences have to be
padded or truncated to a single constant length and an
attention mask must be created. During the training
process, a BertClassifier class is created to extract the last
hidden state of the classification [CLS] token and input it
into a single layer feed‐forward neural network to

compute logits. Prediction is similar, with a forward
pass to compute logits and calculate probabilities. A
threshold of 0.5 can be used, such that sentences with a
predicted probability >50% will be labelled as positive.

BERT classifiers have been shown to achieve superior
performance [23, 34] compared with the other aforemen-
tioned techniques. CheXbert [23] is a biomedically
pretrained BERT model that was initially trained on the
outputs of a labeller and subsequently fine‐tuned on
manual annotations. It outperformed the previous best
labeller, CheXpert, a rules‐based labeller, in the labelling
of chest X‐ray reports. CheXbert was able to achieve state
of the art performance with an F1 score of 0.798 (95% CI:
0.775–0.816) compared with the previous best performer
CheXpert with an F1 score of 0.743 (95% CI: 0.719–0.764).

By adding a simple single‐hidden‐layer neural net-
work classifier on top of BERT and fine‐tuning BERT,
superior performance can be achieved, even with small
datasets with few positive labels. Additionally, as BERT
was pretrained on vast amounts of text and has learned
much language structure, fine‐tuning BERT on radiology
reports thus only requires a small single‐digit number of
epochs to achieve state‐of‐the‐art performance. Training,
validation, and testing times for a pre‐trained BERT
model are very fast. DistilBERT [35] was able to complete
training and validation in <4min and was subsequently
able to infer nearly 70,000 radiology reports at a speed of
0.005 s per case [36].

Newer transformer architectures, such as RoBERTa
[37], can perform better than BERT in annotating
radiology reports [36]. Domain‐specific BERT, such as
PubMedBERT [38], can also outperform the original
BERT model with higher area under the receiver
operating characteristic curve in automated labelling of
radiology reports [36]. PubMedBERT was generated by
extending the pre‐training of a BERT base model over a
corpus of PubMed abstracts and full PubMed Central
articles and is able to generalise to a variety of biomedical
NLP tasks [38]. RadBERT [39] is the first BERT‐based
language model adapted for radiology and was released
in June 2022. As RadBERT was trained on millions of
radiology reports and is tailored to radiology, it was able
to demonstrate improved performance of radiology NLP
tasks compared with baseline BERT models [39]. The
RadBERT models are available for use with a data usage
agreement and are expected to be widely adopted and
accelerate the use of AI in radiology research.

BERT models can also be used to build knowledge
graphs. Knowledge graphs, also known as semantic
networks, represents semantics by describing entities and
their relationships. Knowledge graphs make use of
ontologies for logical inference to derive implicit
knowledge. Entities and relations can be represented as
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knowledge graph embeddings and then used in machine
learning. Using a BERT model, Zhang et al. [40]
extracted entities and relationships from unstructured
radiology reports and constructed a knowledge graph.
The authors then used the knowledge graph to build a
25‐label classification system to extract chest X‐ray labels
from radiology reports.

We have detailed above the four main techniques that
can be employed in the automated labelling of radiology
reports. Table 2 compares the four techniques, in terms
of the amount of training data required, the training
time, hardware requirements, ease of implementation of
the models, interpretability and performance.

9 | CONCLUSION

Automated labelling of radiology reports using NLP
provides an efficient method of generating labels that are
needed for object detection and image segmentation in
radiological scans. There are four main techniques used
for this, namely (1) a rules‐based text‐matching method,
(2) a conventional machine learning model, (3) a neural
network model and (4) a BERT model. Of note, BERT is a
novel NLP architecture that utilizes transfer learning and
is able to achieve state‐of‐the‐art performance with
minimal training data.
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