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SUMMARY

Chromatin interactions play important roles in transcription regulation. To better understand the

underlying evolutionary and functional constraints of these interactions, we implemented a

systems approach to examine RNA polymerase-II-associated chromatin interactions in human

cells. We found that 40% of the total genomic elements involved in chromatin interactions

converged to a giant, scale-free-like, hierarchical network organized into chromatin communities.

The communities were enriched in specific functions and were syntenic through evolution.

Disease-associated SNPs from genome-wide association studies were enriched among the nodes

with fewer interactions, implying their selection against deleterious interactions by limiting the

total number of interactions, a model that we further reconciled using somatic and germline cancer

mutation data. The hubs lacked disease-associated SNPs, constituted a nonrandomly

interconnected core of key cellular functions, and exhibited lethality in mouse mutants, supporting

an evolutionary selection that favored the nonrandom spatial clustering of the least-evolving key

genomic domains against random genetic or transcriptional errors in the genome. Altogether, our

analyses reveal a systems-level evolutionary framework that shapes functionally

compartmentalized and error-tolerant transcriptional regulation of human genome in three

dimensions.

INTRODUCTION

Long-range chromatin interactions are pervasive in the human genome and serve to regulate

gene expression (Göndör and Ohlsson, 2009; Schoenfelder et al., 2010). Proximity ligation

in combination with next-generation sequencing has recently enabled us to explore genome-

wide spatial crosstalk in the chromatin (Fullwood et al., 2009; Lieberman-Aiden et al.,

2009). By implementing Chromatin Interaction Analysis using Paired End Tags (ChIA-PET)

(Fullwood et al., 2009), we recently mapped all-to-all chromatin interactions associated with

RNA polymerase II (RNAPII) at base-pair resolution. In addition to widespread promoter-

enhancer chromatin interactions, our analysis revealed a range of distinct types of chromatin

cross-wirings, including promoter-enhancer, enhancer-enhancer, promoter-terminator, and,

intriguingly, promoter-promoter interactions. These interactions constitute a basic

topological template for transcriptional coordination (Li et al., 2012). The observation of

most interest was that interacting promoters not only correlate with gene coexpression, but

can also regulate each other’s transcriptional states, which blurs the traditional definitions of

gene-regulatory elements in the genome. These observations support the notion of a

chromatin interactome encompassing a dense repertoire of regulatory elements for

transcriptional regulation.

Whole-genome chromatin interaction data sets are too complex to analyze by conventional

approaches. To gain a better understanding of these interactions, we performed a complex

network analysis by integrating chromatin interactions and several other genomic data sets
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(Table S1). Network analysis has emerged as a powerful tool for obtaining novel insights

into complex systems. The nonrandom topological properties of most real-world networks

are strongly associated with their robustness and functional organization (Albert et al., 2000;

Barabási and Albert, 1999; Barabási and Oltvai, 2004), which has motivated molecular

biologists to explore cellular regulation using a systems approach. Although most cellular

networks, such as gene-regulatory, metabolic, protein-protein interaction, and signaling

networks, are being widely studied, the extensive communications among regulatory

elements in the genome have not been viewed in a complex-network context (Singh Sandhu

et al., 2011).

We show that a large proportion of the human genome converges to a complex hierarchical

network to orchestrate transcription in functionally compartmentalized and evolutionarily

constrained chromatin communities. We demonstrate that the hubs (i.e., nodes with a

disproportionately high number of interactions) and spokes (i.e., nodes with fewer

interactions) of the network exhibit distinct functional and etiological properties. Together,

our findings present a chromatin-level explanation for how disease-associated mutations are

tolerated during development and how the key cellular genes maintain their consistent and

error-free expression.

RESULTS

Transcription-Associated Chromatin Interactions Form a Complex Hierarchical Network

ChIA-PET is a logical extension of proximity-ligation-based techniques such as

chromosomal conformation capture (3C) and circularized 3C (4C). In brief, the chromatin is

crosslinked with the use of 1% paraformaldehyde and sonicated, and complexes are pulled

down using a specific antibody against a particular protein factor (in this case, 8WG16

antibody against RNAPII). Specific linkers are added to the open ends and the complexes

are ligated in the diluted conditions. The ligated material is then subjected to PET extraction

and next-generation sequencing (Figure 1A). Using K562 and/or MCF7 ChIA-PET data sets

(Li et al., 2012), we constructed an RNAPII-associated chromatin interaction network

(ChIN) by denoting the distinct genomic sites as vertices (nodes) and statistically significant

(false discovery rate [FDR] < 0.05; Extended Experimental Procedures) chromatin

interactions among those sites as edges (links) (Figures 1B and S1A; Extended Experimental

Procedures). To remove redundancy from the ChIA-PET data, we merged the neighboring

overlapping sites as illustrated in Figures 1B (left panel) and S1A. Several randomly

selected intra- (cis) and interchromosomal (trans) interactions had been validated with

Chromosomal Conformation Capture (3C) and DNA fluorescence in situ hybridization

(FISH) assays in our earlier study (Li et al., 2012). The topological and functional properties

of the ChIN presented in this study were also scrutinized against the artifacts of genomic

rearrangements in the MCF7 and K562 cell lines (Figures S1C, S1D, S3C, S4C, S5C, and

S6A).

The strategy elaborated in Figure 1 and Extended Experimental Procedures yielded a

comprehensive network map of chromatin interactions with ~10,000 connected network

components. Surprisingly, however, ~40% of the total nodes formed a giant network

component of 36,748 nodes sharing 55,039 links among them (Figure S1E; Tables S2 and
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S3), suggesting that the vast majority of the transcriptionally active genome displays

widespread communication, and implying an unprecedented level of regulatory influence

among genes and their associated genetic elements. This could lead to common pleiotropic

gene effects. It is obvious that most of these interactions would not occur at the same time in

the same cell due to spatial constraints, but rather represent highly dynamic interactions

across a large population of cells (Sandhu et al., 2009).

Except for some of the properties concerning the topology of the network, which were

determined using the giant network component, most analyses presented in this study were

performed on the whole network map, including the smaller components. Functional

analyses were performed on the K562 and/or MCF7 data sets, depending on the availability

of other related genomic data sets, although the overall properties were coherent between the

two cell lines as shown in Figure S1.

The giant network component of ChIN followed a scale-free-like degree distribution,

according to which very few nodes would have a disproportionately large number of

interactions, and most others would be weakly connected (Barabási and Albert, 1999)

(Figure 2A, top panel). We confirmed this observation for the complete networks for both

cell lines, as well as for the publicly available Hi-C data set (Lieberman-Aiden et al., 2009)

(Figure S1F). Most real-world networks exhibit scale-free-like behavior (Albert et al., 2000),

and the property ascribes error tolerance against random malfunctions, indicating that the

ChINs allow for robust systems.

Furthermore, the ChIN displayed a hallmark of hierarchical network topology, characterized

by a strong negative correlation between the degree (i.e., number of interactions per locus)

and the clustering coefficient (i.e., the tendency of a node to form triangles; Pearson

correlation coefficient [PCC] = −0.81; Figure 2A, lower panel). A hierarchical network

exhibits high modularity in addition to scale-freeness and is an inherent property of

biological networks that governs functional organization (Barabási and Oltvai, 2004). We

further illustrated the hierarchical nature of the ChIN in an example in which the long-range

(<200 Kb) interaction clusters, namely the HIST1 gene clusters, further converge via super-

long-range (>500 Kb) interactions in a hierarchical manner (Figure 2B). The convergence of

these three HIST1 clusters correlates significantly with their coexpression (Li et al., 2012),

suggesting that super-long-range interactions are important for the global coordination of

distant gene clusters. Indeed, we observed that the super-long-range and trans chromatin

interactions are critical for maintaining the overall ChIN topology, despite having a lower

frequency of interactions and accounting for a smaller proportion of all chromatin

interactions (Figure S1G). Abolishment of these interactions would break the ChIN into

smaller disconnected components and consequently alter the global coordination among

distant genes, as in the case of HIST1 clusters.

Strong Regulatory Marks Govern the Modular Topology of the ChIN

To further investigate the modular nature of the ChIN, we used the ModuLand algorithm

(Kovács et al., 2010) and mapped the network modules, which we refer to as chromatin

communities. A chromatin community can include loci from different parts of the genome

and, therefore, represents an extension of the multigene complex (Li et al., 2012) that was
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methodically restricted in the genomic range of 1 Mb. The ModuLand algorithm identified

1,173 communities in the giant component of the K562 ChIN (Figure 2C). Most of the

intracommunity interactions were enriched with cis interactions, whereas intercommunity

interactions were mostly mediated by superlong-range or trans chromatin interactions

(Figure S1H), adhering to the fractal nature of chromatin folding (Lieberman-Aiden et al.,

2009; Sexton et al., 2012). We then asked whether distinct genomic elements and chromatin

types, as identified by Ernst et al. (2011), could contribute distinctly to the modular topology

of the ChIN (Figures 2D and S2). We calculated a centrality score, called the community

centrality score, which is a cumulative measure of the influence of the entire network to the

given node, and is maximal at the central core of the network modules (Kovács et al., 2010).

The active/weak promoter and the strong enhancer elements showed significantly greater

community centrality scores than the other categories, suggesting that the modular structure

of the ChIN is primarily shaped around these genomic elements (Figures 2D and S2J).

Therefore, a single promoter can have multiple enhancers, and a single enhancer can have

multiple target promoters, mounting the regulatory complexity of the genome. We further

classified the enhancer nodes as private or public enhancers based on their attainment by one

or multiple (≥2) gene promoters, respectively. Interestingly, >70% of the public enhancers

were also strong enhancers (p < 2.2e-16), whereas private enhancers were equally

represented by strong and weak enhancers (Figures 2E and S2K). We examined this

observation against the possibility of differential enrichment of RNAPII at strong and weak

enhancer sites by restricting the analysis to sites of similar levels of RNAPII enrichment

(Figure S2L). A specific example is shown in Figure 2F. Three active promoters, three

strong enhancers, and three weak enhancers converged to a network complex. Here again,

the active promoters b, d, and g were central to the network segment, undergoing three, five,

and five interactions, respectively. Similarly, the strong enhancer c interacted with all three

active promoters in the locus, whereas the other strong enhancer, h, interacted with two of

the three active promoters (Figure 2F). On the other hand, the weak enhancers f, i, and j

were peripheral to the chromatin communities connecting to individual genes (Figure 2F).

Therefore, strong enhancers not only have a greater enhancing effect on transcription, which

is the original definition of strong enhancers (Ernst et al., 2011), but also have the potential

to regulate multiple genes (pleiotropic regulation).

We then sought a possible explanation for the greater centrality of strong/public enhancers.

We assessed the correlations with individual histone modifications (Figure S2E).

Hyperacetylation of nodes was associated with higher degree, which is in line with the

supposition that hyperacetylation endows greater chromatin mobility (Brown et al., 2008;

Krajewski and Becker, 1998). We previously showed that the abundance of chromatin

interactions correlates with genomic descriptors such as SINE and LINE densities (Li et al.,

2012). Therefore, in our analyses we controlled for these genomic correlates. The partial

correlations controlled for SINE and LINE densities clearly suggested that the correlations

between degree and SINE/LINE densities do not account for the correlations observed

between node degree and enrichment of chromatin marks (Figures S2H and S2I).

Furthermore, the elements bound with chromatin remodeling factors such as BRG1 and INI1

were more interactive than the rest (Figure S2M). We hypothesize a prominent role for

chromatin-remodeling factors in determining the ChIN topology, which is also in line with
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earlier reports on individual loci (Kim et al., 2009; Ni et al., 2008; Zhang et al., 2006).

Surprisingly, contrary to the prevailing view on the role of CTCF in chromatin architecture,

we did not observe strong association between CTCF binding and the number of RNAPII-

associated chromatin interactions (Figures 2D and S2E), suggesting that CTCF orchestrates

the genome architecture in a manner reasonably distinct from that of RNAPII, possibly by

enclosing the chromatin communities in large chromatin compartments and thus ascribing a

basic chromatin skeleton for transcription-associated complex connectivity (G.L. et al.,

unpublished data). Therefore, the notion that CTCF is the “master-weaver of the genome”

needs to be reconciled by taking into account the role of other factors in three-dimensional

genome organization.

Chromatin Communities Organize Functional Compartmentalization

The modular nature of the ChIN raises the possibility of functional compartmentalization of

chromatin in the nucleus. To assess the functional enrichment in chromatin communities

using network-based ontology tools (see Experimental Procedures), we focused only on

promoter-promoter interactions. This resulted in the decomposition of the giant network into

several smaller network components (Figures S3A and S3B). We analyzed the enrichment

of gene ontology (GO) terms among the top 30 network components, containing at least 20

genes each (Extended Experimental Procedures; Table S4). Out of 30 such subnetworks, we

observed the enrichment (FDR < 0.01) of one or more functions in 18 (60%; Figure 3A, left

panel). Using an example of a network component, we further showed that the enrichments

of multiple functions were localized in distinct chromatin communities within a network

component (Figure 3A, right panel; Table S4). Figure S3C illustrates that the observed

functional organization is not an artifact of genomic rearrangements. We further validated

two interesting examples using DNA FISH experiments: (1) A common enhancer interacted

with two brain-related proteases, both expressed in MCF7, in cis and trans. Interestingly, the

enhancer locus was specifically conserved among primates, hinting at the possibility of

primate-specific gene expression regulated via long-range chromatin interactions (Figure

S3D). (2) Two small nuclear noncoding RNA loci were found to be interacting in trans

(Figure S3E). DNA FISH experiments confirmed the significant interaction frequencies

among the loci involved (p = 6.8e-07 and 2.2e-16, respectively; binomial test; Figures S3D

and S3E).

Often, not all of the genes in a community served the same function, suggesting that the

chromatin communities were not absolutely dedicated to a particular function and often

incorporated overlapping secondary functions, which might be indirectly related to the

primary function. For instance, a protease (SIPA1), a protease inhibitor (CST6), and a DNA

repair-related factor (MUS81) were embedded in a community significantly enriched in

defense/immunity-related genes (FDR < 0.01; Figure 3B). We hypothesize that such

interactions might orchestrate a coordinated response to external stimuli. The overlapping

functional enrichments in chromatin communities could also help in efficient

reconfiguration of community function in response to external signals, as proposed earlier

(Mihalik and Csermely, 2011; Pál et al., 2006).
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Importantly, the community structures were largely conserved between MCF7 and K562

cell lines. Out of 1,783 total gene communities with at least three genes each, 1,279 (71%)

showed >75% overlap in MCF7 and K562 cell lines (Figure S3F). Upon closer examination,

we observed that the nodes with K562- and MCF7-specific interactions were often

embedded in the communities enriched with genes common to both cell lines (Figure S3G).

Therefore, the cell-line specificity is defined either by individual long-range transient

interactions that do not converge to the same community or by fine level differences in

chromatin looping within communities. Such fine differences in chromatin architectures

have also been observed by others in different contexts (Filion and van Steensel, 2010;

Lienert et al., 2011; Peric-Hupkes et al., 2010).

Chromatin Communities Are Evolutionarily Constrained

We speculated that evolutionary constraints may have shaped the functional

compartmentalization of chromatin. To test this, we analyzed the density of interactions (i.e.,

the number of interactions per Mb) within genomic blocks that were syntenic or nonsyntenic

to chimp and mouse genomes. We used a moderate level of coarse graining to map syntenic

blocks using the Cinteny algorithm (Sinha and Meller, 2007) (Table S1), which revealed

human-chimp and human-mouse syntenic blocks covering 48% and 45% of the human

genome, respectively. Subsequent analysis revealed a nonrandomly higher density of

chromatin interactions within the syntenic blocks than in the nonsyntenic blocks (Figures

4A–4C). Moreover, the frequency of loops connecting syntenic and nonsyntenic blocks was

also very low (four and seven loops per megabase for human genomic blocks syntenic to

chimp and mouse genomes, respectively). Because syntenic regions are expected to show

higher gene density and expression, we performed some control analyses by selecting

syntenic and nonsyntenic regions of similar gene density and expression. The analysis

consistently showed a significantly higher density of chromatin interactions in the syntenic

blocks (Figure S4A). Furthermore, a brief analysis on some of our unpublished ChIA-PET

data for mouse embryonic fibroblasts (MEFs) suggests that RNAPII-mediated chromatin

interactions tend to accumulate in mouse regions that are syntenic to the human genome

(Figure S4B), reconciling the evolutionarily constrained nature of chromatin communities.

The observed synteny of chromatin communities was also robust against the possibility of

artifacts due to genomic rearrangements in human cancer cell lines (Figure S4C). The above

observations were also supported by our analyses of human-mouse orthologous genes,

conservation of genomic neighborhood, asynonymous sequence divergence between human-

chimp genomes, and mammalian phastCons conservation scores (Figures S4D–S4G).

To obtain further details, we plotted the genomic distance between interacting loci of human

genome against that of corresponding sites (UCSC’s liftOver; 95% sequence similarity) in

the mouse genome (Figure 4B). We had three key observations: (1) Paired coordinates for

32% and 38% of total interactions in K562 and MCF7 cell lines, respectively, could be

directly mapped to the mouse genome as compared with 13% of randomly selected

coordinates with the same span distribution (p < 2.2e-16). (2) The correlation between locus

distances in human and mouse genomes was significantly higher for interacting loci than for

randomly selected pairs of loci of the same span distribution, supporting the higher

conservation of synteny for interacting pairs (PCC = 0.90, FDR = 0.004; Figures 4B and
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S4H). (3) There were very few instances in which proximal mouse genomic sites were

rearranged to distant sites in the human genome (Figure 4B), and in contrast, there was

nonrandomly higher representation (FDR = 0.009; Figure S4H) of sites that were distant in

the mouse genome but were rearranged to proximal domains in the human genome. This

suggests two possibilities: (1) The physical interactions, if any, among distant genomic sites

in the ancestor genome may have served as an evolutionary mechanism to translocate the

interacting loci to proximal regions in the human genome (Figure 4B). Indeed, spatial

proximity has been shown to mediate genome rearrangements associated with cancer

genomes (Lin et al., 2009). Therefore, the evolution of gene clusters may have been

mediated by long-range chromatin interactions. (2) If the distant loci had no interaction in

the ancestor genome, then the newly acquired linear proximity of loci through the process of

translocation may have been the sole driving force behind chromatin interactions. A detailed

analysis of RNAPII-associated chromatin interaction data from other lower species would

allow further examination of such observations in the future.

We previously demonstrated a nonrandomly higher correlation among expression profiles of

interacting genes across several gene-expression data sets (Li et al., 2012). Along similar

lines, we now asked whether the expression of genes with promoter-promoter interactions is

evolutionarily more conserved than the rest. To address this issue, we obtained an

expression-divergence data set for multiple human and chimpanzee tissues from the

literature (Khaitovich et al., 2005). Indeed, the genes that had promoter-promoter

interactions showed a significantly lower divergence of gene expression and sequence

during the evolutionary split of chimpanzees and humans (Figures 4D and S4F). These

observations highlight the strong evolutionary selection of advantageous chromatin

communities for functional coordination of related genes.

Disease-Associated Genetic Errors Are Enriched Among Spokes

Genetic errors in distal noncoding elements could influence the expressivity of the genome

(Freedman et al., 2011; Mu et al., 2011). One way in which genetic errors could influence

gene activity and, consequently, the phenotype is via long-range chromatin interactions

(Ahmadiyeh et al., 2010; Ferrai and Pombo, 2009; Sandhu et al., 2009; Steidl et al., 2007;

Visel et al., 2009). Therefore, we focused on disease-associated SNP data obtained from the

genome-wide Association Studies (GWAS) catalog (Hindorff et al., 2009). The

representation of GWAS SNPs among genic and intergenic sites did not differ from that of

the overall representation of these sites in the giant ChIN (Figures S5A and S5B), suggesting

that disease-associated SNPs are equally probable for genic or intergenic regions in the

ChIN. Although the target genes of intergenic GWAS SNPs determined by ChIA-PET

showed good correspondence (~70%) with the targets reported in the GWAS catalogue,

there were SNPs that had different or additional targets compared with the known ones

(Figures S5D and S5E), suggesting that the chromatin interaction data can help one

determine the precise targets of noncoding SNPs. Because >95% of total genes engaged in

RNAPII-associated long-range interactions were related to the transcriptionally active status

of the genes (Li et al., 2012), we reason that if the gene is expressed in the tissue for which

the GWAS study was performed, most likely it will also have the corresponding chromatin

looping to regulatory elements. This is also supported by the observation that 79% of total
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interactions involving genes commonly expressed in the MCF7 and K562 cell lines were

conserved among cell lines. Therefore, the cell-lineage discrepancy of integrated GWAS

data and the ChIA-PET data sets might not be entirely incoherent in this context.

By mapping the GWAS SNPs onto the ChIN, we further showed that genomic elements

with at least one disease-associated SNP were enriched to a lower degree (3–6; spokes) and

that the ChIN hubs were devoid of such SNPs (FDR = 0.001; Figure 5A; for examples, see

Figures 5C, 5D, S5D, and S5E, and Li et al. [2012]). This observation was also true for

distinct types of promoters or enhancer loci (Figure S5F). A relatively weaker second dip in

the FDR curve in Figure 5A appeared to be due to a locus having an abnormally high copy

number. Therefore, we assessed the representation of all of the nodes with GWAS SNPs in

the normal- and abnormal-copy-number regions. More than 90% of the disease-associated

SNPs were found to be in the normal-copy-number regions (Figure S5C). Thus, we argue

that our observation is not an artifact of the genomic abnormalities of cancer genomes.

Furthermore, 80% of the chromatin interactions mediated by the nodes having GWAS SNP

were generally restricted within the chromatin community (p = 1.07e-07, Fisher’s exact

test), suggesting that in general, the chromatin interactions of disease-linked SNPs associate

with the spatially localized dysregulation of a limited number of genes.

Similar observations were reported for most disease genes from the morbid entries in the

Online Mendelian Inheritance in Man (OMIM) database (Hamosh et al., 2000), where hubs

were mostly devoid of genes associated with disease phenotypes (Figure S5G). Therefore,

we asked whether disease-associated regulatory loci were selected against the possibility of

erroneous interactions, like those reported elsewhere (De and Michor, 2011; Lin et al., 2009)

or otherwise, by restricting themselves to fewer interactions. To test this, we compared the

chromatin interactions of loci associated with germline and somatic cancer mutations

(Futreal et al., 2004). Comparison revealed that the loci harboring cancer-associated

germline mutations are less interactive than the ones with somatic mutations, despite the

least difference in RNAPII enrichment between the two types of loci (Figures 5B and S5H).

The data suggest that disease-associated regulatory elements generally function locally and

have a rather limited repertoire of interactions. We propose that the possibility of erroneous

genomic interactions and consequently functional dysregulation is minimized by means of

restricting the total number of interactions of loci that are important for normal organism

development. The germline transmission of genetic lesions having fewer interactions can

thus be better tolerated. By contrast, somatic mutations are not under any selection pressure

and thus could have a relatively wider exposure to the regulatory cross-wirings in the

chromatin. Therefore, based on our analysis, we propose that disease-causing SNPs may

generally be trapped in local chromatin communities that affect rather limited phenotypic

traits, such as those shown in Figures 5C, 5D, S5D, and S5E.

Hubs Conform to a “Rich-Club” Organization of Key Cellular Functions

Given that the hubs had different characteristics as compared with spokes, we focused on the

hubs (degree ≥ 60) to determine whether the hubs showed any particular behavior.

Interestingly, we found that the top hubs had a preferential link structure, i.e., a rich-club,

among themselves (Figure 6A and 6B; total 385 promoters and 2,386 other elements
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centered on 25 hubs). By analyzing our in-house data sets of genomic rearrangements

uncovered by the genomic DNA paired end tag (G-PET or DNA-PET) sequencing approach

(Hillmer et al., 2011), we ensured that the rich-club is not an artifact of genomic

rearrangements (Figure S6A).

Rich-clubs in several real-world networks were previously reported and were proposed to

contribute to the greater robustness of the network against random hub failures (Colizza et

al., 2006; Shi and Mondragon, 2004) and to enhance global cooperation in several biological

systems (Bastolla et al., 2009; Saavedra et al., 2011). To test this hypothesis, we disrupted

rich-club connectivity and performed a network-resilience analysis of the ChIN. We

observed that the ChIN with an intact rich-club had greater topological robustness than the

one with a disrupted rich-club (p = 0.004; Figures S6B and S6C).

Functionally, the rich-club genes (n = 385) were enriched in essential cellular functions,

including chromatin assembly (e.g., HIST1 genes, TTF2, MTA2, TAF6, and BRD2),

cellular organization (e.g., ACTB, ACTG1, CIT, KIF1B, KIF2C, and TRIP6), and primary

metabolic processes (e.g., SLC17A7, SlC3A2, ITPA, ATP1A2, DHX29, MAP4K4,

EEF1A2, and PLEC1), when compared with nonhub nodes (degree 1–6) or the target genes

of GWAS SNPs, which were relatively enriched in development-related functions (FDR <

0.05; Figures 6C, S6D, and S7A). More importantly, 62% of the rich-club genes, and the

genes interacting with them, that could be mapped to mouse phenotype information

available from the Mouse Genome Informatics (MGI) database (Shaw, 2009) had a “lethal,”

“death,” or “mortality” phenotype in mouse (red-colored nodes in Figure 6D and Table S5),

whereas only ~23% of the mouse genes had shown these phenotypes (Shaw, 2009; p =

6.34e-08). A specific example of rich-club organization across an ~14 Mb region on chr1 is

shown in Figure 6E. The hubs centered on JARID2 (chromatin modifying), E2F3

(transcription factor), and c6orf62 and HIST1 (chromatin assembly) genes converge via

super-long-range interactions. These observations indicate that the hubs collectively perform

essential cellular functions by conforming to a rich-club. Nonrandom spatial clustering of

essential genomic loci might also relate to an evolutionary strategy to reduce expression

noise by locating the essential loci to site(s) of abundant transcription, as discussed below.

DISCUSSION

In brief, we have demonstrated that chromatin interactions form a giant, interconnected

network organized into three key interrelated structures: communities, hubs, and peripheral

spokes. Communities are primarily centered on hyperacetylated, strong regulatory marks

and organize the genome into distinct functional compartments. Hubs conform to an

interconnected core, or rich-club, of key cellular functions, whereas spokes are relatively

enriched in development-related and lineage-specific genes (Figure 7). This peculiar

nonrandom functional organization of hubs and spokes might have evolved to keep the

interactome healthy and robust against random deleterious genetic or transcriptional errors

in the genome.

Functional enrichment of chromatin communities could be a potent constraint that ties

together transcription-associated chromatin in the nucleus. Our observation strongly
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supports the notion of specialized transcription factories (Pombo et al., 2000; Xu and Cook,

2008), wherein promoters with common properties, such as binding sites for a particular

transcription factor, share the same transcription factory. We reason that the enrichment of

secondary functions in the same community might relate to (1) the limitation of available

GO knowledge, (2) the transcription of genes that need to be expressed as a coordinated

response to external stimuli, or (3) neutral coexpression clusters, which were previously

proposed to be a result of neutral coevolution (Sémon and Duret, 2006). Interestingly, the

chromatin communities are weakly interconnected with each other through trans or super-

long-range cis interactions, which are generally transient in nature, suggesting that the trans

chromatin interactions might be critical for cross-functional communication of genes to

enable a coordinated response to external signals and allow the genome to easily reconfigure

under environmental changes.

Evolutionary conservation of genomic neighborhood, sequence, and gene expression clearly

supports the evolutionary constraints of transcription-associated chromatin proximity. This

is also in line with a recent Hi-C study on human and mouse embryonic stem cells (Dixon et

al., 2012), which appeared when this work was in communication. Interestingly, we

observed a population of interacting loci that were distant in the mouse genome but

proximal in the human genome, hinting at the possibility of evolution of gene clusters by

means of long-range chromatin interactions. Loci that are to be transcribed in a cooperative

manner may have been located at genomically distant but spatially proximal sites in the

ancestor genome, and may have translocated to proximal genomic sites in higher primates

by a similar mechanism that mediates the genomic rearrangements in cancer genomes (Lin

et al., 2009). Such hypotheses can be tested further when high-resolution RNAPII-associated

chromatin interaction data become available for other mammalian and vertebrate species in

the future.

The nonrandom enrichment of disease SNPs and germline mutations among the spokes hints

at their selection against diverse chromatin interactions that may be important for controlled

regulation of development-related genes. Highly diverse interactions at these loci might

increase their susceptibility to erroneous interactions and eventually to transcriptional

dysregulation. Moreover, it was previously shown that chromatin interactions can mediate

mutations (De and Michor, 2011; Lin et al., 2009). Therefore, the genomic loci with disease-

associated mutations would survive through development only if their interactions were

limited. The mutations that occur at the hub loci would be lethal and would not be observed

in the population.

Nevertheless, the ChIN had hubs that were enriched in key cellular functions. How do these

hubs escape random malfunctions? Based on our analysis, we reason that (1) the ChIN

follows a scale-free-like distribution of node degrees, which means that the number of hubs

would be very low in the network and hence the probability of an error hitting a hub would

also be very low; and (2) hubs are not randomly distributed in the ChIN and instead are

arranged nonrandomly into an interconnected core or rich-club, which further reduces the

probability of being hit by random malfunctioning.
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A rich-club of key cellular functions implies two things: (1) In addition to the partial or

complete loss of the known protein function, which may or may not explain the lethality,

genetic or epigenetic errors in the top hub loci in the ChIN may have other consequences,

such as alteration of transcription of other interacting genes through promoter-promoter

interactions (Li et al., 2012), followed by a cascading dysregulation of the downstream gene

regulatory network, and eventually contribute to lethality. Because the top hubs are directly

interconnected through promoter-promoter interactions, we hypothesize that it is this core,

rather than a single gene, that becomes transcriptionally dysregulated to cause lethality. 2)

Nonrandom rich-club organization in the chromatin interactome may have evolved to shield

the genes with key biological functions from random malfunctioning and also ensure their

robust, high, and synchronized transcription through promoter-promoter interactions (Li et

al., 2012; Figure S2G, degree correlation with gene expression). Indeed, nonrandom linear

genomic clustering of essential genes was previously proposed to be associated with lower

expression noise (Batada and Hurst, 2007). Along similar lines, non-random three-

dimensional (3D) clustering of essential cellular genes at nuclear sites of abundant

transcription may regulate their lower expression noise. This clustering can be attributed to

3D organization of gene-dense regions (~70% of hubs were located in regions with >20

genes per Mb) in the nuclear core, which was previously shown to be evolutionarily

conserved (Neusser et al., 2007; Tanabe et al., 2002). Therefore, an interconnected core of

housekeeping genes might suggest a selection mechanism that evolved to reduce the

variation in gene expression at essential gene loci associated with core cellular functions. In

contrast, such variations in expression in the peripheral, nonhub nodes associated with

lineage-specific and developmental functions may have been relatively tolerant in the

context of cell survival. Nonetheless, certain type of genetic errors and dysregulated

expression levels at these loci could be lethal in the context of organism survival.

Interestingly, the rich-club remains intact after the genomically rearranged regions are

removed from the network, hinting at two possibilities: (1) either the loci in the rich-club are

protected against DNA breaks, possibly via efficient DNA repair and a protection

mechanism, or (2) the genomic rearrangements at these loci are deleterious in the cell-

survival context and hence not observed in the cancer cell lines. The former possibility is

also supported by the fact that these loci are hyperacetylated, which also allows for efficient

DNA repair (Ikura et al., 2007), and the hub loci generally locate to early replicating

domains (Figure S2N), which are less susceptible to genetic errors (Stamatoyannopoulos et

al., 2009) due to lower accumulation of single-stranded DNA.

Taken together, our results obtained via a network approach suggest that evolutionary and

functional constraints may have shaped the 3D organization of the human genome. We

propose that the human genome exhibits a robust systems organization of chromatin

interactions to regulate transcription by compartmentalizing biological functions into distinct

chromatin communities, and by ensuring the robust and consistent transcription of key

essential genes in the interconnected dense core. The modular topology of the chromatin

interactome may also guide GWAS studies to prioritize the SNPs for genotype-phenotype

associations.
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This work also suggests several future directions. First, by integrating the gene regulatory

circuitry into the ChIN, investigators may be able to study and predict the erroneous waves a

genetic or epigenetic lesion might radiate in a diseased genome. Second, for a full

exploration of the emergent properties of chromatin interactome networks that arise over

time, the dynamics of chromatin interactions during normal cell-lineage specification and

evolution will need to be examined.

EXPERIMENTAL PROCEDURES

Data Sets

We used our previously published RNAPII ChIA-PET data sets (Li et al., 2012) to perform

the comprehensive network analysis. These data sets are available from the Gene Expression

Omnibus (GEO, GSE33664; Edgar et al., 2002) and from our in-house server. Other

genomic data sets were taken from the resources listed in Table S1.

Network Construction

The ChIN was constructed using nonoverlapping distant genomic sites present in our

RNAPII ChIA-PET libraries. The detailed strategy for network construction is elaborated in

the Extended Experimental Procedures. Nodes were then demarcated as TSS, TES, GBD,

and IGN, and as distinct chromatin types using genome annotations from the University of

California Santa Cruz (UCSC) and ENCODE (Ernst et al., 2011).

Network Analysis

We used the igraph library on the R platform to analyze topological descriptors, such as the

node degree (k), average degree of nearest neighbors (knn), average path length, clustering

coefficient, and various node or edge centralities of ChIN. To assign communities and their

centralities, we used the ModuLand algorithm (Kovács et al., 2010). We detected the rich-

club using the recently proposed rich-club coefficient (Colizza et al., 2006). We performed a

network resilience analysis by progressively deleting random nodes from the ChIN and

measuring the network destruction as a function of the average path length or the number of

disconnected network components (Albert et al., 2000).

GO Analysis

We used network ontology analysis (NOA; Wang et al., 2011), BiNGO (Maere et al., 2005),

and PANTHER (Mi et al., 2010) to assess the enrichment of specific functions in chromatin

communities.

Visualization

Networks were visualized on Cytoscape (Kohl et al., 2011) and Gephi. Spring-embedded

layouts were used throughout the analysis. Chromatin loops and associated genomic features

were browsed and analyzed on an advance genomic browser developed in-house (F.H.M. et

al., unpublished data). Most of the plots were made on the R platform.
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Statistics

Statistical tests of significance (i.e., Wilcoxon’s rank sum test, Fisher’s exact test, and

binomial tests) were performed on the R platform. The FDR, when applicable, was

calculated by randomizing the data sets several thousand times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simplified Illustration of the ChIA-PET Technique and Network Construction
(A) ChIA-PET technique.

(B) Network construction.

Formaldehyde crosslinked chromatin was fragmented by sonication and chromatin

complexes bound with RNAPII (green), and pulled down using 8WG16 antibody (blue).

Specific linkers were added to the open ends and subsequently ligated in the diluted

conditions. After the chromatin complexes were decrosslinked, DNA material was subjected

to PET extraction and next-generation sequencing using the Illumina GAIIx platform.

Unique PETs were mapped back to the reference genome (Hg19) and statistically significant

interactions were called at FDR ≤0.05 using the ChIA-PET tool (Li et al., 2010). To

construct the network, the redundancy in the data were removed by merging the overlapping

interaction sites. The cutoff range for overlap is shown in Figure S1A.
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Figure 2. Topological Properties of Transcription-Associated ChIN
(A) Top panel: Log-log plot of the node degree distribution for ChIN constructed from the

K562 ChIA-PET dataset (plots for other data sets are given in Figure S1F). The plot shows

heavy tailed distribution atypical of scale-free-like networks. Bottom panel: Log-log scatter

plot of node clustering coefficients and degree. The strong inverse correlation is atypical of

hierarchical (scale-free + modular) networks.

(B) An example of hierarchical chromatin organization on chromosome 6 is shown in the

right panel. Three distant HIST1 gene clusters (HC1, HC2, and HC3) converge in a

hierarchical manner, as shown in the heat-map representation of ChIA-PET data.

(C) Hierarchical topology of K562 ChIN. The color gradient represents the hierarchical

organization of chromatin communities (#1173); red and blue indicate the most central and

most peripheral chromatin communities, respectively, as identified by the ModuLand

algorithm. Other network properties for K562 and MCF7 ChINs are given in Figures S1 and

S2.

(D) Community centralities of nodes having distinct chromHMM profiles (Ernst et al.,

2011) in the K562 cell line. Red, active/weak promoter; magenta, poised promoter; orange,

strong enhancer; yellow, weak enhancer; blue, insulator; green, transcribed region; gray,

repressed region; white, all. Asterisks indicate the chromatin types for which the community

centralities were significantly greater when compared with all nodes. The Mann-Whitney U

test was used to calculate the p values (<2.2e-16 for each asterisk). See also Figure S2J.
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(E) Public and private nature of enhancers. Shown is the bar plot for the proportion of strong

and weak enhancers in private and public enhancers. The p value was calculated using

Fisher’s exact test. A box-plot representation of overall promoter interactions of strong and

weak enhancers is given in Figure S2K.

(F) High-resolution example of physical interactions among distinct chromatin types. Shown

are the tracks for UCSC known genes, RNA-Seq, RNAPII enrichment, ChIA-PET, and

chromatin types (chromHMM) in the K562 cell line. The network constructed from this

locus is shown in the right panel. Nodes are colored according to their chromatin types and

their size is scaled to their degree.
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Figure 3. Functional Compartmentalization of Promoter-Promoter Interactions in ChIN
(A) Enrichment of GO process terms in the top 30 network components (size > 20 genes) in

MCF7 ChIN compared with the whole genome. Each row separated by a gap represents a

network component. Enrichment of GO terms is represented as scaled proportions of the

observed number of hits in a ChIN component (orange) versus the expected number of hits

in the genome (blue). Only significant terms (FDR < 0.01) are shown. Gray-colored bars

represent the network components that had no significant GO enrichment. The network

topology shown in the right panel represents a ChIN component (n = ~600) with distinct

chromatin communities as determined by the Modu-Land algorithm. Nearly 50% of the

communities were enriched with distinct functions (colored modules). Red, chromatin

assembly; blue, response to stimuli and RNA processing; orange, lymphocyte-mediated

immunity; magenta, fatty acid biosynthesis; pink, antigen processing and presenting; green,

brain development; yellow, muscle filament sliding; cyan, proline biosynthesis; gray, no

functional enrichment or only one representative gene. Edges are weighted by the PCC of

the interacting genes across estrogen-induced time-course GRO-seq experiments (Hah et al.,

2011).

(B) Example of chromatin interactions among cellular defense/immunity related genes on

chromosome 11. Noninteracting genes (black) have unrelated functions such as testes-

specific function and intracellular trafficking. Nodes with dual colors represent neighboring

genes with bidirectional promoters. DNA FISH validations of a few interesting examples are

given in Figures S3D and S3E.
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Figure 4. Evolutionary Constraints of Chromatin Communities
(A) Enrichment of chromatin interactions (K562) in the genomic blocks that were syntenic

between human and chimp/mouse genomes. The p values for the difference between

syntenic and non-syntenic blocks were calculated using binomial tests. The data for MCF7

are given in Figure S4C.

(B) Scatter plot of genomic spans between interacting sites in human and corresponding

sites in the mouse genome. The red line represents the linear regression (PCC = 0.90) and

dashed lines mark the 1 Mb span. The top-left quadrant, highlighted in gray, represents the

genomic sites that are distant in the mouse genome but proximal in the human genome.

(C) Example of an ~10.5 Mb region on chromosome 8, illustrating the preferred interactions

within syntenic blocks. Red, green, and blue bars represent blocks in the human genome that

are syntenic with chimp, mouse, and zebra fish genomes, respectively. Only those

interactions that span the 10.5 Mb region are shown.

(D) Mean divergence in expression (human versus chimp) across different tissues for genes

having promoter-promoter interactions (orange) and the rest of the genes (blue). Additional

supporting data are given in Figure S4. The p values were calculated using the Mann-

Whitney U test.
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Figure 5. Disease-Associated Mutations in the ChIN
(A) Number of nodes (red) containing at least one GWAS SNP with respect to the degree

cutoff. FDRs (gray) were calculated by randomizing the SNP position in the network 103

times at each degree cutoff.

(B) Degree distribution of TSS nodes for genes having somatic and germline mutations in

cancer phenotypes. The p value was calculated using the Mann-Whitney U test.

(C and D) Examples of “within-community” chromatin interactions of disease-associated

noncoding SNPs at the (C) beta-hemoglobin and (D) MYC locus in the K562 cell line.

Yellow bars highlight the noncoding SNP positions, and red color highlights the locations of

interacting promoters. Phenotypes associated with SNPs: rs2071348, beta-thalassemia/

hemoglobin E disease; rs9642880, bladder cancer; rs2648875, end-stage renal disease; and

rs2608053/rs2019960, Hodgkin lymphoma. Both of the example loci fall in the normal-

copy-number range in the K562 cell line (as illustrated in Figure S1C).
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Figure 6. Rich-Club Organization of Key Cellular Functions in the ChIN
(A) XY plot of rich-club coefficient versus degree. Coefficient values > 1, for high degree

nodes, signify the presence of a rich-club, i.e., a network core of interconnected hubs. The

black curve represents the rich-club coefficient (σ(k)/σran(k); Extended Experimental

Procedures), and gray curves represent the 95% confidence interval based on the distribution

of rich-club coefficient values of 103 randomly rewired networks.

(B) Network representation of rich-club (total 25 hub loci linked to 385 promoters and 2,386

other genomic elements). Distinct colors of the hub nodes signify distinct chromosomes. For

simplicity, only the links that connect to hub loci are shown.

(C) Overrepresented GO terms among the rich-club loci (orange) with respect to spoke loci

(blue). The p values are corrected for multiple-hypothesis testing using the Benjamini-

Hochberg method. GO comparisons with genes associated with GWAS SNPs in genic and

intergenic regions are shown in Figures S6D and S7A.

(D) Promoter-promoter interactions (n = 3,933) among all of the genes (n = 385) in the rich-

club. The red color represents the genes that showed a lethal/death/mortality phenotype (n =

54) in the MGI database. Black nodes depict the genes that had a nonlethal phenotype (n =

33) in MGI. Gray-colored nodes are genes for which mutation information was not available

in MGI (n = 298). (E) An example locus (~14 Mb genomic spans) showing super-long-range

chromatin interactions among hubs. Red and white bars represent lethal and unknown

phenotypes of the representative hub loci (within the local cluster), respectively. Only those

interactions that span the 14 Mb region are shown.
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Figure 7. Hubs and Spokes Demarcation of Transcription-Associated ChIN
The grey curve shows the nodes (genes) sorted in order of their number of interactions. The

blue bar represents the interaction range of spokes (degrees 1–6) and the orange bar

represents the rich-club. Relative functional interpretations are given at the bottom. The

original plot for expression breadth analysis is given in Figure S2O. Plots for evolutionary

divergence of sequence and gene expression are given in Figures S7B and S7C.
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