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Abstract: 3D similarity is useful in predicting the profiles of unprecedented molecular frameworks
that are 2D dissimilar to known compounds. When comparing pairs of compounds, 3D similarity of
the pairs depends on conformational sampling, the alignment method, the chosen descriptors, and
the similarity coefficients. In addition to these four factors, 3D chemocentric target prediction of an
unknown compound requires compound–target associations, which replace compound-to-compound
comparisons with compound-to-target comparisons. In this study, quantitative comparison of
query compounds to target classes (one-to-group) was achieved via two types of 3D similarity
distributions for the respective target class with parameter optimization for the fitting models:
(1) maximum likelihood (ML) estimation of queries, and (2) the Gaussian mixture model (GMM) of
target classes. While Jaccard–Tanimoto similarity of query-to-ligand pairs with 3D structures (sampled
multi-conformers) can be transformed into query distribution using ML estimation, the ligand pair
similarity within each target class can be transformed into a representative distribution of a target
class through GMM, which is hyperparameterized via the expectation–maximization (EM) algorithm.
To quantify the discriminativeness of a query ligand against target classes, the Kullback–Leibler (K–L)
divergence of each query was calculated and compared between targets. 3D similarity-based K–L
divergence together with the probability and the feasibility index, (Fm), showed discriminative power
with regard to some query–class associations. The K–L divergence of 3D similarity distributions
can be an additional method for (1) the rank of the 3D similarity score or (2) the p-value of one 3D
similarity distribution to predict the target of unprecedented drug scaffolds.

Keywords: Kullback–Leibler (K–L) divergence; chemocentric similarity; Jaccard–Tanimoto coefficient;
Gaussian mixture model (GMM); expectation-maximization (EM) algorithm; maximum likelihood
(ML) estimation; machine learning

1. Introduction

An unpresented molecular framework such as that in Figure 1a can be investigated in drug
space. In early stages of drug discovery, three-dimensional (3D) similarity between chemicals has been
used to find desirable ligands of a chosen therapeutic target in virtual screening (VS; Figure 1b) [1,2].
To our knowledge, chemical similarity is a coarse predictor for filtering out less promising chemicals
rather than selecting the most desirable compound. Chemical similarity has also contributed to target
screening (in other words, retro-VS) under the chemocentric assumption in Figure 1c. Chemocentric
assumption means if two similar molecules are likely to possess similar properties, they can share
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biological targets or may show similar pharmacological profiles [3,4]. Remarkably, Jain’s group
conducted on-target and off-target prediction through the comparison of two-dimensional (2D) and 3D
chemical similarity [5]. Based on this comparison, while dual 2D and 3D similarity-based predictions
showed superiority for either 2D or 3D predictions, 3D predictions did not show dramatic improvement
over 2D predictions. In addition, the increase of data points, according to the conformer sampling sizes,
makes the computing cost of 3D features increase more rapidly than 2D features. However, despite it
being less cost-effective, 3D similarity is the best feature for in silico target screening of unprecedented
drug scaffolds and new drug-like molecular frameworks [6] because (1) novel, unprecedented drug
scaffolds have very low 2D similarity to known bioactive molecules [7–9], (2) novel pharmacological
profiles of drugs are more frequently found using 3D similar off-target predictions [5], and (3) realistic
drug properties can be generated from their factual and flexible 3D structures [10–12].

Figure 1. The problem definition of 3D chemo-centric screening. (a) BNDS-A as a new molecular
framework. (b) The role of chemical similarity in virtual screening. (c) The role of chemical similarity in
chemo-centric retro-virtual screening. (d) The workflow of this work of an unprecedented drug scaffold.
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The internalization of Michelangelo Buonarroti’s quote, “Every block of stone (chemical) has a
statue (utility) inside it, and it is the task of the sculptor (chemist) to discover it”, inspired this research
for the ‘chemistry-oriented synthesis’ of an unprecedented drug scaffold [7–9] and the chemocentric
target profiling of this scaffold [7]. For this purpose, we have intensively studied the 3D similarity
of unprecedented drug scaffolds (the query compounds) with known molecular frameworks (the
reference compounds). When comparing query and reference compound pairs, 3D similarity of
the pairs depends on (1) conformational sampling of the compounds, (2) the alignment method,
(3) the chosen descriptors, and (4) the distance coefficients (e.g., Jaccard–Tanimoto). In addition to
the four factors of 3D VS, retro-VS of unprecedented drug scaffolds (query compounds) requires
compound–target associations (target class information), as shown in Figure 1. These associations
are the source of the substantial difference between VS and retro-VS in problem-solving in data
science, specifically, (1) one-to-one comparison for VS, as shown in Figure 1b; (2) one-to-group (class)
comparison for retro-VS, as shown in Figure 1c; and (3) group-to-group comparison for typical
parametric statistics such as ANOVA and t-test. When we calculated the similarity of compound pairs
in retro-VS, the hope was to ultimately identify the primary target of the query through calculated
chemical similarity rather than finding the most similar compound to the query structure. To achieve
this, one-to-group comparison must be essentially quantified. To our knowledge, such measurements
have not been properly reported in cheminformatics. Notably, 2D similarity distributions with target
annotation have been reported using statistical fitting models such as Shoichet’s group [3], Bajorath’s
group [13], and Nasr’s group [14]. However, even though the number of studies using 3D similarity
is enormous with review articles by Zhang et al. [15] and Shin et al. [16], 3D similarity distribution
is rarely mentioned in the literature. Other than the distribution, network analysis (edge: similarity,
node: chemical) such as that by Torres et al. [17] or the machine-learning algorithm-based classifiers
have also been used [11,18]. Most classifiers do not only use chemical similarity, but also use other
descriptors together [18]. Although several studies have treated 3D similarity distribution such as
Jain’s group [5], Medina-Franco’s group [19], and Pérez-Nueno’s group [20], the distribution comprised
every compound instead of compounds grouped by target [5,19]. In addition, it was either visualized
without a fitting model [19] or its statistical model was chosen without parameter optimization [5].
Exceptionally, although Pérez-Nueno’s group reported Gaussian distribution using 3D similarity,
the study assumed Gaussian distribution with only one centroid and fitting parameter was also not
optimized, despite the small number of ligands [20].

In this study, we quantitatively compared a query compound with a target class (one-to-group)
using two types of similarity distributions, namely, maximum likelihood (ML) estimation of queries
and a Gaussian mixture model (GMM) of target classes (Figure 1d). As raw data of this study,
the Jaccard–Tanimoto similarity coefficients were calculated for (1) query-to-ligand pairs (e.g., the
left second row of the Figure 1d) and (2) ligand pairs within each target class (e.g., the left first
row of Figure 1d). The query-to-ligand similarity was transformed into query distribution via ML
estimation, and the ligand pair similarity was also transformed into a representative distribution of a
target class using GMM. The difference between two distributions was quantified by Kullback–Leibler
(K–L) divergence, which represented the quantitative comparison between a query and a target class.
In order to evaluate whether the K–L divergence accurately achieved one-to-group comparison, a
query chosen from a group of known ligands for a target was tested to observe discrimination between
the original target and other targets. In sequence, the target profiles of an unprecedented drug scaffold
was explained by K–L divergence.

2. Theoretical Background

Kullback–Leibler divergence: K–L divergence measures the difference between two statistical or
probabilistic distributions. In particular, K–L divergence is employed in various machine learning
and deep learning algorithms for statistical inference [21,22]. Since K–L divergence implies relative
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entropy, which is an important concept in understanding statistical phenomena, it applies to statistical
physics, chemistry, and social science.

Let us define two probability spaces, (Ω,F , P) and (Ω,F , Q), where Ω is the sample space, F is
σ–algebra, and P and Q are probability distributions. Then, to define Kullback–Leibler divergence,
a unique measurable function is devised, dQ

dP : Ω→ R+ , known as the Radon–Nykodym derivative,
so that

Q(E) =

∫
E

dQ
dP

dP (1)

For any measurable set, E ∈ Ω [22] when using the measurable function dQ
dP . The Kullback–Leibler

divergence, D(P ‖ Q), is defined as either

D(P ‖ Q) : =
∫

Ω
−ln

(
dP
dQ

)
dP (2)

or

D(P ‖ Q) : =
∫
∞

−∞

ln
(

p(x)
q(x)

)
p(x)dx, (3)

where the probability density functions p(x) and q(x) are defined as

P(x) : =
∫ x

−∞

p(x)dx and Q(x) : =
∫ x

−∞

q(x)dx (4)

The Kullback–Leibler divergence represents the information for comparing P(x) and Q(x)
distributions [23]. Hence, the implication of Kullback–Leibler divergence depends on the definitions of
P(x) and Q(x). For example,

Model Inference: If P(x) represents the testing distribution based on the model, and Q(x) represents
the distribution from the raw data, the difference is the error between the model and reality [24];

Informatics: If P(x) and Q(x) represent information extracted from two objectives, the divergence
is a measurement for the discrimination between two objectives [13,25];

Bayesian Statistics: If P(x) represents a prior distribution and Q(x) represents a posterior
distribution, the divergence represents the information gained through updating [26,27].

In sequence, let us consider a special example. Assume the probability distributions P(x) and Q(x)
replace the Gaussian distributions G(x; mi, σi) and G

(
x; m j, σ j

)
, where

G(x; mi, σi) : =
∫ x

−∞

g(s; mi, σi)ds and G
(
x; m j, σ j

)
: =

∫ x

−∞

g
(
s; m j, σ j

)
ds (5)

Using Equations (3) and (5), the Kullback–Leibler divergence between the two Gaussian
distributions G(x; mi, σi) and G

(
x; m j, σ j

)
in Equation (5) are as follows:

D
(
G(x; mi, σi) ‖ G

(
x; m j, σ j

))
= ln

(
σ j

σi

)
+

(σi)
2 +

(
mi −m j

)2

2
(
σ j

)2 −
1
2

(6)

This Kullback–Leibler divergence between the univariate normal distributions (Equation (6))
therefore extends to multivariate distributions [28].

Gaussian mixture model: The mixture models are methods that analyze compositional data. With
Φ representing a probabilistic density generated from the unknown compositional data, p representing
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a well-known probability density, and x representing a random vector, the functional operator,
Ξ(Φ(x)

∣∣∣p, K), is defined as

Ξ(Φ(x)
∣∣∣p,ω, λ, K) : =

K∑
k = 1

ωkp(x : λk) (7)

where for k = 1, 2, . . . , K, ωk, λk are the weights and vectors of the hyperparameters and pi is the
ith component, which is independently and identically distributed (iid) [29]. In this work, GMM
was adopted to obtain a representative distribution [30]. Notably, GMM is a model that describes
non-Gaussian distributions as well as Gaussian distributions [31]. The probability density p(x : λk)

represents the Gaussian density function g(x; mk, σk) in Equation (5). In the Gaussian mixture model,
estimations of the weight (ωk), the mean (mk), and the standard deviation (σk) are essential. Herein,
the two methods (i.e., the EM algorithm [32] and ML estimation [33]) were chosen to estimate the
hyperparameters from sparse and incomplete data. The EM algorithm for GMM consists of an initial
guess for the GMM parameters and iterative calculation (E-step)–parameter determination (M-step).
The iterative steps continue until the set of hyperparameters, θ, are less than positive, and infinitesimal
number, ε, as shown in the ccccccmathematical elucidation (Supplementary Materials Equations
(S1.6)–(S1.12) [34]. For convenience, when applying the ML estimation, Φ(x) is transformed into the
mixture model and Ξ(Φ(x)

∣∣∣p,ω, λ, K) is replaced by ΞEM(Φ(x)
∣∣∣p,ω, λ, K).

3. Results and Discussion

In this study, a quantitative method was developed to describe discriminative information for
target prediction of a query compound only from chemical similarity and known compound–target
association information. For this purpose, 3D similarity distributions were acquired from a 3D
similarity matrix occupied by Jaccard–Tanimoto coefficients [35] regarding (1) query-to-ligand pairs
and (2) ligand pairs within each target class. The Jaccard–Tanimoto coefficients were calculated from
two types of features, molecular shape and pharmacophore features, using the Openeye Toolkit. Query
compounds and target classes were compared and quantified according to the following process:

Step 1. EM algorithm-based GMM allowed to obtain a representative distribution (Q-distribution) for
a target class, following either Gaussian or non-Gaussian distribution;

Step 2. A query-to-ligand similarity distribution was fitted onto a Gaussian distribution using
ML estimation;

Step 3. K–L divergence between the two distributions from Step 1 and Step 2 allowed target predictions
of the query compound. Greater deviation of K–L divergence values between target classes
indicated that the query compound was a more representative ligand of a class than other query
compounds. In addition, the probability, P(ν(lm) = i), derived from the K–L divergence
values and the feasibility index, Fm, allowed for quantification of discrimination between the
target classes.

Dataset: In order to select example target classes for this study, an unprecedented
scaffold with structural novelty and its targets were focused. Among our previous studies,
bis-N,N-dimethylaminophenylamino tetrahydropyran (BNDS-A), which was the most potent to
regulate in vitro inflammation (IC50 of nitric oxide production = 12µM), was chosen for this quantitative
method (Figure 1a). The association of two targets with BNDS-A, estrogen receptor alpha (ESR),
and vitamin D receptor (VDR) was proven by the stepwise approach consisting of (1) 2D similarity
search, (2) multiplication of 3D similarity coefficients of every ligand within each target, P(Tc)/C(hits),
(3) self/cross-similarity, and (4) western blot analysis in our previous work [7]. However, despite low
predicted probability, capthesin D (CTSD) and cyclooxygenase-2 (COX2) could also be regulated by
BNDS-A in the same study. Neither the most similar compound to BNDS-A (one-to-one comparison)
nor ANOVA test between target pairs (group-to-group comparison) could suggest the primary target
of BNDS-A. Therefore, to quantitatively compare them with BNDS-A, the four targets, ESR, VDR,
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COX2, and CTSD, were selected. In addition, an additional four targets, HIV-1 protease (HIV1), heat
shock protein 90 (HSP90), transient receptor potential cation channel subfamily V4 (TRPV4), DNA
topoisomerase I (TOP1), were randomly selected from the target prediction literature [36] to evaluate
our methodology. For convenience, simple numbers denoted the target classes, in other words,

Estrogen receptor alpha→ 1,
Vitamin D receptor→ 2,
Cyclooxygenase− 2→ 3,

Cathepsin D→ 4.

(8)

Either m or n were called the class number, which was an integer between 1 and 4, as in Equation (8),
and CL(m) and CL(n) ∈ RN represent vectors whose elements are the Tanimoto coefficients of query
compounds in the mth class. TM : R2N

→ RN
×RN was defined as the Tanimoto matrix operator, so

(TM[Cl(m), Cl(n)])i j : = Tc
(
< ei·Cl(m) >,< ej, Cl(n) >

)
(9)

where Tc(i, j) is a scalar operator between the ith and jth queries to calculate the Tanimoto coefficient
and ei and e j are unit vectors for the i-axis and j-axis, where <, > is the inner product.

Representative distributions Q for target classes: The representative distributions corresponding
to each target class using GMM of ligand pair similarity were obtained. First, using the similarity
matrix TM[Cl(m), Cl(n)]i j in Equation (9), where m = n, the following univariate probability densities,
Φn(xk), were defined by

Φn(xi)δx : = P
(
xk ≤ X = TM[Cl(m), Cl(n)]i j ≤ xk+1

)
, (10)

where P is the probability measure; x is the Tanimoto–Jaccard coefficients; 0 = x0 and the range of x is
[0, 2]; and xk+1 = xk + δx. Therefore, the probability densities, Φn(x), satisfy the following equation:

999∑
i = 0

Φn(xi)δx = 1 (11)

Second, to extract representative distributions from Φn(x), the Gaussian mixture model
was utilized, in which probability densities, Φn(x), are expressed as approximated from
ΞEM(Φn(x)

∣∣∣G,ω,µ, σ, K), which is the weighted sum of K univariate Gaussian distributions. That is,

ΞEM(Φn(x)
∣∣∣g,ω,µ, σ, K) =

K∑
k = 1

ωkg(x; mk, σk), (12)

where ωi, mi, and σi are shown in Table 1. To estimate the hyperparameters ωi, mi, and σi, the EM
algorithm was used as described in Section 4. Table 1 shows the mean, standard deviation, and weight
corresponding to the components of the mixture model. Figure 2 depicts the difference between the
probability densities, Φn(x), and ΞEM(Φn(x)

∣∣∣g,ω,µ, σ, K), where K = 1, 3, and 7. When comparing
component K, raw data were similarly fitted to histograms when K = 3 and K = 7, and normal Gaussian
modeling showed insufficient fitting for ESR, COX2, and CTSD (Figure 2). Commonly, the means
and modes of the representative distributions existed near 0.5, and every distribution was skewed to
the right.

Gaussian distributions for queries: To quantitatively compare the representative distributions
corresponding to ESR, VDR, COX2, and CTSD with the query distributions, Kullback–Leibler divergence
was introduced and calculated by building each distribution for each query.
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Table 1. Hyperparameters of Q distributions for target classes.

GMM ESR VDR COX2 CTSD

No(i) mi σi mi σi mi σi mi σi
1 0.5483 0.1458 0.5981 0.1224 0.5941 0.1758 0.4560 0.1320

GMM HIV1 HSP90 TRPV1 TOP1

No(i) mi σi mi σi mi σi mi σi
1 0.419 0.123 0.614 0.206 0.667 0.176 0.510 0.222

Figure 2. Representative distributions (Q-distributions) of target classes using EM based Gaussian
mixture model (ΞEM(Φn(x)

∣∣∣g,ω,µ, σ, K) of ligand pair similarity. (a) Q-distribution of ESR; (b)
Q-distribution of VDR; (c) Q-distribution of COX2; (d) Q-distribution of CTSD. The red line: GMM
K = 1, blue line: GMM K = 3, black line: GMM K = 7, pink bar: histogram of raw data.

For this purpose, TM[Cl(m), Cl(n)] of Equation (9) was used in a similar way to the described
method for the representative distributions of the target classes. When a query was the lth ligand of
Cl(n), the lth column’s elements in the above matrix were used for the lth column vector, τm(m, n, l),
as in

τm(m, n, l) : = TM[Cl(m), Cl(n)]El (13)

where the values of El for j = 1, 2, . . . , N were represented by the N × N matrices, for which the
elements (El)i j satisfied

(El)i j : =
{

1, i f i = j
0, otherwise

(14)
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Using the vector τm(m, n, l) from Equation (13), the following univariate probability densities,
Φ(l)

mn(xk), were defined as

Φ(l)
mn(xk)δx : = P(xk ≤ X = (τm(m, n, l))i ≤ xk+1) (15)

where the probability measure P was derived from Equation (10).
Before obtaining the probability distribution, two assumptions were made. First, it was assumed

that a distribution from one query was not a weighted sum of Gaussian distributions, but rather a
simple Gaussian distribution. It was reasonable that a distribution from one query was simpler than
the Q-distribution of a target class with 13,957 queries. Second, to estimate the parameters of the
Gaussian distribution, ML estimation was chosen as a general method, in which

ΞML

(
Φ(l)

mn(xk)
∣∣∣∣g,ω,µ, σ, 1

)
= g(x;µ1, σ1) (16)

where µ1 and σ1 are hyperparameters and are maximized log likelihood functions for normal
distribution, in other words,

(µ1, σ1) : = arg max
(µ,σ)

100∑
k = 1

(xk − µ)
2

σ2 (17)

Using definitions Equations (16) and (17), each query resulted in four distributions corresponding
to the four classes (i.e., ESR, VDR, COX2, and CTSD). For example, when CHEMBL539392 was chosen
as a query (l) among the ligands of ESR (Class 1), the distributions Φ(l)

11 (xk), Φ(l)
12 (xk), Φ(l)

13 (xk), and

Φ(l)
14 (xk) were obtained under the definitions of Equations (8) and (15). According to Equations (16) and

(17), four representative Gaussian distributions of the query compound CHEMBL539392 were acquired
from the column vector between CHEMBL539392 and 13,957 ligands of each class, which were

ΞML

(
Φ(l)

11 (xk)
∣∣∣∣g,ω,µ, σ, 1

)
= g(x; 0.24055, 0.07472),

ΞML

(
Φ(l)

12 (xk)
∣∣∣∣g,ω,µ, σ, 1

)
= g(x; 0.21976, 0.06466),

ΞML

(
Φ(l)

13 (xk)
∣∣∣∣g,ω,µ, σ, 1

)
= g(x; 0.24389, 0.04857),

ΞML

(
Φ(l)

14 (xk)
∣∣∣∣g,ω,µ, σ, 1

)
= g(x; 0.21187, 0.06631),

for k = 0, 1, . . . , 99. (18)

In the same way, univariate normal distributions were obtained of all of the query compounds in
each class. Since the number of classes was four and there were 13,957 query compounds in each class,

the Gaussian distributions G(x;µ1, σ1), derived from ΞML

(
Φ(l)

mn(xk)
∣∣∣∣g,ω,µ, σ, 1

)
, presented the class

number, either m or n, which was an integer between 1 and 4, and the query number, l, which was an
integer from 1 to 13,957. As a result, the frequency distributions of the estimates, alongside the means
(µ1) and standard deviations (σ1), were described as shown in Figure 3 and Supplementary Figures
S5–S7. ML estimation did not show any difference between self-query (m = n) and cross-query (m , n)
with regard to frequency. Even though cathepsin D (CTSD) showed a slightly lower mean than the
other classes, self-comparison also showed a low mean, as shown in Figure 3. Regardless of whether a
class or a query compound was used (self/cross), 3D similarity of ligand pairs within a class showed
the mode near 0.6, thereby confirming the need for quantitative comparison between queries. Notably,
the univariate probability distributions of 3D similarity did not discriminate between target class at all.
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Figure 3. Frequency distributions of ΞML

(
Φ(l)

4n (xk)
∣∣∣∣g,ω,µ, σ, 1

)
estimates (µ1 and σ1). Query (l) ∈ CTSD

(class = 4). (a) CTSD-ESR, (b) CTSD-VDR, (c) CTSD-COX2, and (d) CTSD-CTSD. * The color bars (right
side of the distribution) indicate frequency (e.g., yellow in 3(a) represents 3500 to 4000 queries, the
mean of the ML estimates varied from 0.45 to 0.5 and their standard deviation varied from 0.08 to 0.1 in
the standard).

Discrimination and K–L divergence: In sequence, 3D similarity distributions of target classes
and query compounds were quantitatively compared through K–L divergence calculations. First, the
information describing specific Tanimoto–Jaccard coefficients, x, were defined as

ln(
ΞML

(
Φ(l)

mn(x)
∣∣∣∣g,ω,µ, σ, 1

)
ΞEM(Φn(x)

∣∣∣g,ω,µ, σ, K)
) (19)

from two probability density distributions, ΞML

(
Φ(l)

mn(x)
∣∣∣∣g,ω,µ, σ, 1

)
and ΞEM(Φn(x)

∣∣∣g,ω,µ, σ, K),

which were generated from a query compound and a class. Hence, following the expected value from
the above information in Equation (19) with respect to one query compound, the K–L divergence,

D
(
ΞML

(
φ
(l)
mn(x)

∣∣∣∣g,ω,µ, σ, 1
)
‖ ΞEM(φn(x)

∣∣∣g,ω,µ, σ, K)
)

=
∫

ΞML

(
φ
(l)
mn(x)

∣∣∣∣g,ω,µ, σ, 1
)
ln

ΞML

(
φ
(l)
mn(x)

∣∣∣∣g,ω,µ,σ,1
)

ΞEM(φn(x)|g,ω,µ,σ,K)

dx
(20)

represented a measurement for the discrimination.
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In a one-component GMM (K = 1), the K–L divergence between Gaussian distributions of every
query and the Q-distributions (Table 1) are calculated; randomly chosen query compounds are described
in Table 2. To show the calculation process in detail, CHEMBL539392 was chosen as an example. Using
the above equation for Kullback–Leibler divergence between normal distributions,

D
(
G(x; mi, σi) ‖ G

(
x; m j, σ j

))
= ln

(
σ j

σi

)
+

(σi)
2 +

(
mi −m j

)2

2
(
σ j

)2 −
1
2

(21)

where  G(x; mi, σi) = ΞML(φ
(1)
1n (x)

∣∣∣∣g,ω,µ, σ, 1)

G
(
x; m j, σ j

)
= ΞEM(φn(x)

∣∣∣∣g,ω,µ, σ, 1)
(22)

Table 2. K–L divergence of randomly chosen queries between Q distributions and the distributions
of queries.

Class Query
K–L Divergence

ESR VDR COX2 CTSD

ESR

CHEMBL
2.6310 5.2420 2.9952 1.9426539392

CHEMBL
0.0223 0.1144 0.0685 0.0363193280

CHEMBL
0.0564 0.1847 0.1638 0.2186443605

VDR

CHEMBL
0.0658 0.0107 0.0795 0.06377162

CHEMBL
0.0488 0.0420 0.2391 0.06821322390

CHEMBL
0.0983 0.0849 0.3748 0.10031452735

COX2

CHEMBL
0.4773 0.7264 0.4693 0.26941163237

CHEMBL
0.0811 0.0436 0.0326 0.0490127560

CHEMBL
0.0704 0.0417 0.0684 0.0724271614

CTSD

CHEMBL
0.0889 0.0146 0.2667 0.1014263810

CHEMBL
0.6800 1.0065 0.9193 0.1174252655

CHEMBL
0.5331 0.8771 0.8109 0.0766436438

We obtained four K–L divergences corresponding to the queries of 2.1493, 4.6939, 2.0810, and
1.6354, respectively (see calculation procedure in the Supplementary Materials Equations (S2.1–S2.8).
As shown in Table 2 and Supplementary Table S3, the K–L divergence of every query compound was
not always the smallest value from their original targets, as annotated by ChEMBL DB. Even though a
considerable number of query compounds showed that the K–L divergence resulting from an original
target was smaller than values from other target classes, CHEMBL539392 of ESR, CHEMBL1163237 of
COX2, and CHEMBL263810 of CTSD were considered to be less different than other targets, therefore
giving a false prediction (Table 2). When we counted the query compounds that discriminated between
the original targets and other targets from the 13,957 query compounds under the four classes via
GMM (K = 1), the correct prediction numbers were 6300, 5200, 4100, and 6400 among each of the 13,957
queries from ESR, VDR, COX2, and CTSD, respectively. When applying GMM (K = 3) and (K = 7) for
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the Q-distributions, the true positive ratio decreased (ESR: 5100; VDR: 4500; COX2: 3200; CTSD: 4900
(K = 3); ESR: 4900; VDR: 4500; COX2: 3100; CTSD: 4800 (K = 7)).

In order to further evaluate the discriminative power of K–L divergence between target classes, an
additional four classes as well as the four classes for BNDS-A were compared with the shared ligands
in Table 3 and Supplementary Table S2. In Table 3, ritonavir (CHEMBL163) is a clinically approved
drug on the HIV1 (human immunodeficiency virus type 1) protease as its primary target. Notably,
ritonavir showed the distinct K–L divergence value to discriminate HIV1 with other targets. In addition,
the result can rationalize why ritonavir cannot show a distinct difference between VDR and COX2.
In contrast, myricetin (CHEMBL 164) showed very disappointing result with poor discrimination
between K–L divergence values. However, when we checked every target of myrcetin, the natural
compound did not show target specificity on any single protein to explain the result. The annotated
activities were limited to the known targets (VDR: 31–40 µM, COX2: 100 µM, HSP90 13.5 µM in
cell-based assay, TOP1: IC50 = 11.9 µg mL−1) in ChEMBL DB. Furthermore, despite the absent data
on HIV1 of myrcetin, the flavonoid compound with multiple hydroxyl groups showed experimental
activity on ubiquitin-specific protease having functional similarity (peptidase domain) with HIV1 to
explain the K–L divergence value of 0.0393. In sequence, because reserpine (CHEMBL772), a clinically
approved natural product, has target specificity on vesicular monoamine transporters with trivial
activities on the annotated targets (VDR/COX2/TOP1), every target did not show a difference with
untested targets (ESR/CPTD/HIV1). In addition, even though CHEMBL1813048 was the ligand of
COX2 and TRPV4, K–L divergence could not support the finding. However, the result can be explained
by the experimental data: (1) Ki against TRPV4 was more than 10 µM and (2) indirect regulation of
COX2 was recorded through the Prostaglandin H2 receptor in ChEMBL DB. When compared with
a 2D fingerprint based Top5 prediction of the additional target classes [36], our method can provide
how much each query is quantitatively different with each target class from the raw data without any
refinements such as assay, activity index, and duplicated ligands. This point is very important for
investigating unprecedented drug scaffolds having weak activity out of the Top5 of a target class.

Table 3. K–L divergence of ligands shared with eight target classes *.

Query Targets ESR VDR COX2 CTSD HIV1 HSP90 TRPV4 TOP1

CHEMBL
VDR/COX2/HIV1 1.2649 2.2088 1.6702 0.6982 0.3587 1.6040 1.9256 1.2754163

(RITONAVIR)
CHEMBL

VDR/COX2/HSP90/TOP1 0.0718 0.0526 0.1148 0.0475 0.0393 0.1655 0.5684 0.0915164
(MYRICETIN)

CHEMBL
ESR/VDR/COX2/TOP1 0.3075 0.4963 0.6972 0.2792 0.1685 0.8460 0.7630 0.5009772

(RESERPINE)
CHEMBL COX2/TPRV4 0.2385 0.3053 0.4731 0.2322 0.1704 0.6374 0.6669 0.58101813048

* The smallest K–L divergence value among the experimentally tested targets of each query is presented in bold.

After the individual K–L divergence comparisons of each query, comparisons between the target
classes were quantified. In sequence, the K–L divergence between the Gaussian distributions of
13,957 queries and the Q-distributions (K = 1, 3, and 7) for the four target classes were presented as
a cumulative distribution, as seen in Figures 4–7. To investigate the feasibility of the information,
the following distribution was defined:

P(ν(lm) = i) for i = 1, 2, 3, 4, (23)

where lm is the query number in class m and the random variable ν(lm) represents a class number,
so that

ν(lm) : = arg min
n
{D{ΞML(φ

lm
mn(x)|g,ω,µ, σ, 1) ‖ ΞEM(φn(x)|g,ω,µ, σ, 1)}|1 ≤ n ≤ 4, 1 ≤ lm ≤ 13, 957} (24)
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Figure 4. The cumulative densities of K–L distance between Q-distribution (Target class: ESR) and
queries. X-axis: K–L divergence, Y-axis: cumulative density; Q-distribution of ESR through GMM and
the distribution of queries were calculated. (a) ESR(Query)-ESR(Class), (b) VDR(Query)-ESR(Class),
(c) COX2(Query)-ESR(Class), and (d) ESR(Query)-ESR(Class).

Figure 5. The cumulative densities of K–L distance between Q-distribution (Target class: VDR) and
queries. X-axis: K–L divergence, Y-axis: cumulative density; Q-distribution of VDR through GMM and
the distribution of queries were calculated. (a) ESR(Query)-VDR(Class), (b) VDR(Query)-VDR(Class),
(c) COX2(Query)-VDR(Class), and (d) ESR(Query)-VDR(Class).
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Figure 6. The cumulative densities of K–L distance between Q-distribution (Target class: COX2) and
queries. X-axis: K–L divergence, Y-axis: cumulative density; Q-distribution of COX2 through GMM and
the distribution of queries were calculated. (a) ESR(Query)-COX2(Class), (b) VDR(Query)-COX2(Class),
(c) COX2(Query)-COX2(Class), and (d) ESR(Query)-COX2(Class).

If the K–L divergence (Equation (20)) is an ideal measurement for discrimination between target
classes, (ν(lm) = i) would satisfy the following conditions:

• Necessary condition:
P(ν(lm) = m) ≥ max

i,m
P(ν(lm) = i) (25)

• Sufficient condition: The feasibility index, Fm, is defined as

Fm : =

√
P(ν(lm) = m)

1− P(ν(lm) = m)
≥ 1 (26)

The above conditions implied a quantitative measurement for the discrimination. In particular, Fm

in the sufficient condition represents the ratio between two probabilities (i.e., that a query compound
belonged to a class of itself as well as belonging to other classes). A larger value of Fm indicated
better feasibility or resolution of discrimination. Table 4 depicts the probability of the K–L divergence
P(ν(lm) = i) for 1 ≤ i, m ≤ 4, indicating that, except for example m = 3 where the class was COX2, the
tested classes met the necessary conditions P(ν(lm) = m) ≥ max

i,m
P(ν(lm) = i) in Equation (25) with

respect to the feasibility index in Equation (26), it was easier to distinguish a query compound in the
CTSD class where m = 4 from every class except itself (Figure 8). When the feasibility index resulting
from the GMM (K = 1) was compared with the index calculated from the GMM (K = 3) and (K = 7) for
the Q-distributions, GMM (K = 1) showed superior feasibility for class discrimination using GMM
(K = 3) or (K = 7), as shown in Table 4.
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Table 4. The description on P(ν(lm) = i) and Fm according to the number of components of Gaussian
Mixture Model K, and the class ν(lm) of queries lm a.

K = 1
P(ν(lm)=i)

Fm
bClass of representative distributions (i)

ESR VDR COX2 CTSD

Class ν(lm)
of queries lm

ESR 0.4623 0.2172 0.0082 0.3123 0.9272
VDR 0.1116 0.5101 0.0054 0.3729 1.0205
COX2 0.0882 0.3216 0.2046 0.3856 0.5071
CTSD 0.0051 0.0489 0.0057 0.9404 3.9718

K = 3
P(ν(lm)=i)

Fm
bClass of representative distributions (i)

ESR VDR COX2 CTSD

Class ν(lm)
of queries lm

ESR 0.3289 0.2616 0.0725 0.3370 0.7001
VDR 0.1653 0.5199 0.0517 0.2631 1.0406
COX2 0.1024 0.4922 0.1534 0.2520 0.4257
CTSD 0.1348 0.0741 0.0128 0.7783 1.8738

K = 7
P(ν(lm)=i)

Fm
bClass of representative distributions (i)

ESR VDR COX2 CTSD

Class ν(lm)
of queries lm

ESR 0.3669 0.2553 0.0713 0.3065 0.7613
VDR 0.2164 0.5005 0.0476 0.2356 1.0009
COX2 0.1387 0.4891 0.1477 0.2245 0.4164
CTSD 0.1437 0.0705 0.0084 0.7775 1.8691

a This table represents the feasibility of discrimination depending on the number of components in GMM, K, and
the class ν(lm) of queries lm. b The larger Fm, the better performance of discrimination between one class and others.
Estrogen receptor alpha = ESR, Vitamin D receptor = VDR, Cyclooxygenase-2 = COX2, Cathepsin D = CTSD.

Figure 7. The cumulative densities of K–L distance between Q-distribution (Target class: CTSD) and
queries. X-axis: K–L divergence, Y-axis: cumulative density; Q-distribution of CTSD through GMM and
the distribution of queries were calculated. (a) ESR(Query)-CTSD(Class), (b) VDR(Query)-CTSD(Class),
(c) COX2(Query)-CTSD(Class), and (d) ESR(Query)-CTSD(Class).
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Figure 8. Feasibility index according to target class and GMM component (K).

Representative ligands for better discriminative predictions: According to the results described
in Figures 4–7 and Table 4, 3D similarity-based K–L divergence together with P(ν(lm) = m) and Fm

showed discriminative power with regard to some query–class associations. The question therefore
remains regarding the efficient use of the 3D-chemocentric approach under the current discriminative
power, where it can be applied to investigate the novel pharmacology of an unprecedented compound.
For this purpose, K–L divergence of an unprecedented compound should be calculated to compare
known ligands and target classes. In detail, representative ligands within each target class were
chosen for the comparison. For example, we selected four representative queries based on their
Tanimoto–Jaccard coefficients (x), and K-L divergence value, namely, (1) x is the nearest to the mean
of the Q distribution (GMM, K = 1), (2) x is the nearest to an outlier of the Q distribution (mean
± 2SD), (3) the range of K–L divergence between two target classes, and (4) the highest similarity
with an unprecedented compound (Table 4). As an example, BNDS-A, a recently reported in-house
compound [7], was used as the unprecedented compound due to the absence of ChEMBL DB. The first
query compound close to the mean of the Q distribution showed a smaller K–L divergence than the
other compounds (Table 5). The initial assumption and initial selection of the target class of BNDS-A
(in other words, the selection of the Q distribution), resulted in a critical effect on the K–L divergence
of BNDS-A as a query compound to predict the target class. When ESR was assumed as the initial
target of BNDS-A, BNDS-A was more ESR ligand-like than CHEMBL558943 (at mean − 2SD for the
ESR Q distribution) and CHEMBL604989 (which exhibited the biggest K–L divergence gap), and was
less ESR-like than CHEMBL499809 (at the mean for the ESR Q distribution) and CHEMBL2 (at the
mean + 2SD). Under the Q of ESR assumption, BNDS-A showed the lowest K–L divergence with the
VDR ligands (0.0588 of VDR < 0.2116 of ESR), suggesting that BNDS-A was more VDR ligand-like
than ESR ligand-like. When the initial target was transferred to VDR or COX2, BNDS-A showed
the lowest K–L divergence required to satisfy the assumption (chosen Q). In all BNDS-A rows of
Table 4, while the order of K–L divergence of BNDS-A (VDR < ESR < CTSD) was retained under
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the assumed every target class of BNDS-A, COX2 showed the lowest K–L divergence under only
COX2 Q distribution and did not show consistent prediction. Therefore, BNDS-A was more VDR
ligand-like than COX2 ligand-like. Experimentally, BNDS-A regulated the expression level of targets
in a concentration-dependent manner (VDR > CTSD >> ESR) [7]. Notably, K–L divergence of 3D
similarity distributions can be an additional comparison method of known methods to predict the
target of a novel compound such as (1) the rank of 3D similarity score [7,15,16] or (2) p-value of one 3D
similarity distribution [20]. Whenever achieving the relevance between a novel query and a target
class is the aim, K–L divergence can be used for 3D-chemocentric informatics, as seen in the example
of BNDS-A.

Table 5. The comparison between representative queries and unprecedented drug BNDS-A as a query.

Class Query Selection Type
Max. of K–L Divergence

ESR VDR COX2 CTSD

ESR

CHEMBL
499809 Mean of Q 0.0363 0.1991 0.1611 0.2772

CHEMBL
2 (Mean + 2SD) of Q 0.1180 0.1001 0.1547 0.0883

CHEMBL
558943 (Mean − 2SD) of Q 2.7919 5.2859 2.9632 2.0501

CHEMBL 604989 Biggest gap of
K–L divergence 6.2458 10.9899 6.1578 5.4983

CHEMBL
292033

Highest
Similarity with BNDS-A 0.0298 0.2570 0.2096 0.1082

BNDS-A Unknown 0.2116 0.0588 0.1139 0.9704

VDR

CHEMBL
7463 Mean of Q 0.0237 0.0442 0.1446 0.1262

CHEMBL
603 (Mean + 2SD) of Q 0.0999 0.2738 0.1257 0.0655

CHEMBL
1116 (Mean − 2SD) of Q 1.2883 2.1898 1.6169 0.4702

CHEMBL 486541 Biggest gap of
K–L divergence 4.2675 7.2936 3.9890 3.3430

CHEMBL
62136

Highest
Similarity with BNDS-A 0.2090 0.1854 0.4785 0.1086

BNDS-A Unknown 0.2859 0.0864 0.1888 1.0807

COX2

CHEMBL
1201356 Mean of Q 0.0963 0.1054 0.2187 0.0948

CHEMBL
16516 (Mean + 2SD) of Q 0.1445 0.1172 0.0385 0.1205

CHEMBL
1171450 (Mean − 2SD) of Q 3.2143 5.5460 3.1399 2.4262

CHEMBL
1171454

Biggest gap of
K–L divergence 4.4382 7.8994 4.1848 4.1940

CHEMBL
942

Highest
Similarity with BNDS-A 0.1285 0.0546 0.09018 0.06225

BNDS-A Unknown 0.6987 0.65378 0.2273 2.0276

CTSD

CHEMBL
263810 Mean of Q 0.0850 0.0113 0.2512 0.1038

CHEMBL
504438 (Mean + 2SD) of Q 0.6941 1.1751 1.1002 0.3305

CHEMBL
567893 (Mean − 2SD) of Q 3.5366 6.1606 3.5399 2.0713

CHEMBL
567893

Biggest gap of
K–L divergence 3.5684 6.1606 3.5399 2.0713

CHEMBL
387576

Highest
Similarity with BNDS-A 0.0835 0.1467 0.0952 0.0129

BNDS-A Unknown 0.0556 0.26421 0.2092 0.087

4. Materials and Methods

Data collection: All data, except for the in-house compound (BNDS-A), were extracted from the
ChEMBL database (1. ESR, VDR, COX2, and CTSD: version 23 through KNIME community node, 2.
HIV1, HSP90, TRPV4, and TOP1: version 25 through MySQL) [37]. Version 23 was available in both
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the ChEMBL community node of KNIME and in-house MySQL built from the dump file from ChEMBL
ftp (ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/). HIV1 protease, HSP90, TRPV4,
and TOP1 data were chosen based on the literature [36] and downloaded from the ChEMBL 25 version.

Conformational sampling: Extracted compounds were converted from 2D structures into 3D
conformation using Omega of the Openeye software [38] under the following conditions: (1) the
MMFF94 force field excluding Coulomb interactions and the attractive part of Van der Waals interactions
(option: mmff94s_Trunc) to retain the forces: bonding stretching, angle bending, stretch-bend interaction,
out-of-plane bending at tricooridnate centers, torsion interaction, and the repulsive part of Van der
Waals interactions; (2) 15 kcal/mol as the energy window; (3) hydrogen deletion from the input file
fragment prior to the substructure search (option: deleteFixHydrogens); (4) permission to generate
stereoisomers; and (5) maximum acceptable number of rotatable bonds of 25 [39]. Due to computational
burden and space limitation to write similarity into a matrix during calculation at posterior work,
3D structures of every compound were merged into the structure files (file extension: sdf) according to
target class, and 13,957 3D structures (with duplication due to different conformation) from the files
were chosen via stratified sampling in KNIME to produce the dataset for similarity matrices as shown
in Supplementary Table S1.

Alignment method: In order to align the 3D-structures of compound pairs, center of the mass was
used [40]. In detail, it is reported that SIMPLEX algorithm for the alignment is already implemented
in ROCS [15]. Shape Toolkit in the Openeye software [40,41] provides ‘OEBOOrientation’ used in
OEBestOverlay. To optimize the alignment of each paired 3D structures, the starting point should
be chosen before finding centers-of-mass of two conformers and OEBestOverlay uses an inertial
frame alignment method to decide on starting positions by default. Under the default condition
(‘OEBOOrientation_Inertial’), the first 3D structure (refmol in the python code in the Supplementary
Materials) was aligned by its principal moments of inertia, then the second structure (fitmol in the
python code in the Supplementary Materials) object was aligned in four positions with the primary
and secondary moments of inertia in both possible directions. Therefore, the alignment of a compound
pair (A, B) is approximately the same and absolutely not identical with the alignment (B, A).

3D Descriptors: In order to describe a molecular shape, atom-centered Gaussian sphere model
was implemented in OE-MPI/ROCS and the Shape Toolkit [40,41]. OE-MPI, a kind of MPI (message
passing interface), was also provided by Openeye for thread parallel calculation with a high number of
CPUs. The Gaussian sphere model describing the 3D shape of compounds used the sum of Gaussian
functions of individual heavy atoms except for hydrogen. f and g are characteristic functions to present
the 3D atomic structure of each compound, I: self-volume overlaps of each entity, independent; O:
the overlap between the two functions, dependent on orientation of two molecules.

Shape( f , g) =

√∫
[ f (x, y, z) − g(x, y, z)]2dV (27)

Shape( f , g)2 =

∫
[ f (x, y, z)]2dV +

∫
[g(x, y, z)]2dV − 2

∫
f (x, y, z)g(x, y, z)dV

Shape( f , g) = I f + Ig − 2O f ,g

Jaccard–Tanimoto coefficient of Shape( f , g) =
O f ,g

I f + Ig −O f ,g

Color features of every query were generated under the default algorithm of the Shape Toolkit.
Color features were defined by pharmacophore types (H-bond donor, H-bond acceptor, negative
charge, positive charge, hydrophobic, and ring) in a color force field (Implicit Mills Dean) and color
atoms were described by Gaussian functions as being relatively hard with a steep gradient.

ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/
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3D Similarity matrix: The Jaccard–Tanimoto coefficient of two features, shape and color were
calculated, combined, and written into 3D similarity matrices using the functions in the supplementary
python script [42].

- OEOverlay(): optimization of the alignment(overlap) between query and database
- OEBestOverlayScoreIter(): sorting all scores to highest Tanimoto coefficient before writing

similarity score into an empty matrix.

In this study, while the dimension of 3D similarity matrices for Q distributions (GMM) was 13,957
by 13,957, the dimension of 3D similarity matrices for query distributions (ML estimation) was 1 by
13,957. Every sampled compound of four target classes (13,957 conformers x four target classes) was
used as the query to show the performance of K–L divergence. The BNDS-A compound is only one
query not existing in any target class.

Script for K–L divergence. In order to realize (1) the GMM model, (2) the ML estimation, and (3)
K–L divergence, python scripts were written using python libraries such as pandas [43], numpy [44],
and scipy [45] under anaconda installation [46], so that every code was uploaded to GitHub [47].

5. Conclusions

We developed a quantitative method comparing query compounds to target classes.
The discriminative comparison was achieved by K–L divergence of 3D similarity distributions.
The distributions were generated from 3D structures (sampled multi-conformers) with target annotation
and optimized with parameters to best fit to frequent histograms. The feasibility index, Fm, and the
probability, P(ν(lm) = i), derived from the K–L divergence demonstrates the discrimination of queries
against target classes. The feasibility index resulting from the GMM (K = 1) showed better feasibility
for class discrimination than the GMM (K = 3) and (K = 7). Among the target classes, CTSD showed the
most desirable feasibility and COX2 was the least desirable target for chemocentric informatics. K–L
divergence comparison of an unprecedented compound, BNDS-A showed the consistent order of K–L
divergence of BNDS-A (VDR < ESR < CTSD) under different target assumptions of BNDS-A so that our
method is applicable for discriminative predictions of unknown query compounds in chemocentric
informatics. This study will contribute to 3D chemocentric target deconvolution for unprecedented
drug scaffolds. In the recent future, this quantitative method should be further studied with regard to
the field of chemical optimization between the chemical space and pharmacological space.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/12/
4208/s1.
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