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High-speed and Large-scale Privacy 
Amplification Scheme for Quantum 
Key Distribution
Bang-Ying Tang1,4, Bo Liu2,4, Yong-Ping Zhai2, Chun-Qing Wu3* & Wan-Rong Yu1*

State-of-art quantum key distribution (QKD) systems are performed with several GHz pulse rates, 
meanwhile privacy amplification (PA) with large scale inputs has to be performed to generate the final 
secure keys with quantified security. In this paper, we propose a fast Fourier transform (FFT) enhanced 
high-speed and large-scale (HiLS) PA scheme on commercial CPU platform without increasing dedicated 
computational devices. The long input weak secure key is divided into many blocks and the random 
seed for constructing Toeplitz matrix is shuffled to multiple sub-sequences respectively, then PA 
procedures are parallel implemented for all sub-key blocks with correlated sub-sequences, afterwards, 
the outcomes are merged as the final secure key. When the input scale is 128 Mb, our proposed HiLS PA 
scheme reaches 71.16 Mbps, 54.08 Mbps and 39.15 Mbps with the compression ratio equals to 0.125, 
0.25 and 0.375 respectively, resulting achievable secure key generation rates close to the asymptotic 
limit. HiLS PA scheme can be applied to 10 GHz QKD systems with even larger input scales and the 
evaluated throughput is around 32.49 Mbps with the compression ratio equals to 0.125 and the input 
scale of 1 Gb, which is ten times larger than the previous works for QKD systems. Furthermore, with 
the limited computational resources, the achieved throughput of HiLS PA scheme is 0.44 Mbps with the 
compression ratio equals to 0.125, when the input scale equals up to 128 Gb. In theory, the PA of the 
randomness extraction in quantum random number generation (QRNG) is same as the PA procedure in 
QKD, and our work can also be efficiently performed in high-speed QRNG.

Quantum Key Distribution (QKD), which based on the fundamental quantum mechanics, can generate the 
information-theoretical secure (ITS) keys for distant communication parties1–3. Practical QKD systems are 
mainly composed of two phases: the quantum communication phase and the post-processing phase4,5. In the 
post-processing phase, partial information about the secure key may still be leaked to the eavesdropper Eve 
after the key/basis sifting and error correction procedures. Privacy amplification (PA), the most significant 
post-processing procedure, coverts the weak secure correlated key to a uniform and ITS key to Eve6–8.

Given the input weak secure key W with length of n and the security level ε, the optimal PA scheme in the-
ory can be achieved with (dual) universal hash functions using Toeplitz kind of matrix (T) with computational 
complexity of O(nlogn)9, and the length of consumed random seed in PA is αn, with min-entropy of αn + O(1), 
α ∈ (0,1]10–13.

Nowadays, state-of-art academic QKD experiments are performed with several GHz pulse rates14–18, advanced 
multiplexing technologies19,20 and extracts secure keys even with high-dimensional scenarios21–23. Meanwhile, 
a rigorous statistical fluctuation analysis has to be performed to remove the finite-size key effects on the final 
secure key24,25. Therefore, a high throughput and large-scale (usually larger than several Megabits) PA scheme 
has to be implemented to real-time extract the secure key with achievable generation rate close to the asymptotic 
(infinite-key) limit.

The simplest implementation idea of a large-scaled PA scheme is directly performing multiplication operation 
between W and T, resulting in the computational complexity with O(n2). However, such matrix-vector multipli-
cation is very suitable to be implemented with Field-Programmable Gate Array (FPGA) platform. H. Zhang et 
al. firstly divided T into many smaller blocks and proposed a block parallel PA scheme to speedup the Toeplitz 
hashing procedure26. S. Yang et al.27 and J. Constantin et al.28 proposed advanced block partition strategies to 
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reduce the overhead of multiplication operations respectively, resulting in the throughput around 64 Mbps with 
input scale of 1 megabits27.

Actually, majority optimized PA schemes are performed using fast Fourier transform (FFT) with complexity 
reduced to O(nlogn)8,29,30. Given fixed security level ε (i.e. 10−10), the farther communication distance, the larger 
input length of PA scheme should be adapted. For example, in entanglement-based QKD systems, the input 
length n should be increased to at least the order of 108. B. Liu et al. firstly improved the throughput of FFT 
enhanced PA scheme to 60 Mbps with input scale of 12.8 megabits on Many-Integrated-Core (MIC) platform8. 
Z. L. Yuan et al. implemented a number theoretical transform (NTT) based PA scheme with throughput up to 
108.77 Mbps with the input scale of 100 megabits also on MIC platform31. X. Wang et al. proposed a parallel 
implementation of the length-compatible (up to 10 Gbits) FFT based PA algorithm for continuous-variable QKD 
systems on a graphic processing unit (GPU) platform, with speed over 1 Gbps29.

It’s a huge challenge to implement large-scale FFT based PA schemes on FPGA platforms due to the lim-
ited resources and ultra complicated hardware design. Implementation of PA schemes on MIC, GPU or other 
dedicated computational devices consumes ultra high power and volume and significantly increases the design 
complexity. Improving the throughput of FFT enhanced PA schemes on CPU platforms is a very conventional 
option, since it can be efficiently integrated to the whole QKD system. However, it’s feasible with CPU imple-
mentations only for small input scales (≤106) and rapidly becomes the performance bottleneck with larger input 
scales. Therefore, in this article, we propose a fast Fourier transform (FFT) enhanced high-speed and large-scale 
(HiLS) PA scheme on commercial multi-core CPU platform. In the HiLS PA scheme, W is divided into many 
blocks and the random seed for constructing Toeplitz matrix T is shuffled to multiple sub-sequences respectively, 
then PA procedures are parallel implemented for all sub-key blocks with correlated sub-sequences, afterwards 
the outcomes are merged as the final secure key. When the input scale is 128 Mb, our HiLS PA scheme reaches 
71.16 Mbps, 54.08 Mbps and 39.15 Mbps with the compression ratio equals to 0.125, 0.25 and 0.375 respectively. 
Therefore, HiLS PA scheme can be applied to 10 GHz QKD systems with even larger input scales and the eval-
uated throughput is around 32.49 Mbps with the compression ratio equals to 0.125 and the input scale of 1 Gb, 
which is ten times larger than the previous works for QKD systems. Furthermore, with the limited computational 
resources (128 GB memory, 1 TB storage and 16 CPU cores in total), the achieved throughput of HiLS PA scheme 
is 0.44 Mbps with the compression ratio equals to 0.125, when the input scale equals up to 128 Gb. In theory, the 
PA of the randomness extraction in quantum random number generation (QRNG) is same as the PA procedure 
in QKD32–34. Thus, HiLS PA scheme can also be efficiently performed in high-speed QRNG.

Related Work
Privacy amplification was first proposed in the context of quantum key distribution by Bennett et al.6, where the 
channel with perfect authenticity but no privacy (public classical channel) can be used to repair the defects of a 
channel with imperfect privacy but no authenticity (quantum channel). The schematic diagram of PA in QKD is 
shown in Fig. 1, Alice and Bob firstly distribute quantum signals via a noisy and lossy quantum channel (fiber or 
free space), then share correlated and weak secure key W after basis/key sifting and error correction procedures 
via a public channel. The min-entropy of shared weak secure key W is n. Let random variable E summarizes Eve’s 
entire learned knowledge about W, here, H(W|E) ≤ t, t < n. PA, where Alice and Bob publicly discuss a extractor 
function G:{0,1}n→{0,1}r, such that reduces Eve’s learned information of the final secure key Kf from t to at most 
ε6,7,35,36. Nowadays, most practical extractors are known to the universal hash function, especially the (modified) 
Toeplitz matrix defined as13
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where T(A) is a r × (n − r) Toeplitz matrix, A is a random seed, A = (a0, a1, …, an−1) ∈ {0,1}n−1, T(A)i,j = aj−i+r−1. 
Also, we define WI = (w0, w1, …, wr−1) and WTA = (wr, wr+1, …, wn−1). Therefore, the final secure key can be cal-
culated as

= = × … ⊕ × … = ⊕ .− + −K G A W I w w w T A w w w W T A W( ) ( , , , ) ( ) ( , , , ) ( ) (2)f r r r r n0 1 1 1 1 I TA

Figure 1.  Schematic diagram of privacy amplification in quantum key distribution.

https://doi.org/10.1038/s41598-019-50290-1


3Scientific Reports |         (2019) 9:15733  | https://doi.org/10.1038/s41598-019-50290-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

In order to efficiently implement the calculation of T(A)WTA using fast Fourier transform (FFT), we have to 
extend T(A) to a special circulant Toeplitz matrix with scale of (n − 1) × (n − 1) and extend WTA to a vector with 
length of n − 1 by padding zeros. The optimized multiplication of a circulant matrix and a vector is shown as

⋅ = ∗−H X F F h F X[ ( ) ( )], (3)1

where “*” denotes the Hadamard product operator, F denotes the Fourier transform operator, F−1 is the 
inverse Fourier transform operator, X is a vector and H is a circulant Toeplitz matrix with first row h. Since the 
complexity of F and F−1 operations is O(nlogn) and the complexity of Hadmard product operation is O(n), the 
computational complexity of optimized PA algorithm is O(nlogn)8,12.

In theory, QKD can generate ITS keys for communication parties, even the quantum channel is under control 
of the eavesdropper Eve. Imperfect implementation and active attacks would leak some information about W to 
Eve. Alice and Bob can quantify the bound of leaked information accurately with the infinite post-processing 
block size. In this paper, we take entanglement based QKD as an example, the secure key rate can be cal-
culated as37

ν≥ − −μR qQ H e f e H e[1 ( ) ( ) ( )], (4)s p
U

b b2 2

where q is the basis sifting factor, Qμ is the gain of detected entangled photon pairs, νs is the repetition rate of 
the entangled source, eb is the measured quantum bit error rate, ep

U  is the estimated upper-bound of phase error 
rate, f(x) is the error correction efficiency, H2(x) is the binary Shannon entropy.

In practice, ep
U can not be measured directly and could not be accurately estimated due to the statistical fluc-

tuations with finite post-processing block sizes. Here, we simulate the required throughput of PA algorithm in a 
10 GHz entanglement based QKD with the parameters shown in Table 1. The entangled photon source is put into 
the middle of communication parties, the finite-size-effect for the final secure key Kf is considered with 
post-processing block size from the order of 104 to infinite, and the failure probability εph = 10−10 for estimating 
ep

U 4. The analyzed results are shown in Fig. 2, the post-processing block size should be at least the order of 108 to 
achieve a secure key rate close to the asymptotic limit. Directly implementing PA algorithms with ultra large-scale 
inputs will limit the performance of full QKD systems. Meanwhile, the required throughput of PA algorithm is 
around 40 Mbps without any channel loss.

Parameter Values

Pulse Repetition Rate νs 10 GHz

Heralding Efficiency 0.316

Dark Count Rate pd 10−7

Detector Efficiency ηd 0.40

Misalignment Error Rate ed 0.015

Error Correction Efficiency f 1.10

Photon Pair Number per Coincidence Window μ Optimal

Basis Reconciliation Factor q 0.50

Phase Error Estimation Failure Probability εph 10−10

Table 1.  Parameters used for simulation of entanglement based QKD.

Figure 2.  Required throughput of PA algorithms and final secure key rate with different block sizes for 10 GHz 
entanglement based QKD systems, under the simulation parameters shown in Table 1.
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High-speed and Large-scale Privacy Amplification Scheme
The schematic diagram of proposed high-speed and large-scale (HiLS) privacy amplification scheme for QKD 
is shown in Fig. 3. Weak secure key W with length of n is gained after the basis/key sifting and error correction 
procedures for the measured raw key string at Alice’s (Bob’s) side. Then, Alice and Bob estimate the final secure 
key length r with rigorous statistical fluctuation analysis procedure. Afterwards, Alice and Bob publicly discuss 
a random seed with length of n − 1 bits to construct the universal hash function. Our proposed HiLS PA scheme 
mainly consists of three steps: splitting and shuffling, sub-PA and secure-key merging.

Step 1: Splitting and shuffling.  In this step, we divide W to several sub-vectors and divide the Toeplitz 
matrix T(A) to sub-matrices. Assume the scale of sub-matrix is m × m, m ≤ r. Assume that the Toeplitz matrix 
T(A) can be divided into t blocks by rows and k blocks by columns, thus in total kt sub-matrices, = −⌈ ⌉t n r

m
, 

= ⌈ ⌉k r
m

. First of all, we construct a vector A by padding km − r (tm − n + r) zeros to the head (tail) of the 
exchanged random seed with length of n − 1 bits. Then, we shuffle A into k + t − 1 sub-vectors, defined as 
Ai: = [aim, aim + 1, …, a(2+i)m−1], 0 ≤ i < k + t − 1. Therefore, the divided sub-matrix can be constructed by 
Hi,j = T(Ai+j), i ∈ [0, k) and j ∈ [0, t), and we have
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where Hi,j = Hi+1, j+1.
For W, we first pad tm − n + r zeros to the tail and take first r bits and the rest bits to construct the sub-vector 

WI and WTA. Then, divide WTA into t sub-vectors, defined as Wi: = [wim+r, wim+r+1, …, w(i+1)m+r−1], where 0 ≤ i < t.

Step 2: Sub-PA.  In this step, the efficient implementation using FFT of multiplication Yi,j is performed to 
sub-vector Wj and sub-matrix Hi,j,

Y F F A F W: ( ) ( ) , (6)i j i j j,
1= 
 ∗ 


−

+

where, i ∈ [0, k) and j ∈ [0, t).

Step 3: Secure-Key merging.  First, we only take first m bits of Yi,j (defined as Yi j,
a ), then we merge Yi j,

a  to 
vector Z by
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Figure 3.  Schematic diagram of proposed high-speed and large-scale privacy amplification scheme for QKD. 
The weak secure key length is n, the final secure key length is r, the sub-block size is m, 0 < m ≤ r < n, = 
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= ⊕ .⁎K W Z (8)f I

The detailed implementation of HiLS PA scheme can be described as Algorithm 1. In the procedure of our 
proposed HiLS PA scheme, we only need to perform k + 2t − 1 times Fourier operations with scale of 2m, kt times 
Hadamard product operations with scale of m, kt times inverse Fourier operations and kt + 1 times exclusive 
or (XOR) operations with scale of m. Thus, the computational complexity of the proposed HiLS PA scheme is 
O(ktmlogm), simplified to around O(nlogm).

Parameter Values

Operation System CentOS 7

CPU Intel(R) E5-2640 v3 × 2

Cores per CPU 8

Threads per core 2

Memory 128 GB

Storage 1 TB

Compiler gcc 4.8.5

MPI openmpi 1.10.7

FFT library fftw 3.3.8

Table 2.  Specifications of server computer.

Figure 4.  Throughput of HiLS PA scheme with n equals from 16 Mb to 512 Mb, and the splitting factor m
n

 varies 
from 1

32
 to 1

2
.

Algorithm 1.  HiLS Privacy Amplification algorithm.
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Results
The implementation of HiLS PA scheme is evaluated on the multi-core server computer, the specifications are 
shown in Table 2. Due to FFT operation may suffer errors caused by finite-precision float-point arithmetic, we 
suggest the scale of FFT operation smaller than the order of 108. Meanwhile, considering the thread synchroni-
zation and thread safety issues, the calculations of (inverse) Fourier transforms and also Hadamard products are 
paralleled in the architecture of shared memory multi-processes.

We evaluate the throughput of HiLS PA scheme with different input scale (n) and various sub-block size (m). 
The result is shown in Fig. 4, where we set the input weak secure key length n equals from 16 Mb to 512 Mb, and 
splitting factor, defined as m

n
 is various from 1

32
 to 1

2
. Figure 4 shows us that for given n (in our implementation, can 

be up to 1 Gb), HiLS PA scheme can always achieve optimized throughput when splitting factor = .0 125m
n

. 
When the splitting factor ≤ .0 0625m

n
, the Toeplitz matrix at least has to be divided into 28 sub-matrices with 

compression ratio ≥ .0 125r
n

, larger than 16 (amount of total cores), resulting HiLS PA scheme with very poor 
throughput due to heavy overhead of complicated process scheduling. When the splitting factor ≥ .0 25m

n
, less 

split sub-matrices (≤4) only contributes a bit speedup to HiLS PA scheme, due to not fully used computational 
resource and still large scaled FFT operations. When the splitting factor . < < .0 125 0 25m

n
, the amount of split 

sub-matrices stays the level as the case with splitting factor equals to 0.125, but the FFT operating scale is same as 
the case with splitting factor equals to 0.25, which results even worse throughput to HiLS PA scheme. This situa-
tion would also happened when the splitting factor . < < .0 0625 0 125m

n
. For example, when n = 512 Mb, the 

optimized throughput of HiLS PA scheme is 59.06 Mbps, 50.48 Mbps and 30.49 Mbps when the compression 
ratio equals to 0.125, 0.25 and 0.50 respectively.

According to the simulation results shown in Fig. 2, the maximum compression ratio required for PA schemes 
is ( r

n
) is 0.297 for 10 GHz entanglement based QKD systems. Then, we optimized the implementation of HiLS PA 

scheme with n = 1 Mb, 16 Mb, 128 Mb and 1 Gb with compression ratio equals to 0.125, 0.25 and 0.375 respec-
tively and compared with other previous works designed for QKD systems, e.g. entanglement based systems, the 
results are shown in Fig. 5. S. Yang et al.27 and J. Constantin et al.28 both implemented PA schemes on FGPA plat-
form by performing multiplication operations, achieved 64.0 Mbps and 41.0 Mbps throughput with compression 
ratio equals to 0.10. Q. Li et al. achieved the throughput of 116.0 Mbps with adaptive compression ratio by imple-
menting FFT operation on FPGA platform30. However, FPGA platform is not suitable for the implementation of 
PA schemes with ultra-large input scales (larger than the order of 108). B. Liu et al. achieved the throughput of 60 
Mbps with input scale of 12.8 megabits by implementing the FFT enhanced PA scheme on MIC platform8. Z. L. 
Yuan et al. achieved the throughput of 108.77 Mbps with the input scale supported up to 128 megabits by imple-
menting the NTT based PA scheme on MIC platform31. Z. L. Yuan et al. also evaluated the performance of their 
PA scheme on CPU platform, resulting in the throughput of 28.22 Mbps. When the input scale is 128 Mb, the 
finite-size-effect for the final secure key can be almost perfectly avoided, and the throughput of our proposed 
HiLS PA scheme reaches up to 71.16 Mbps, 54.08 Mbps and 39.15 Mbps with the compression ratio equals to 
0.125, 0.25 and 0.375 respectively. In the case of input scale is 1 Gb, the throughput of HiLS PA scheme reaches up 
to 32.49 Mbps and 15.0 Mbps with the compression ratio equals to 0.125 and 0.25, which contributes much rig-
orous statistical fluctuation analysis and is remarkable higher than the required throughput when the total chan-
nel loss is expected larger than 87.6 dB.

With limited resource (128 GB memory, 1 TB storage and 16 CPU cores in total), the HiLS PA scheme with 
input scale of 128 Gb and the compression ratio equals to 0.125, runs around 83 hours, resulting a throughput of 
0.44 Mbps. The implementation of PA with such large inputs on GPU platform is very difficult due to the compli-
cated computation and memory scheduling strategies. Meanwhile, the throughput of the HiLS PA scheme can be 
easily improved on high-speed multi-core CPU platforms with much larger configured memory.

Figure 5.  Comparison of HiLS PA scheme and privous works.
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Conclusion
In this paper, we propose a fast Fourier transform (FFT) enhanced high-speed and large-scale (HiLS) PA scheme 
on multi-core CPU platform. The long input weak secure key is divided into many blocks and the random seed 
for constructing Toeplitz matrix is shuffled to multiple sub-sequences respectively, then PA procedures are par-
allel implemented for all sub-key blocks with correlated sub-sequences, afterwards the outcomes are merged as 
the final secure key. When the input scale is 128 Mb, our proposed HiLS PA scheme reaches 71.16 Mbps, 54.08 
Mbps and 39.15 Mbps with the compression ratio equals to 0.125, 0.25 and 0.375 respectively, resulting achievable 
secure key generation rates close to the asymptotic limit. HiLS PA scheme can be efficiently implemented on the 
commercial CPU platform without increasing dedicated computational devices and can be applied to 10 GHz 
QKD systems with even larger input scales. The evaluated throughput of HiLS PA scheme is around 32.49 Mbps 
with the compression ratio equals to 0.125 and the input scale of 1 Gb, which is ten times larger than the previous 
works for QKD systems.Furthermore, with the limited computational resources, the achieved throughput of HiLS 
PA scheme is 0.44 Mbps with the compression ratio equals to 0.125, when the input scale equals up to 128 Gb. As 
randomness extraction with Toeplitz hashing in QRNG is particularly efficient, the HiLS PA scheme can be also 
performed in high-speed QRNG.
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