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Abstract

Introduction: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue
macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the
present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and
adipocytes.

Research Design and Methods: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were
isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and
after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes),
CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic
markers such as C/EBPa and PPARc. A novel fluorescent nanobead lineage tracing method was utilized before co-culture
where fluorescent nanobeads were internalized by CD68 (+) ATMs.

Results: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing
lipid accumulation and C/EBPa and PPARc gene expression. Preadipocytes originating after co-culture were positive for
markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture
and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new
preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the
interaction of ATMs, ASCs and preadipocytes.

Conclusions: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel
adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells
grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation
and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs
play an additional role during inflammation and other disease states. Understanding this novel pathway could influence
adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes.
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Introduction

Obesity is a major contributor to chronic disease and disability,

including type 2 diabetes [1]. The role of adipose tissue in obesity

was thought to be a passive one, however, today it is understood

that adipocytes play a much more active role in metabolism,

including interactions with the immune system through inflam-

matory mediators and signaling molecules [2–3]. This inflamma-

tory response appears to be critical in the development of obesity

and later, insulin resistance [4]. In addition, adipose tissue

macrophages (ATMs) and cytokines are able to keep preadipocytes

in quiescent stages, and an imbalance in this mechanism could

exacerbate the development of obesity and insulin resistance

[4–5].

Macrophage expression of adipokine receptors for both leptin

and adiponectin suggests that adipocytes may also modulate
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macrophage function [6–7]. In vitro co-culture of differentiated

3T3-L1 adipocytes and RAW 264 macrophages results in

significant upregulation of proinflammatory cytokines and down-

regulation of anti-inflammatory cytokines in the macrophages [8].

Furthermore, the interaction of 3T3-L1 adipocytes with mouse

peritoneal macrophages mediates the production of factors from

macrophages that influence insulin sensitivity in adipocytes [9].

Recent studies demonstrated that co-culture of 3T3-L1 adipocytes

with C2D macrophages inhibits insulin mediated glucose trans-

port, adipocyte differentiation and diminishes macrophage

function [10]. Understanding the range of interactions between

adipocytes and macrophages may elucidate mechanisms underly-

ing the etiology of excess adiposity and obesity.

Adipose tissue is not only composed of adipocytes, macrophages,

and vascular tissue, but it also contains adult adipose stem cells

(ASCs), that can be found in the adipose tissue derived stromal cell

fraction [11–15]. These mesenchymal stem cells first become

preadipocytes, which then can differentiate to adipocytes [11–

14,16–17]. The presence of CD68 (+)/CD34 (+) cells in adipose tissue

has been recently described in db/db mice. The authors described a

possible role of these cells in adipogenesis and angiogenesis [15].

ASCs can differentiate along adipocyte, osteoblast, chondrocyte,

and other mesenchymal cell lineages in a manner similar to that of

multipotent stromal cells derived from bone marrow [16–18]. It is

generally accepted that mature adipocytes do not regularly

undergo mitosis, and thus, an increase in adipocytes usually

reflects a differentiation of preadipocytes [13–14]. However,

several studies indicate that mature adipocytes could also have

proliferative activity [19–20]. Recent studies suggest adipocytes

can dedifferentiate to preadipocytes [21] and can even differen-

tiate to a multipotent cell population [22,23]. Of note, adipocyte

precursors and preadipocytes have also been recently observed to

rapidly and efficiently differentiate into typical macrophages

[24,25] demonstrating significant plasticity of these cells. Never-

theless, the role of ATMs in adipose tissue biology is still

controversial. In the present study, we demonstrated that co-

culture of adipocytes with ATMs and ASCs results in the robust

proliferation of preadipocytes. In addition, these new preadipo-

cytes can rapidly turn into adipocytes. ATMs can differentiate to

preadipocytes as determined by lineage tracing. This novel

pathway of generation of new preadipocytes/adipocytes also

involved the formation of ATM/ASC/preadipocyte cell spheres.

Thus, this paracrine cross-talk may reflect the in vivo plasticity of

adipose tissue.

Materials and Methods

Subjects
Human adipose tissue samples were obtained from female

patients undergoing abdominoplasty. All patients were premeno-

pausal, non-diabetic, and none had been on any hormonal

treatment, including oral contraceptives. Abdominal adipose tissue

was excised and placed in buffer (12.5 mM Hepes Krebs-Ringer

medium, 4% BSA, 2 mM pyruvate, pH 7.4, at room temperature

(RT). A small amount of tissue was fixed in 4% PBS buffered

paraformaldehyde and subjected to immunofluorescence, and the

remainder was used for adipocyte and macrophage isolation. All

studies were approved by the Cedars-Sinai Medical Center and the

University of California Los Angeles, Institutional Review Board.

Isolation of adipocytes and ATM/ASC fraction from
human adipose tissue

Human adipose tissue was finely minced and treated with

collagenase (Worthington Biochemical Corp., Lakewood, NJ) for

60 minutes at 37uC, in the transport buffer. The cell suspension

was then filtered through a pre-moistened 150-micron nylon mesh

(Small Parts Inc., Miami Lakes, FL) and centrifuged for 2 min at

50 xg at RT. The upper phase (floating adipocytes) was separated

from lower phase. Adipocytes were washed twice and diluted in

adipocyte culture medium (DMEM, 1% BSA, 3% FCS, 100 U/ml

Penicillin, 100 mg/ml Streptomycin). The lower phase was

subjected to centrifugation for 5 minutes at 500 xg. The cell

pellet (ATM/ASC fraction) was resuspended in PBS and a Ficoll

density gradient [26] was used to remove lymphocytes (Lympho-

prep, Greiner Bio-one, Longwood). The interface containing the

ATM/ASC fraction was removed and washed with 5 ml of PBS at

RT. After a final centrifugation for 5 minutes at 500 xg, the cell

pellet was resuspended in regular culture medium (RPMI medium

supplemented with 10% FCS, 100 U/ml penicillin, 100 mg/ml

streptomycin, 2 mM L- glutamine, 1% NEAA, 1% sodium

pyruvate, and 10 ng/ml GM-CSF).

Co-culture of adipocytes and the ATM/ASC fraction
Cells from the ATM/ASC fraction (106/ml) and isolated

adipocytes (106/ml) were allowed to equilibrate separately overnight

in their respective cell culture media. Coverslips were placed in each

well for immunofluorescence studies. Twenty-four hours later,

resuspended adipocytes were added to the wells containing the

macrophage fraction at an approximate 1:1 ratio. The pooled cells

were co-cultured for 24 hours at 37uC in 5% CO2. At the end of the

incubation period the adipocytes were resuspended and transferred

by pipette and placed in another well containing 1 ml of adipocyte

culture medium (see above); the remaining ATM/ASC fraction was

washed five times with 1 ml PBS, and cultured for an additional two

or seven days in fresh regular medium (see above) or adipogenic

medium (ZenBio, Research Triangle Park, NC) (Fig. 1A).
Coverslips were then collected for immunofluorescence (see below).
Adipocytes and ATM/ASC fractions were also separately cultured

under the same conditions described above.

Flow cytometry analysis
The ATM/ASC fraction with and without co-culture with

adipocytes was detached from dish using 1 mM EDTA/EGTA in

PBS. After two washes in 2% inactivate FCS/0.05% sodium Azide/

PBS, cells were resuspended in the same buffer and incubated at

4uC for 1 hour in the presence or absence of primary antibodies

against i) CD14, a macrophage/monocyte specific marker (Bio-

source, Camarillo, CA); ii) CD34, an adult hematopoietic stem cell

marker (Zymed, San Francisco, CA), and iii) DLK, a marker of

preadipocytes and newly formed adipocytes (Santa Cruz, CA). Cells

were then washed two times with same buffer described above and

incubated with the corresponding secondary antibodies for 30

minutes at RT. After two consecutive washes in buffer, cells were

resuspended in 100 ml of 2% inactivate FCS/0.05% Sodium Azide/

PBS. Analysis of number and type of cells were performed using a

FACS Calibur flow cytometer and cEllQuest Pro software.

Differentiation of preadipocytes to adipocytes
To further characterize the adipogenesis capacity of the new

preadipocytes generated after co-culture, confluent cells from

ATM/ASC fractions with and without co-culture were kept for an

additional seven days in Regular medium (see above) or in

adipogenic medium (see above).

Quantitative Real Time PCR (q-RTPCR)
Total RNA was isolated using RNeasy kits (Qiagen, Hilden,

Germany). First strand cDNA was synthesized using RT2 first
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strand Master Mix (SABioscience, Frederick, MD) according to

the manufacturer’s instructions. The primers for C/EBPa and

PPARc for real-time PCR were obtained from Applied Biosystems

(Foster City, CA). qRT-PCR was performed using TaqmanH
Gene Expression kit Applied Biosystems (Foster City, CA). ACTB

and GAPDH were used as internal controls.

Immunofluorescence
Adipocytes were characterized using Dye Nile Red (Sigma-

Aldrich, St. Louis, MO) and DAPI (Vectashield, Vector,

Burlingame, CA) used to according to the manufacturer’s

instructions. Cells present in the ATM/ASC fractions with and

without co-culture were also characterize by immunofluorescence.

Cells on the coverslips were fixed with 4% paraformaldehyde/

PBS, washed with PBS, treated with 0.2% Triton-X-100, and then

blocked with a 4% BSA solution. The samples were incubated

with the primary antibodies overnight at 4uC, washed with PBS

and incubated for one hour with secondary antibodies labeled with

Alexa Fluor 568 and 488 (Invitrogen, Carlsbad, CA). The slides

were then washed with PBS and mounted with mounting medium

containing DAPI (Vectashield, Vector, Burlingame, CA). Whole

tissue mounts were manually cut from excised tissue before being

placed in a well and treated identically to cultured cells. Primary

antibodies used included: i) DLK (see above); ii) CD14 (see above);

iii) CD68, a macrophage, monocyte, and dendritic cell marker

(BD Biosciences, San Diego, CA); iv) CD34, an adult hematopoi-

etic stem cell marker (see above) v) CD105, a mesenchymal stem

cell marker (BD Biosciences, San Diego, CA). In some

experiments preadipocytes were also characterized with S-100

(Sigma Aldrich, St Louis, MO) [27–29].

Labeled nanobead cell lineage analysis
107 cells from ATM/ASC fraction were incubated with 10 ml of

a 1:1 volume slurry of 200–300 nm fluorescent anti-human CD14

nanobeads in PBS (BD Biosciences, San Diego, CA) for 30

minutes at 8uC in 90 ml PBS, 0.5% BSA, 2 mM EDTA, and

0.09% sodium azide. After incubation, the mixture was layered

over a Ficoll density gradient as described above to separate any

unbound or non-internalized nanobeads from the ATM/ASC

fraction, which was then plated for 24 hours and co-cultured as

described above.

Results

Co-culture of ATMs/ASCs and adipocytes
Isolated adipocytes, prior to co-culture were positive for Nile

Red and DAPI staining and were clearly distinguishable from the

small amount of free lipids (positive Nile Red and negative DAPI

staining) that remained in the adipocyte isolates (Fig. 1B). To

ensure that adipocytes were not contaminated with ATMs we

performed immunostaining in the adipocyte fraction using CD14

antibody, a specific marker for monocytes/macropahges. We were

unable to find adipocytes with CD14 (+) ATM cells (Fig. 1C).

ATMs remained tightly adherent in culture and were negative for

Nile Red indicating that these cells did not have any contamina-

tion of adipocytes (Fig. 1D–E).

Figure 1. Scheme of co-culture between adipocytes, and ATMs/ASCs isolated from adipose tissue. Characterization of the isolated
adipocytes and ATMs present in the ATM/ASC fraction. Isolated adipocytes and ATMs/ASCs were cultured separately for 24 hours to allow the cells to
reach equilibrium and then were co-cultured for an additional 24 hours. Finally, the cells were separated and cultured for another 24 hours or
48 hours. (A) At the end of these periods, the culture media and the cells were subjected to different studies. (B) Nile Red co-labeled with DAPI (light
blue) indicates the presence of mature adipocytes (x100). (C) Immunofluorescence (40X) of adipocytes cultured for 24 hours, cells are CD14 (2). (D)
ATMs/ASCs after 3 days in culture, labeled for CD14 (200X), (E) these cells are Nile Red (-).
doi:10.1371/journal.pone.0017834.g001
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Generation of preadipocytes from the ATM/ASC fraction
after co-culture

To quantify the number of preadipocytes formed in the ATM/

ASC fraction following co-culture, we performed FACS analysis.

Fig. 2 shows the results of a representative experiment of our

FACS studies. We used DLK as a marker for preadipocytes [30–

31], CD14 for ATMs and CD34 for ASCs. We observed that the

ATM/ASC fraction, which contains ATMs and ASCs and other

cell types, was composed of only 2.4% DLK (+) cells after being

allowed 24 hours of growth prior to co-culture (Fig. 2A). The

same ATM/ASC fraction maintained for 72 hours of growth

without co-culture contained 11.3% of DLK (+) cells, (Fig. 2B). In

contrast, the ATM/ASC fraction that was co-cultured with

adipocytes exhibited a significant increase to 29% of DLK (+)

cells (Fig. 2C). Results of three different experiments indicate a

3–4 fold increase in DLK (+) preadipocytes in the ATM/ASC

fraction after co-culture with adipocytes (p,0.01) (data not

shown). Furthermore, adipocytes that were replated after co-

culturing and cultured for additional 24 hours demonstrated only

minimal additional preadipocyte formation (data not shown). Our

results also suggest that preadipocytes could be derived from

different population of CD34 (+) and CD14 (+) cells (Fig. 2C).

Effect of co-culture in the differentiation of ATM/ASCs to
preadipocytes/adipocytes

In order to further characterize the preadipocytes formed in the

ATM/ASC fraction following co-culture, confluent ATM/ASC

fraction without and with co-culture were kept in regular medium

(see above) for an additional 7 days. In contrast to the untreated

ATM/ASC fraction, preadipocytes derived after co-culture

showed many inclusions with lipid droplets (Nile red (+)/DAPI)

(Fig. 3A vs 3B). In addition, there were significant increases in

C/EBPa (1.6 fold, p,0.01) and PPARc (1.4 fold, p,0.05) gene

expression (Fig. 3C). To further study the effect of co-culture in

adipogenesis, preadipocytes derived after co-culture were kept in

adipogenic medium for additional 7 days. Under these conditions,

the new preadipocytes contained large lipid drops (Fig. 3D vs
3E). In addition, there were significant increases in C/EBPa (3.2

fold, p,0.01) and PPARc (2.6 fold, p,0.001) gene expression

(Fig. 3F). These results indicate that co-culture exacerbate

adipogenesis at an early stage of differentiation (conversion of

ASCs to preadipocytes) as well as during differentiation of

preadipocytes to adipocytes.

Differentiation of ATMs to Preadipocytes
Preadipocyte formation during co-culture of the ATM/ASC

fractions could be attributed to differentiation of CD34 (+) ASCs

[12,14,32] and other cell components present in the ATM/ASC

fraction such as CD68 (+) ATMs. To demonstrate that ATMs could

be a source of preadipocytes, we traced ATMs with fluorescent anti-

human CD14 nanobeads. We induced ATMs to internalize

fluorescence nanobeads prior to co-culture (Fig. 4A, C, D, E).
Indeed, a subset of CD68 (+) ATMs present in the ATM/ASC

fraction was induced to phagocytize the nanobeads. Approximately

90% of these CD68 (+) ATMs phagocytized the nanobeads prior to

co-culture (Fig. 4A, C, D, E). After co-culture of the immuno-

fluorescent labeled ATMs/ASCs with adipocytes, a significant

number of newly formed preadipocytes contained internalized

fluorescent nanobeads suggesting that they were derived from

ATMs (Fig. 4F, H). These nanobead-labeled preadipocytes were

also positive for DLK (+) (Fig. 4G, H), further supporting that the

Figure 2. FACS analysis of the ATM/ASC fraction alone and after co-culture with adipocytes. A monoclonal antibody to DLK was used to
determine the presence of specific subsets of preadipocytes. (A) Before co-culture (total 24 h), (B) without co-culture (total 72 h), (C) with 24 h co-
culture (total 72 h). IgG2a was used as a negative control.
doi:10.1371/journal.pone.0017834.g002
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new preadipocytes formed after co-culture were derived from

phagocytic cells from CD 68(+) ATMs. There were also examples of

DAPI (+)/DLK(-) cells that did not internalize any nanobeads

demonstrating the specificity of this assay (Fig. 4H).

Formation of cell spheres after co-culture
We further characterized the origins of the human preadipo-

cytes formed in the ATM/ASC fraction following co-culture with

adipocytes. Unexpectedly, spheres containing CD68 (+)/DLK (+)

and CD34 (+)/S100 (+) cells were detected after 24 hours of co-

culture, indicating an interaction between preadipocytes and

ATMs/ASCs (Fig. 5A, B). Spheres containing CD34 (+)/S100

(+) cells were also CD34 (+)/DLK (+) cells (Data not shown). From

the spheres emerged DLK (+) preadipocytes that also were positive

for CD68 (Fig. 5C) and DLK (+) preadipocytes that were positive

for CD105 (Fig. 5D). The finding that the new preadipocytes

generated in the ATM/ASC fraction were positive for both DLK

and CD105 (classical marker for mesenchymal stem cells) suggests

that they originate from mesenchymal stem cell differentiation

pathways [11,12,14,32]. These results suggest that co-culture

between adipocytes with ATMs/ASCs may generate of CD68 (+)/

CD34 (+)/preadipocyte cell spheres in an ancillary mechanism to

the proliferation of new preadipocytes in humans.

Discussion

Our results demonstrate that cross-talk between ATMs, ASCs

and adipocytes induce the formation of new preadipocytes that

can rapidly differentiate into adipocytes. This novel pathway of

adipogenesis involves differentiation of ATM to preadipocytes as

well as the formation of CD14(+)/CD34(+)/preadipocyte cell

spheres from which many preadipocytes are released.

Adipose tissue is a complex population of cells that modulate

not only adipose tissue biology, but also insulin sensitivity,

reproductive and endocrine systems, immunity, and inflammation

[3]. Numerous lines of evidence suggest that inflammation plays a

major role in the initiation and maintenance of obesity through

adipogenesis. Our present results suggest changes in cell biology

resulting from adipocyte interactions with ATMs/ASCs through

cell–to-cell contact. Cross-talk between stable adipocyte and

macrophage murine cell lines promotes proinflammatory cytokine

release [33]. Moreover, interaction between lymphocytes and

adipocytes leads to immunoregulation in the body and is

responsible for the release of adipokines such as leptin,

adiponectin, resistin, and visfatin, as well as cytokines such as

TNF-a, IL-6, and MCP-1 [3,34]. Macrophages block insulin

action in adipocytes [9], and in obese individuals macrophages

Figure 3. Differentiation of adipose stem cells to preadipocytes/adipocytes. Isolated adipocytes and ATMs/ASCs were cultured separately
for 24 hours to allow the cells to reach equilibrium and then were co-cultured for an additional 24 hours. The cells were then separated and ATMs/
ASCs were cultured for another 2 days in regular medium followed by an additional 7 days in either the same medium or adipogenic medium (A)
ATMs/ASCs without co-culture were cultured in regular medium for 2 days followed by an additional culture of 7 days in the same medium; (B) ASCs/
ATMs with co-culture were cultured in regular medium for 2 days followed by an additional culture for 7 days in regular medium. (C) Fold change in
gene expression of C/EBPa and PPARc of ASCs/ATMs with and without co-culture, cell culture conditions are the same as described above (see 3A–B);
(D) ASCs/ATMs without co-culture were cultured in regular medium for 2 days followed by an additional culture for 7 days in adipogenic medium; (E)
ASCs/ATMs with co-culture were cultured for 2 days in regular medium followed by additional culture for 7 days in adipogenic medium; (F) Fold
change in gene expression of C/EBPa and PPARc of ASCs/ATMs with and without co-culture, cell culture conditions are the same as described above
(see 3D–E).
doi:10.1371/journal.pone.0017834.g003
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stimulated with proinflammatory cytokines lead to an increase in

resistin, an insulin resistance gene. It was recently reported that

TNF- a impairs preadipocyte differentiation through the forma-

tion of macrophage like preadipocytes [5]. Furthermore, ATMs

inhibit the differentiation of human preadipocytes through

repression of different transcriptional factors involved in adipo-

genesis [35]. Recent results indicate that ATMs could play a major

role in the production of extracellular matrix proteins that are

involved in the cellular transition of preadipocytes to adipocytes

[36]. However, the ATM regulation of adipogenesis is complex

and has yet to be elucidated. Previous studies suggest that ATMs

perform at least two roles in adipose tissue. ATMs phagocytize

debris created from rapid adipocyte proliferation, as seen in

inflammation associated with obesity. Another function of

macrophages is to produce proinflammatory cytokines that

increase adipogenesis and insulin resistance [1,37].

The present study suggests that ATMs also represent a potential

source of preadipocytes. In our nanobeads lineage tracing

experiments, a significant number of preadipocytes generated

after co-culture were found to contain an amount of fluorescent

nanobeads comparable to that localized in CD68(+) ATMs prior

to co-culture. These results suggest that the CD68(+) ATMs

contributed to the formation of new preadipocytes. CD34(+) ASCs

are currently considered to be CD14(2)/CD68(2) cells. The

Figure 4. CD14 Nanobead markers before co-culture and after co-culture. Before co-culture. (A) CD14(+) nanobeads in red were
incorporated into macrophage fraction; (C) CD14(+) indicates the presence of nanobeads in red, (D) CD68 (+) indicates the presence of ATMs in green;
(E) Coincident expression of nanobeads CD14 (+) with CD68(+) ATMs/DAPI. After co-culture: (B) CD14(+) nanobeads in red were incorporated into
preadipocytes(F) CD14(+) indicates presence of nanobeads in red (G) DLK (+) indicates presence of preadipocytes in green, (H) Coincident expression
of CD14(+) nanobeads with DLK(+) preadipocytes/DAPI.
doi:10.1371/journal.pone.0017834.g004

Figure 5. Sphere of human cells formed after 24 hours co-culture between adipocytes, and ATMs/ASPCs. (A) Sphere contains CD68 (+)/
DLK (+) cells. (B) Sphere containing CD34 (+) ASCs/S-100 (+) cells, (C) preadipocytes derived from sphere are CD68 (+)/DLK (+) (specific marker for
preadipocytes), (D) preadipocytes derived from sphere are also CD-105 (+) (marker for mesenchymal stem cells)/DLK (+).
doi:10.1371/journal.pone.0017834.g005

Differentiation of Macrophages to Preadipocytes
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number of ASCs present in the ATM/ASC fraction would be

insufficient to account for the large number of preadipocytes

containing nanobeads in addition to the fact that ASCs would lose

nanobeads with each mitotic division, resulting in preadipocytes

with few or no nanobeads. Therefore, our results suggest that part

of the new preadipocytes originated after co-culture are derived

from the ATMs.

Previous studies highlight a complex relationship between

lineage and phenotype for macrophages, preadipocytes, and

adipocytes. Preadipocytes have been shown to differentiate to

macrophages, dedifferentiate from adipocytes, and differentiate

back to adipocytes. Macrophages and monocytes can differentiate

to CD68 (+), S100 (+), and CD14 (2) dendritic cells, and

monocytes in some studies demonstrate characteristics of circulat-

ing stem/progenitor cells [38]. Macrophages and adipocytes both

express adipsin (complement factor D), the adipocyte differenti-

ation- dependent serine protease gene [39]. Mouse peritoneal

macrophages in co-culture with adipocytes can develop long

cellular extensions with cytoplasmic lipid vacuoles [9]. These

sources of indirect evidence would suggest that plasticity of these

cell types does not preclude macrophage to preadipocytes

differentiation.

Microarray studies comparing gene expression profiles of

macrophages and progenitor/stem cells indicate that both cell

types demonstrate the capacity for endocytosis, vesicle trafficking,

and actin remodeling [40]. In the same study, preadipocytes were

shown to demonstrate phagocytic activity. Approximately 95% of

peritoneal macrophages, 45% of mesenchymal stem cells and 35%

of preadipocytes were found to display phagocytic behavior, as

compared to only 1% of fibroblasts [40]. Phagocytic activity may

decline as differentiation proceeds towards more adipocyte-like

phenotypes. Thus, phagocytic activity may identify a preadipocyte

subset with macrophage progenitors. However, we can not discard

the possibility that CD14(+) ATMs and CD34 (+) ASCs could be

derived from a common, less differentiated cell type.

During ATMs differentiation to preadipocytes we observed cells

expressing both CD14 (+) and S-100 (+) markers. Most

preadipocytes observed were CD14 (+) to varying degrees. As

macrophages differentiated towards a preadipocyte morphology,

the cells expressed less CD14 and more DLK/S-100 (Fig. 6). As

CD14 is not expressed by mature adipocytes [41], this suggests

that preadipocytes progressively lose CD14 expression or that

CD14 cells can dedifferentiate from adipocytes with a concomitant

increase of C/EBPa and PPARc gene expression.

Our FACS data suggest that DLK (+) preadipocytes are derived

from both CD14(+) and CD14(2) precursors. Further, within the

CD14 (+) group, there exists preadipocytes that are both CD34 (+)

and CD34 (2). This would suggest a complex population of cells,

with preadipocytes deriving from multiple sources. Macrophages

and dendritic cells share the marker CD68, and adipocytes,

preadipocytes and dendritic cells are positive for S-100, but only

macrophages are CD14 (+) [42]. Similar intermediate differenti-

ation phenotypes have been demonstrated as monocytes or

macrophages differentiate to other cell types. Monocytes appear

to be able to differentiate into an endothelial precursor population

[43], and a chimeric cell that is CD68 (+), S-100 (+), and CD14 (2)

has been implicated in diseases such as scleroderma [44].

Interestingly, our co-culture studies demonstrated the formation

of CD68 (+)/DLK (+) and CD34 (+)/DLK (+) cells grouped in

spheres from which many in preadipocytes were released.

Formation of these CD68 (+)/DLK (+) and CD34 (+)/DLK (+)

cell spheres could be part of the cellular mechanisms involved in

preadipocyte proliferation during co- culture. Recently, unique

multipotent cells in adult human mesenchymal populations

(multilineage differentiating stress enduring cells, ‘‘Muse cells’’)

have been isolated from human skin fibroblasts or bone marrow

stromal cells [45]. These cells are characteristically known to form

spheres [45]. The CD68(+)/CD34(+) cell spheres originated after

co-culture (Fig. 5A, B) from which preadipocytes derived, could

also have similar pluripotent characteristics as Muse cells.

In vitro expanded, autologous preadipocytes have the potential

for future therapeutic applications, since adipocytes, ATMs and

ASCs are an abundant and easily harvested cell type. The results

of our co-culture experiments demonstrate that surgically-derived

adipose tissue can serve as a source of cells that, through co-

culture, can be used for enhanced production of preadipocytes.

Preadipocyte proliferation and differentiation does not exclusively

lead to adipogenesis. In turn, preadipocytes can be directed to

differentiate down osteogenic, chondrogenic, adipogenic, myo-

genic, cardiomyogenic, neurogenic, angiogenic, or dendritic, as

Figure 6. Morphological changes exhibited during CD14 (+) cell differentiation to preadipocytes. Expression of markers CD14
(monocytes/macrophages) (light green), S-100 (preadipocytes/adipocytes) (red), and CD34 (ASCs) (dark green), Nile Red (preadipocytes/adipocytes)
(orange). Before co-culture: (A) most of the ATMs are CD14 (+); (B–D) very few ATMs are CD14 (+)/S-100 (+); After co-culture: (E) ATMs become
enlarged in size as they transform to preadipocytes (begin to express DLK/S-100 while maintaining CD14 expression); (F) Preadipocytes are S-100 (+)
and DLK (+) and start loosing CD14 and CD34 expression; (G) As preadipocytes start differentiating to adipocytes, there is an increase cell size, lipid
accumulation (Nile Red (+) cells) and C/EBPa and PPARc gene expression. The brightness of the color inside the lowers bars indicates the changes in
cell expression markers in correlation with the morphological changes exhibited during ATMs differentiation to preadipocytes.
doi:10.1371/journal.pone.0017834.g006
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well as adipogenic, pathways. Thus, therapeutic modulation of

preadipocyte differentiation may provide new insights that may

lead to novel treatments for tissue regeneration and reconstructive

medicine.

Furthermore, understanding the regulation of the conversion of

ATMs to preadipocytes, and preadipocyte proliferation could offer

a new way to influence adipogenesis, leading to new treatments for

obesity, inflammation and type 2 diabetes.
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