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.yroid nodule lesions are one of the most common lesions of the thyroid; the incidence rate has been the highest in the past thirty
years. X-ray computed tomography (CT) plays an increasingly important role in the diagnosis of thyroid diseases. Nonetheless, as
a result of the artifact and high complexity of thyroid CT image, the traditional machine learning method cannot be applied to CT
image processing. In this paper, an end-to-end thyroid nodule automatic recognition and classification system is designed based
on CNN. An improved Eff-Unet segmentation network is used to segment thyroid nodules as ROI. .e image processing
algorithm optimizes the ROI region and divides the nodules. A low-level and high-level feature fusion classification network
CNN-F is proposed to classify the benign and malignant nodules. After each module is connected in series with the algorithm, the
automatic classification of each nodule can be realized. Experimental results demonstrate that the proposed end-to-end thyroid
nodule automatic recognition and classification system has excellent performance in diagnosing thyroid diseases. In the test set,
the segmentation IOU reaches 0.855, and the classification output accuracy reaches 85.92%.

1. Introduction

.yroid nodule lesions are the most common lesions of the
thyroid, and the overall human prevalence can reach 19% to
46% [1]. Lesions can be divided into benign and malignant.
Compared with benign nodules, malignant nodules have an
irreversible impact on human health. .e necessary con-
dition for clinically correct treatment of malignant nodules
is to accurately detect benign and malignant thyroid nodules
[2].

In order to better solve this problem, many scholars have
done a lot of research using computer-aided diagnosis
technology. Nugroho used adaptivemedian filter and bilateral
filtering for preprocessing the ultrasound images, eight
geometric features were used to support vector machine
(SVM) for classification, and the accuracy of thyroid nodule
lesions is 92.30% [3]. Wang proposed a deep learning method
to diagnose thyroid nodules usingmultiple ultrasound images
in an examination as input. An attention-based feature ag-
gregation network is proposed to automatically integrate the

features extracted from multiple images in one examination,
utilizing different views of the nodules to improve the per-
formance of recognizing malignant nodules in the ultrasound
images. In the self-built large database, the classification of
benign and malignant can reach 87.32% [4]. Iakovidis et al.
proposed encoding the ultrasonic features by antinoise rep-
resentation and used the fusion of fuzzy local binary pattern
and fuzzy gray histogram features to classify the ultrasonic
features by polynomial kernel support vector machine.
According to the area under the ROC curve, the classification
accuracy reached 97.5% [5].

.e above researches are based on ultrasound images
and have achieved good results, but compared with CT
images, ultrasound images have some problems, such as low
definition, less useful information, and so on [6], and there is
a big difference between the two images, which cannot
achieve the simple moving of the method.

Now, in the study of thyroid nodules based on CT, Peng
used the first-order texture features in nonenhanced CT
images and support vector machine analysis to classify the
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nodules, and the accuracy reached 88% [7]. Liu used tra-
ditional machine learning methods, the recognition per-
formance of thyroid nodules was evaluated according to 17
first-order statistics and gray cooccurrence matrix features.
.e sensitivity, specificity, positive predictive value, and
negative predictive value of the final algorithm were 0.8673,
0.9105, 0.9130, 0.8269, 0.8235, and 0.9146, respectively [8].
Although the above researches have reached a high level in
the study of thyroid classification, they require the pre-
requisite for the nodule information to be additionally la-
beled, and it is impossible to achieve high-efficiency data
processing. On this basis, Zhao et al. designed an improved
Unet architecture, Dense-Unet, to achieve the region of
interest (ROI) segmentation of thyroid nodules and used
multidimensional input fusion CNN model to achieve the
classification of benign and malignant nodules. However,
limited by the algorithm design, the algorithm is only
suitable for single-nodule images, which cannot meet the
situation of single picture and multiple nodule [9].

In order to solve the above problems, this study collected
and established a thyroid nodule enhanced CT image da-
tabase, aiming to realize the integration of thyroid nodule
recognition and classification diagnosis. In CT images, the
distinction between benign and malignant thyroid mainly
lies in whether the shape and edges are divergent, and there
is no obvious difference in color. As a result, a single
multiclass segmentation network cannot achieve high ac-
curacy and the classification effect of benign and malignant
is poor. .erefore, in this research, a CNN-based semantic
segmentation network plus an image classification network
is designed, and image processing algorithms are used to
make the two connected in a reasonable manner, so that the
segmentation network focuses on the segmentation of the
thyroid nodules and the background. .e classification
network focuses on extracting image features of thyroid
nodules to achieve benign and malignant classification. In
addition, for multinodule CT images, nodules are segmented
to achieve separate classification of each nodule.

.e main contributions of this work are as follows:

(1) Based on the traditional Unet, an improved network
called Eff-Unet is proposed for the segmentation of
contrast-enhanced thyroid CT images, and an im-
proved loss function is proposed to improve the
semantic segmentation performance.

(2) A new thyroid nodule classification method is
designed by fusing two different CNN networks.

(3) .e image processing algorithm is designed to adapt
the output image of segmentation network to the
input of classification network and realize the intel-
ligent segmentation of multinodule CT image. .e
end-to-end diagnosis and classification of each nodule
is realized without any additional marking tasks.

2. Materials and Methods

.e algorithm flowchart proposed in this paper is shown in
Figure 1. It can be divided into 4 parts: image preprocessing
part, segmentation network semantic segmentation part,

image processing algorithm part, and classification network
prediction and output visualization part. Input the CT image
after image preprocessing into the system, realize the nodule
splitting of multinodule pictures through image processing
algorithms, and smoothly transition the output pictures of
the segmentation network to the input of the classification
network to realize end-to-end automatic recognition and
integration diagnose thyroid nodules.

2.1. Database Characteristics. In this experiment, the CT
image database of the First People’s Hospital of Pinghu City
and the First People’s Hospital of Jiaxing City was used to
construct the database. A total of 248 patients’ CT images
from 2013 to 2020 were obtained. All images were taken by a
16-slice spiral CT scanner (Siemens Emotion 16, one of the
most popular CT scanners in the world). .e basic settings
were CT slice thickness of 4 nm, window width and window
level of 500 and 60, and convolution kernel parameter of
b50s. All the images were enhanced CT images after in-
jection of water-soluble iodine contrast agent and scanning,
which can increase the density difference between the lesion
tissue and adjacent normal tissue, so as to improve the
display rate of lesions [10]. All the included lesions were
confirmed by biopsy or surgical pathology, and the lesion
scope was clear. Because there were multiple nodules, CT
images with malignant nodules were classified as malignant
images in this experiment. After being selected by profes-
sional doctors, a total of 832 CT images were obtained. .e
detailed data of CT images data collected are shown in
Table 1. .e detailed data of thyroid nodes data collected are
shown in Table 2.

2.2. Image Preprocessing. .e format of CTexported image is
JPEG, and the size is 512∗ 512 pixels. In order to avoid
learning error noise, such as bones and blood vessels, the
central part of CT image is intercepted uniformly, and the size
of saved core area is 256∗ 256 pixels..e image labeling work
is assisted by two professional doctors, and the LabelMe la-
beling tool is used to generate the mask image. In the original
mask image, the pixels of the generated background area are
0, the pixels of the benign thyroid area are 1, and the pixels of
the malignant thyroid area are 2. .e total number of images
is relatively small, which cannot meet the condition of deep
learning algorithm training with a large number of data.
.erefore, data enhancement is used to generate new images
to improve the performance and robustness of the model.
.rough the data enhancement tool of Keras framework,
setting appropriate rotation angle limit and offset amplitude
limit, and flipping horizontally to realize various transfor-
mations of the original image, a new image is generated and
input into the algorithm to trick the model into thinking that
it is receiving new data, thereby making the model more
powerful in processing new types of images [11].

2.3. Image Segmentation Model. In the automatic recogni-
tion of thyroid nodules, the Unet [12] network model is used
for image semantic segmentation, and the deep learning
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algorithm is used to automatically divide the location, shape,
and size of the nodules. .e organ structure of thyroid CT
image is fixed and the semantic information is not partic-
ularly rich. .e fusion of different scale features is an im-
portant means to improve the segmentation performance.
Low-level features have higher resolution and contain more
location and detail information. However, due to less
convolution, they have lower semantics and more noise.
High-level features have stronger semantic information, but
the resolution is very low, and the perception of details is
poor. .erefore, both high-level semantic information and
low-level features are very important. Consequently, the
jump connection structure and U-shaped structure network
of Unet can combine the high-resolution local information
and the lower-resolution and larger-area information at the
same time, making the segmentation of thyroid nodules
more accurate [13].

In addition, the EfficientNet [14] network structure is
selected as its backbone [15]. EfficientNet uses the depth,
width, and resolution adjustment technology. Compared
with other mature networks, EfficientNet has the huge
advantage of number of parameters and computation [16]. It
can extract image features quickly and efficiently, which lays
the foundation for the realization of accurate segmentation
of Unet network..e Eff-Unet designed in this experiment is
shown in Figure 2. As shown in Figure 2, its basic structure is
similar to the Unet network, but the downsampling encoder
part rewrites its original Vgg-like structure and chooses the
EfficientNet with excellent performance.

For the segmentation network, the main function is to
automatically label the nodule part, and there is no need to
distinguish between benign and malignant nodules.
.erefore, the mask image needs additional processing
before it is input into the network.When there is amalignant
area with a pixel value of 2, it is automatically converted to a
pixel value of 1. .e output image and input image of the
model are the same size. After specific image processing, it is
used as the subsequent classification network input.

2.4. ImageProcessingAlgorithm. A specific image processing
algorithm is designed to realize the smooth connection of
the two networks for making the output image of the seg-
mentation network better adapt to the classification

network. At the same time, we also achieve the segmentation
of each nodule in the multinodule image and complete the
image classification of the nodule part.

Aiming at the situation that the pixel value of the output
image of the segmentation network is a floating-point value, in
order to facilitate the classification network learning, according
to several attempts to verify, a threshold of 0.3 is designed to
binarize the background and nodule of the output image.

.e output of the segmentation network may have a
small range of noise color blocks caused by some mis-
judgment. .e length width ratio and the total area limit are
designed to eliminate the interference without excluding the
small-area nodules.

A single CT image will have multiple nodules. In order to
avoid the degradation of classification effect caused by the
hybridity of multiple nodules and single nodules, OpenCV is
used to analyze the minimum connected domain of all mask
images, find out all single nodules, and lay them in the black
background of 256∗ 256 pixels according to the position of the
original image, so as to facilitate the subsequentmapping to the
original image for visualization. In addition, according to the
pixel value of the corresponding mask image in the ROI region
of the nodule, when the average pixel value tends to 1, the cut
nodule is marked as benign nodule, and when the average pixel
value tends to 2, it is marked as malignant nodule.

2.5. Image Classification Model. .e classification of benign
and malignant thyroid nodules is based on CNN image
classification [17]. .e nodules of CT images are gray-black

Table 1: CT images distribution.

Training and validation set Test set Total
Benign images 507 97 604
Malignant images 198 30 228
Total 705 127 832

Table 2: .yroid nodules distribution.

Training and validation set Test set Total
Benign nodes 543 103 646
Malignant nodes 243 34 277
Total 786 137 923

CT image preprocessing Image semantic segmentation Classification networkImage processing algorithm Visualization of results

Figure 1: .e algorithm flowchart of system. .e details are as follows. (1) CT image preprocessing: data preprocessing and data en-
hancement. (2) Image semantic segmentation: automatic recognition and segmentation of thyroid nodules. (3) Image processing algorithm:
realizing the smooth connection from the segmentation network to the classification network. (4) Classification network: achieving accurate
classification of benign and malignant nodules. (5) Visualization of results: the results are mapped to the original image to facilitate
observation and comparison.
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pixel blocks with subtle color differences, so the classification
is mainly based on the shape and edge differences of benign
and malignant nodules [18]. Based on this feature, a low-
level and high-level feature fusion classification network
CNN-F is designed. Its basic structure is shown in Figure 3.
.e shallow network is used to extract low-level image
features, and the deep network is used to extract complex
high-level image features. After fusion training, we can learn
the performance of thyroid nodules at different character-
istic levels.

.e shallow network CNN-1 is built independently, the
main structure is shown in Figure 4. It is mainly composed of
a combination of 3 parts of convolutional structure and
pooling structure. .e image features are extracted through
the convolutional layer, and the resulting feature maps are
compressed through the maximum pooling layer. On the
one hand, the feature maps are reduced, and the network
calculation complexity is simplified; on the one hand, feature
compression is performed, the main features are extracted,
and one dropout layer is added to avoid overfitting. .en,
through the Flatten layer, the multidimensional input is
made one-dimensional, and the transition from the con-
volutional layer to the fully connected layer is realized. Add
two layers of fully connected layers and one layer of dropout,
plus the nonlinear mapping of the activation function, to
extract and integrate useful information to achieve the role
of a classifier.

.e deep network structure CNN-2 uses the Incep-
tionV3 [19] network as the basic structure, and the CNN-2
structure is shown in Figure 5. .e Inception network
structure is a “basic neuron” structure constructed by the
GoogLeNet team to build a sparse, high-performance net-
work structure. Convolution kernels of different sizes are
used to enable the existence of different sizes of receptive
fields. Finally, the splicing is achieved to achieve the fusion of
features of different scales, which can not only maintain the
sparsity of the network structure, but also utilize the high
computational performance of the dense matrix. .e
InceptionV3 network introduces the idea of Factorization
into small convolutions, which splits a larger two-dimen-
sional convolution into two smaller one-dimensional con-
volutions. On the one hand, it saves a large number of
parameters and reduces computing time and overfitting,
while increasing a layer of nonlinear extended model

expression capabilities [20]. .e first module uses two 3× 3
convolutions on a traditional basis instead of 5× 5 convo-
lutions. .e second module reduces the feature map and
adds filters and n × 1⟶ 1 × n structure, and the third
module uses the convolutional pooling parallel structure.
After calling the basic concept V3 (excluding the top-level
classifier), the global average pooling layer [21] is added,
which directly eliminates the black box feature in the full-
connection layer, and gives each channel the actual internal
meaning, greatly reducing the network parameters and
avoiding overfitting. After that, a full-connection layer of
128 nodes is added to integrate the local feature map to get
the global feature information.

After removing the output layer and using concatenate
to splice the two models, 256 nodes are merged through the
fully connected layer. Finally, the output layer uses the
sigmoid activation function to predict the category and can
also get approximate probability prediction, which can use
probability to assist with classification decision [22].

2.6. Loss Function. In this experiment, binary dice loss is
used to improve the loss of segmentation model. Loss is
divided into Dice Loss and Binary Cross Entropy. Among
them, the Dice coefficient is a measurement function used to
measure the similarity of the set, which is actually used to
calculate the pixels between samples [23]. .e formula of
Dice coefficient is as follows:

s �
2|X∩Y|

|X| + |Y|
, (1)

where X represents the marked ground truth and Y rep-
resents the output image of the segmentation network. .e
formula of Dice Loss is defined as

loss � 1 −
2|X∩Y|

|X| + |Y|
. (2)

Using Dice Loss as the loss function can achieve the real
goal of segmentation more appropriately, optimize the
evaluation criteria directly, and better deal with the im-
balance of data. However, Dice Loss will have an adverse
impact on the back propagation and easily make the training
unstable [24]. .erefore, on the basis of Dice Loss, Binary
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Figure 2: .e structure of Eff-Unet.
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Cross Entropy is added [25]. .e calculation formula is as
follows:

Loss � −
1
N

􏽘

N

i�1
yi · log 􏽢yi + 1 − yi( 􏼁 · log 1 − 􏽢yi( 􏼁, (3)

where N is the output size, yi is the label, and 􏽢yi is the
predicted probability of the label being positive for all N
labels.

3. Results and Discussion

3.1. Experiment Setup. .e experiment was conducted on a
personal computer with NVIDIA GEFORCE RTX-2080Ti
GPU and Intel® Core™ i7-8700K Processor, 3.7GHz. .e
experimental operating system is 64-bit Windows 10. .e
environment for deep learning is Python 3.6 and Keras 2.3.1
with TensorFlow GPU 1.14 as the back end. In the model
training, the loss function used in segmentation network is
Dice Loss + Binary Cross Entropy, the optimizer is Adam,
and the performance evaluation index is IOU. In the clas-
sification network, CNN-1, CNN-2, and CNN-F used Binary
Cross Entropy as the loss function, Adam as the optimizer,

and ACC as the performance evaluation index. .e initial
learning rate of both methods was 0.001. .e Reduc-
eLROnPlateau callback function was used to dynamically
adjust the learning rate..e attenuation coefficient was set to
0.5, and the cooldown was set to 10 epochs. A total of 200
epochs were trained. In addition, the parameter setting
details of comparison methods are also consistent with the
above, such as Vgg-16, DenseNet, and so on.

3.2. Performance Evaluation. .e performance of the net-
work model after concatenation can be evaluated by de-
termining statistical values (recall, specificity, precision, and
accuracy) and the F1-score. .e recall reflects the positive
proportion of correct recognition, the specificity reflects the
negative proportion of correct recognition, the precision is
the repeatability, or reproducibility of the measurement, and
the accuracy is the proximity of measurement results to the
true value. F1-score is an evaluation index which takes both
precision and recall into account. .e calculation formulas
are shown as follows, where TP represents true positive, TN
represents true negative, FP represents false positive, and FN
represents false negative.

CNN-1

CNN-2

Fusion

CNN-F

Benign

Malignant

Figure 3: .e basic structure of CNN-F.

CNN-1

Conv2d (Relu, BN)
5 × 5, 32

Conv2d (Relu, BN)
5 × 5, 32

Conv2d (Relu, BN)
3 × 3, 32

Conv2d (Relu, BN)
5 × 5, 32

Input
[b_size, 256, 256, 1]

Max_pool
2 × 2

Max_pool
2 × 2

Max_pool
2 × 2

Flatten

Dense (256, Relu)Dense (128, Relu)Output
Dense (1, sigmoid) Dropout

Dropout

Figure 4: .e architecture of CNN-1.
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CNN-2

Input
[b_size, 256,256,1]

Conv2d (Relu, BN)
3 × 3, 32, stride = 2

Conv2d (Relu, BN)
3 × 3, 32, stride = 1

Conv2d (Relu, BN)
3 × 3, 64, stride = 1

Conv2d (Relu, BN)
1 × 1, 80, stride = 1

Conv2d (Relu, BN)
3 × 3, 32, stride = 1

Conv2d (Relu, BN)
1 × 1, 1000, stride = 1

Max_pool
3 × 3, stride = 1

Max_pool
8 × 8, stride = 1

Max_pool
3 × 3, stride = 2

Inception module 1 Inception module 1 Inception module 1

Inception module 2Inception module 2

Output
Dense (1, sigmoid)

Inception module 2 Inception module 2 Inception module 2

Inception module 3 Inception module 3

Dense (128, Relu) Global average pooling

Inception module 3

Dropout

(a)

Filter concat
Inception module 1

Conv
3 × 3

Conv
3 × 3

Conv
3 × 3

Conv
1 × 1

Conv
1 × 1

Conv
1 × 1

Conv
1 × 1

Pool

Base

(b)

Figure 5: Continued.
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Accuracy �
TP + TN

TP + TN + FP + FN
, (4)

Recall �
TP

TP + FN
, (5)

Precision �
TP

TP + FP
, (6)

Specificity �
TN

TN + FP
, (7)

F1 score � 2 ·
Precision · Sensitivity
Precision + Sensitivity . (8)

3.3. Semantic Segmentation Performances. In this experi-
ment, in order to better segment the thyroid nodules and
background parts, EfficientNetB4 was selected as the Unet
model of the backbone network. In order to test the per-
formance of the model, on the basis of Unet, we tried the
common vgg backbone network and resnet18 backbone
network. In addition, we also choose Linknet [26] and FPN
[27] as the segmentation network and find that the per-
formance of segmentation is worse than that of UNET in the
case of EfficientNetB4 backbone network..e training curve
diagram of the training set of various network structures is
shown in Figure 6..e IOU scores of eachmethod in the test
set are shown in Table 3, in which Eff-Unet gets the highest
score.

Filter concat Inception module 2

Conv
n × 1

Conv
1 × n

Conv
1 × n
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1 × 1

Conv
1 × 1

Conv
1 × 1

Conv
1 × 1

Pool

Base

Conv
1 × n

Conv
n × 1

Conv
n × 1

(c)

Conv
1 × 3

Conv
3 × 3

Conv
3 × 3

Conv
1 × 3

Conv
3 × 1

Conv
1 × 1

Conv
1 × 1

Conv
1 × 1

Conv
1 × 1

Pool

Base

Filter concat
Inception module 3

(d)

Figure 5: (a) .e overall architecture of CNN-2. (b) .e architecture of Inception module1. (c) .e architecture of Inception module 2.
(d) .e architecture of Inception module 3.
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3.4. Classification Performances. In this experiment, the
multiclass segmentation network of Unet structure was first
tried. It aims to achieve three classifications of background,
benign nodules, and malignant nodules at the segmentation
level at one time. However, due to the nature of the image,
the segmentation and classification effects are very poor.
.erefore, under the condition of ensuring the performance
of the segmentation network, in order to evaluate the CNN-
F we designed, we have also implemented a variety of
networks to extract nodule features for classification based
on the morphology and edge features of the nodules. Among
them, Vgg16 [28] and DenseNet [29] networks have been
used by Jeong Hoon Lee in the classification of metastatic
lymph nodes on CT images and have achieved excellent
results [30]. .e diagnostic performance of various network
structures in the test data set is shown in Table 4. No matter
in the comparison between Vgg16 and CNN-1, which is a
shallow model, or in the comparison between DenseNet and
CNN-2, which is a deep model, the single network model
proposed in this experiment has advantages in performance.

Moreover, the CNN-F obtained by fusing the shallow net-
work and the deep network can clearly see that the per-
formance is significantly improved compared to a single
network model.

4. Discussion

Timely diagnosis of benign and malignant thyroid nodules
plays a key role in the treatment quality and prognosis of
patients. Because there are complex tissues and organs in the
CT images, unreasonable feature extraction and image
preprocessing will lead to classification deviation, so ma-
chine learning algorithm cannot effectively solve such
problems. While deep learning can improve the accuracy of
classification or prediction by building a multihidden layer
machine learning model and training with massive sample
data [31]. .is paper used a cascaded CNN method for
intelligent recognition and classification of thyroid nodules
with high accuracy without any annotation processing on
CT images. When addressing the problem of imbalance in the
number of benign and malignant nodules, class_weight was
used, and the benign and malignant weight was set to 1 : 3 to
balance the loss calculation. Test time enhancement [32] was
used to further enhance the accuracy of the final result,
predicting the original image, horizontal mirror image, ver-
tical mirror image, and rotating image, and the final average
value was taken as the final output. After effective segmen-
tation of thyroid nodules by Eff-Unet, CNN networks with
different depths were trained by fusion. Image features of
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Figure 6: .e training curve diagram of the training set.

Table 3: .e IOU scores of each method in the test set.

Method IOU
Eff_FPN 0.768
Eff_Linknet 0.836
Res18-Unet 0.833
Vgg-Unet 0.842
Eff-Unet 0.856
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different dimensions were extracted by the trained convo-
lution filter and they were combined and normalized to
achieve the classification of thyroid nodules. Figure 7 shows
the effect of some images of the test set in the system, in which
the first column is the original image, the second column is
manually labeled mask, the third column splits the nodule
part of the network output, and the fourth column is the
visualization result of the classification network output
mapped to the original image. Blue represents benign nodules
and red represents malignant nodules. .e single nodule
image can achieve clear classification, and the system can
achieve accurate classification of each nodule for multiple
nodule images classification.

5. Conclusion

In this work, we designed a set of end-to-end automatic
recognition and classification system for thyroid nodules,
which can realize the benign and malignant classification of
nodules without any marking on CT images and can achieve
accurate diagnosis of a single nodule, meeting the need of
multinodule CT images. After comparing with the actual

Table 4: Classification performance results.

Method Accuracy Recall Precision Specificity F1-score ROC
Unet (3) 53.33 45.71 88.8 80.00 60.35 0.6394
Unet +Vgg16 71.11 75.49 87.50 63.33 81.05 0.7413
Unet +DenseNet 79.26 83.81 88.89 63.33 86.28 0.7704
Unet +CNN-1 80.74 86.67 88.35 60.00 86.51 0.7835
Unet +CNN-2 82.22 84.76 91.75 73.33 88.12 0.7968
Unet +CNN-F 85.92 91.43 90.57 66.67 91.00 0.8253

Figure 7: Visualization of test set results, in which the first column is the original image, the second column is manually labeled mask, the
third column splits the nodule part of the network output, and the fourth column is the visualization result of the classification network
output mapped to the original image. Blue represents benign nodules and red represents malignant nodules.

Table 5: .e overall performance of the system.

IOU Accuracy Recall Precision Specificity F1-score ROC
0.856 0.859 0.914 0.906 0.667 0.910 0.825

Computational Intelligence and Neuroscience 9



diagnosis report, compared with the common multiclass
segmentation, we designed the segmentation network plus
the classification network model, which greatly improves the
accuracy of segmentation and classification. Finally, the total
score of the algorithm is that the IOU score of the seg-
mentation network is 0.856, and the overall classification
performance has accuracy of 85.92%, recall of 91.43%,
precision of 90.57%, specificity of 66.67%, ROC of 0.8253,
and F1-score of 91.0% in this work. .e overall performance
of the system is shown in Table 5. .e results show that the
deep learning algorithm based on CNN can achieve accurate
automatic diagnosis of thyroid nodules, provide doctors
with reliable auxiliary report opinions, reduce the difficulty
of doctors’ work, and reduce the misdiagnosis rate. How-
ever, the current data is limited to enhanced CT images, and
the database capacity is not large enough to prove the
generalization of the model. .erefore, in the future re-
search, we may focus on the relationship between ordinary
CTand enhanced CTand further improve the model, trying
to perfect the structure of the hybrid model to improve the
robustness of the model as much as possible.
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