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Abstract: Rapid economic and social development has caused serious atmospheric environmental
problems. The temporal and spatial distribution characteristics of PM2.5 concentrations have become
an important research topic for sustainable social development monitoring. Based on NPP-VIIRS
nighttime light images, meteorological data, and SRTM DEM data, this article builds a PM2.5 concen-
tration estimation model for the Chang-Zhu-Tan urban agglomeration. First, the partial least squares
method is used to calculate the nighttime light radiance, meteorological elements (temperature,
relative humidity, and wind speed), and topographic elements (elevation, slope, and topographic
undulation) for correlation analysis. Second, we construct seasonal and annual PM2.5 concentration
estimation models, including multiple linear regression, support random forest, vector regression,
Gaussian process regression, etc., with different factor sets. Finally, the accuracy of the PM2.5 con-
centration estimation model that results in the Chang-Zhu-Tan urban agglomeration is analyzed,
and the spatial distribution of the PM2.5 concentration is inverted. The results show that the PM2.5

concentration correlation of meteorological elements is the strongest, and the topographic elements
are the weakest. In terms of seasonal estimation, the spring estimation results of multiple linear
regression and machine learning estimation models are the worst, the winter estimation results
of multiple linear regression estimation models are the best, and the annual estimation results of
machine learning estimation models are the best. At the same time, the study found that there is a
significant difference in the temporal and spatial distribution of PM2.5 concentrations. The methods
in this article overcome the high cost and spatial resolution limitations of traditional large-scale PM2.5

concentration monitoring, to a certain extent, and can provide a reference for the study of PM2.5

concentration estimation and prediction based on satellite remote sensing technology.

Keywords: multisource data; machine learning; PM2.5 concentration estimation; partial least squares

1. Introduction

In recent years, with the rapid development of China’s industrialization and urban-
ization, air quality problems have become increasingly intensified. In 2012, the Chinese
government included PM2.5 concentration as an important pollution source indicator in the
national environmental air quality standards [1,2]. PM2.5 can remain in the air for a long
time, which will not only cause serious environmental problems, such as haze [3–8], but will
also have a certain negative impact on meteorological changes, and it also has many health
effects, such as premature mortality [9,10], hypertension [11], burden of disease [12,13], and
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health risks [14,15]. PM2.5 concentration monitoring is the key to the scientific management
of PM2.5.

Traditional PM2.5 concentration monitoring methods include the manual particle sam-
pling weight method, micro-oscillation balance method, and β-ray absorption method.
These three ground monitoring methods have high accuracy and strong real-time perfor-
mance. They are relatively used to common PM2.5 long-term monitoring methods, but
the monitoring cost is too high, and the observation data from limited monitoring sites
can only be used to characterize the PM2.5 concentration in the entire area. It is difficult
to accurately monitor a large-scale geographic scene. Remote sensing data can be used
to monitor the geographic phenomena of continuous ground surfaces for a long time. It
has been widely used in PM2.5 concentration monitoring [16–24]. Kahn et al. [16] found
that the particle size corresponding to the aerosol optical depth (AOD), obtained by the
MISR inversion of the multiangle imaging spectrometer, was similar to the PM2.5 particle
size, which proved the feasibility of establishing the correlation model between AOD and
PM2.5. Li et al. [20] used satellite remote sensing parameters of AOD, fine mode fraction
(FMF), planetary boundary layer height (PBLH), and atmospheric relative humidity (RH)
to estimate PM2.5 concentrations and obtain high estimation accuracy. At the same time,
a series of satellite images, such as Landsat, have also been used in PM2.5 concentration
estimation [25,26]. In the above studies, satellite remote sensing technology is becoming
more and more mature for daytime PM2.5 concentration estimation. However, it is difficult
to monitor changes in PM2.5 concentration at night based on images obtained from visible
light observations. At present, low-cost sensors are gradually being used in air quality
monitoring. Relevant studies have shown that low-cost sensor sites with adequate monitor-
ing conditions can provide high-quality PM2.5 concentration data, and they can effectively
monitor the temporal and spatial changes of regional PM2.5 concentrations [27]. However,
in some countries or regions, PM2.5 air pollution is not taken seriously, so the deployment
of low-cost sensors on a large scale is still a long time away for developing countries.

Nighttime light images can effectively reflect the intensity of human activities, provide
more spatial details of human society, and realize the time-series monitoring of the temporal
and spatial dynamic changes of human social activities. Today’s nighttime light images
have been widely used in socioeconomic and ecological environmental monitoring such
as carbon emissions [28,29], GDP [30], poverty [31], city development [32,33], population
density [34], and marine ships [28–35]. In addition to remote sensing images, commonly
used for PM2.5 concentration estimation, nighttime light data have also been used to esti-
mate PM2.5 concentrations at night. These nighttime light data are mainly from the Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP-OLP) [36–38] and
National Polar-orbiting Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) [39–42].
Wang et al. [40] used the day/night band (DNB) from radiation data of the Suomi National
Polar-orbiting Partnership (S-NPP) satellite’s visible infrared imaging radiometer suite
(VIIRS) to estimate PM2.5 concentration, and they found that nighttime light images can
provide a good inversion of PM2.5 concentrations. The correlation coefficient R, between the
estimated PM2.5 concentration and the measured PM2.5 concentration, is 0.67. Fu et al. [41]
used data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer
Suite (VIIRS) and hourly PM2.5 data, at 35 stations in Beijing, to develop a mixed-effects
model to estimate nighttime PM2.5 concentrations. The results of cross-validation showed
that the estimation accuracy of PM2.5 concentration in the four seasons was high, and the R2

of the model was greater than 0.80. Xu et al. [37] explored the influence of meteorological
and social factors on PM2.5 concentrations, and their results showed that the nighttime light
index was one of the main influencing factors of PM2.5 concentrations. Zhang et al. [42]
combined meteorological data and satellite observation data, such as Luojia (LJ) 1-01 night-
time light images, to build a PM2.5 concentration estimation model. The LJ1-01 satellite is
the first dedicated nighttime light remote sensing satellite in the world, and it launched in
July 2018. The results showed that adding nighttime light image information can improve
the performance of PM2.5 prediction models. The spatiotemporal distribution of PM2.5
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concentration is a complex geographical phenomenon affected by multiple factors. It is
difficult to explore the spatiotemporal relationship between nighttime light images and
PM2.5 concentration from a smaller time scale. Long-term PM2.5 concentration estimation
is an important part of air quality monitoring, but few studies have applied nighttime light
images to seasonal and annual PM2.5 concentration estimations. The relationship between
nighttime light images and long-term PM2.5 concentration temporal and spatial changes
remains to be further studied.

The temporal and spatial distribution of PM2.5 concentration is a complex geographical
phenomenon. Topographic and meteorological factors are important influencing factors
for the temporal and spatial distribution of PM2.5 concentration [43]. Meteorological
factors mainly depend on meteorological conditions, such as wind, precipitation, and
temperature, to affect the regional PM2.5 concentration [44]. Wind acts on the temporal and
spatial distribution of PM2.5 concentration by affecting air diffusion. Precipitation increases
humidity and causes PM2.5 particles to clump together, unable to stay in the air, and fall to
the ground. Changes in air temperature will affect the characteristics of atmospheric flow
and, thus, the diffusion of PM2.5. Although topographic factors have less influence on the
temporal and spatial distribution of PM2.5 concentration than meteorological factors [43],
topographical factors such as altitude and slope affect the changes of PM2.5 concentration
by changing the flow characteristics of air [45].

This paper analyzes the ability of nighttime light images to estimate seasonal and
annual PM2.5 concentrations. This paper uses partial least squares to analyze the correlation
between meteorological elements, terrain elements, nighttime light radiance, and PM2.5
concentration. Then, a multivariate linear and machine learning regression model for PM2.5
concentration estimation in the Chang-Zhu-Tan urban agglomeration was constructed,
combined with the ground monitoring station data, to evaluate the accuracy of the model
results, and finally, the spatial continuous distribution of PM2.5 concentration in the Chang-
Zhu-Tan urban agglomeration was inverted.

2. Study Areas and Data Sources
2.1. Study Areas

The Chang-Zhu-Tan urban agglomeration is located in the middle-eastern part of
Hunan Province (Figure 1). It has a mid-subtropical monsoon climate with four distinct
seasons, short winters, long summers, and abundant rainfall. As the core growth pole
of economic development in Hunan Province, the Chang-Zhu-Tan urban agglomeration
industry has achieved rapid development in recent years [46]. At the same time, the
problem of air pollution has become increasingly prominent, and the concentration of
various air pollutants in the urban agglomeration remains high [47,48]. The air quality
level ranks last in the province year round. Regional air pollution seriously affects public
health and ecological safety, and the serious haze problem has also attracted great attention
from all walks of life [49]. In recent years, the relevant air pollution control measures of
the Chinese government have resulted in a significant decrease in the PM2.5 concentration
in the Chang-Zhu-Tan urban agglomeration, effectively improving the air quality of the
urban agglomeration [50].
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Figure 1. Location of the Chang-Zhu-Tan urban agglomeration.

2.2. Data Sources

The data for this research include PM2.5 concentration data, meteorological data,
NPP-VIIRS nighttime light images, and Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) data in the Chang-Zhu-Tan urban agglomeration in 2015 and 2018.

PM2.5 concentration data: The PM2.5 concentration data used in this article came
from the national urban air quality real-time release platform of the China Environmental
Monitoring Station (CEMS. http://106.37.208.233:20035/ (accessed on 15 October 2019)).
The quarterly and annual average PM2.5 concentrations were derived from the hourly
monitoring data of 24 ambient air quality assessment monitoring points in the Chang-
Zhu-Tan urban agglomeration (Figure 2a). In order to ensure the accuracy, continuity, and
integrity of PM2.5 concentration measurement data, the Chinese government stipulates that,
when automatic monitoring equipment is used for monitoring, the monitoring equipment
needs to run continuously, 365 days a year. The daily average of PM2.5 concentration
measurements requires at least 20 h of average concentration values or adoption time.
The PM2.5 concentration measurement data in this paper are obtained by the continuous
automatic monitoring method. The Chinese government stipulates that the PM2.5 automatic
monitoring method with different principles can only be used to measure PM2.5 if it is
consistent with the monitoring results of the manual gravimetric method. Therefore, the
PM2.5 concentration measurement values used in this paper are subject to strict quality
control and are effective.

http://106.37.208.233:20035/


Int. J. Environ. Res. Public Health 2022, 19, 4306 5 of 18

Int. J. Environ. Res. Public Health 2022, 19, x  5 of 19 
 

 

a small range is considered [51]. Therefore, it is feasible that the meteorological infor-
mation of the air quality monitoring station comes from four ground meteorological sta-
tions in this study. 

NPP-VIIRS nighttime light images were obtained from the Earth Observation 
Group (EOG). This article used the monthly data from NPP-VIIRS nighttime light imag-

es in 2015 and 2018, with a resolution of 500 m (Figure 2b). The monthly nighttime light 
image was composed of the cloudless nighttime light image of the month, which was the 
average radiation image. The monthly nighttime light images were also processed with 

stray light correction. The processed monthly NPP-VIIRS nighttime light images can ef-
fectively monitor the status quo of regional socioeconomic development [52-54]. 

Nighttime light images can effectively reflect the development status of human society 
and provide more spatial details of human activities [55,56]. 

SRTM DEM data: The DEM data of the experimental area came from the SRTM da-

ta of the U.S. Space Shuttle Endeavour. This dataset was based on the latest SRTM V4.1 
data, through collation and splicing, to generate 90 m resolution DEM data (Figure 2a). 

Topography not only affects the spatial distribution of pollutant emissions by affecting 
the intensity of human activities but also has a profound impact on the diffusion of 

PM2.5, which is an important factor affecting the spatial distribution of PM2.5 [43,57]. 

  

(a) (b) 

Figure 2. Datasets used in this study. (a) SRTM DEM data and spatial distribution of the monitor-
ing stations; (b) NPP-VIIRS nighttime light (NTL) image. 

3. Methods 

3.1. Correlation Analysis between Remote Sensing Data and PM2.5 Concentration 

Based on the theory of radiative transmission, the relationship model between 
nighttime light radiance and PM2.5 concentration in the near-surface layer can be con-
structed [40]. First, it is assumed that there is no change in the distribution of surface 

features (especially buildings and city lights) around the ground air quality monitoring 
site. Then, there is the nighttime light radiance, after reflection/scattering by various 

physical media from lights emitting upwards, from what is considered a Lambertian 
body, which is a constant with spatial differences [40]. Assuming negligible multiple 

scattering from aerosols, the nighttime light radiance reaching the sensor follows Beer’s 
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stations; (b) NPP-VIIRS nighttime light (NTL) image.

Meteorological data: The meteorological data came from the National Meteorologi-
cal Science Data Sharing Service Platform (NMSDSSP. http://data.cma.cn. (accessed on
15 October 2019)) and mainly include precipitation, temperature, relative humidity, and
wind speed. The quarterly and annual average weather data came from the daily average
values of meteorological stations in the Chang-Zhu-Tan urban agglomeration (Figure 2a).
Meteorological factors have a great impact on the spatial distribution of PM2.5 in the Chang-
Zhu-Tan urban agglomeration [47]. The meteorological information of the air quality
monitoring stations comes from four ground meteorological stations. Since the air quality
monitoring stations are distributed in the plain area and are concentrated near the four
ground meteorological stations, the uniformity of meteorological factors in a small range
is considered [51]. Therefore, it is feasible that the meteorological information of the air
quality monitoring station comes from four ground meteorological stations in this study.

NPP-VIIRS nighttime light images were obtained from the Earth Observation Group
(EOG). This article used the monthly data from NPP-VIIRS nighttime light images in 2015
and 2018, with a resolution of 500 m (Figure 2b). The monthly nighttime light image was
composed of the cloudless nighttime light image of the month, which was the average
radiation image. The monthly nighttime light images were also processed with stray
light correction. The processed monthly NPP-VIIRS nighttime light images can effectively
monitor the status quo of regional socioeconomic development [52–54]. Nighttime light
images can effectively reflect the development status of human society and provide more
spatial details of human activities [55,56].

SRTM DEM data: The DEM data of the experimental area came from the SRTM data
of the U.S. Space Shuttle Endeavour. This dataset was based on the latest SRTM V4.1
data, through collation and splicing, to generate 90 m resolution DEM data (Figure 2a).
Topography not only affects the spatial distribution of pollutant emissions by affecting
the intensity of human activities but also has a profound impact on the diffusion of PM2.5,
which is an important factor affecting the spatial distribution of PM2.5 [43,57].

http://data.cma.cn
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3. Methods
3.1. Correlation Analysis between Remote Sensing Data and PM2.5 Concentration

Based on the theory of radiative transmission, the relationship model between night-
time light radiance and PM2.5 concentration in the near-surface layer can be constructed [40].
First, it is assumed that there is no change in the distribution of surface features (especially
buildings and city lights) around the ground air quality monitoring site. Then, there is
the nighttime light radiance, after reflection/scattering by various physical media from
lights emitting upwards, from what is considered a Lambertian body, which is a constant
with spatial differences [40]. Assuming negligible multiple scattering from aerosols, the
nighttime light radiance reaching the sensor follows Beer’s law. Assuming that there is
a good and stable aerosol extinction coefficient profile structure in the boundary layer
at night, and PM2.5 is uniformly mixed at the effective height, the relationship between
PM2.5 and nighttime light radiance can be established [40]. In this paper, the average
value of nighttime light, 2 km around the environmental detection site, was extracted as its
nighttime light radiance value.

Meteorological elements are important factors influencing the changes in PM2.5 con-
centration [44,58–60]. Wang et al. [58] discussed whether meteorological elements can
affect PM2.5 concentrations and found that meteorological elements, such as humidity and
air temperature, can affect the temporal and spatial distributions of PM2.5 concentrations.
In addition, topographic elements affect the change in regional PM2.5 concentration to a
certain extent [43,45,57]. He et al. [45] added the information extracted from DEM data
to the PM2.5 estimation model, and the results showed that the model with topography,
meteorology, and other elements can better estimate PM2.5 concentrations. Therefore, the
PM2.5 concentration estimation model that takes into account the influence of multiple
factors, such as weather and topography, at the same time can obtain higher-precision PM2.5
concentration simulation results. Therefore, the characteristic factors determined in this
paper include nighttime light radiance I, elevation E, slope S, precipitation R, temperature
T, relative humidity RHU, and wind speed W.

3.2. Selection of Characteristic Factors for the PM2.5 Concentration Estimation Model

The correlation analysis was carried out by constructing a partial least squares model of
Factor Set A and PM2.5 concentration. The partial least squares method uses the algorithm of
decomposing and screening the data information in the model, extracts the comprehensive
variable with the strongest explanatory power for the dependent variable, and can calculate
the importance of each factor. The partial least squares method can better solve the factor
collinearity problem and obtain more objective and accurate factor importance results [61].
The variable importance in projection (VIP) value of partial least squares is used as the
factor importance result [62], and the VIP value calculation formula is as follows:

VIPj =

√√√√ p ∑h
k=1
(
c2

kt′ktk
)
w2

jk

∑h
k=1 c2

kt′ktk
(1)

where: VIPj is the VIP value of the j-th variable; p is the number of variables participating
in the analysis; h is the number of iteration calculations; c2

kt′ktk is the interpretation of
the dependent variable from the k-th independent variable mapping result interpretation
degree; w2

jk is the weight of variable j in the k-th iteration.

3.3. Construction of the PM2.5 Concentration Estimation Model

Simple models have limitations in simulating complex geographic phenomena, with
multiple factors, at high precision [63]. Zhang et al. [63] found that simple models cannot
effectively estimate the spatial distribution of PM2.5 concentrations affected by multiple
factors. In this paper, referring to the research results of Wang et al. [40], a multiple linear
regression model was selected to construct the PM2.5 concentration estimation Model I of
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the Chang-Zhu-Tan urban agglomeration. There are 24 air quality monitoring stations in
the Chang-Zhu-Tan urban agglomeration.

PM2.5 = β0 + β1X1 + β2X2 + · · ·+ βnXn (2)

where: PM2.5 is the estimated PM2.5 concentration of the air quality monitoring site; X1, X2,
and Xn are the 1st, 2nd· · · nth estimated model factors, respectively; β1, β2, and βn are the
regression coefficients of each model, respectively.

When there is no definite estimation method of PM2.5 concentration, the application
of machine learning can extract key feature information to find the relationship between
known datasets, and the machine model trained with a large amount of data can be
used for accurate prediction. Machine learning methods have been increasingly used in
socioeconomic parameter estimation and geographic phenomenon inversion, and there
have also been related studies using machine learning methods for PM2.5 concentration
estimation. Among them, there are many studies on the use of random forest models for
PM2.5 concentration estimation [64–66], and other machine learning models are gradually
applied to PM2.5 concentration estimation [67,68]. Based on the PM2.5 concentration data
from ground stations and the known data of nighttime light radiance I, elevation E, slope S,
precipitation R, temperature T, relative humidity RHU, and wind speed W, three machine
learning PM2.5 concentration estimation models were constructed in this paper: random
forest Model II, support vector machine Model III, and Gaussian process regression Model
IV. These three models are more commonly used and more mature machine learning
regression models. Each of them has some advantages. For example, support vector
machines can solve machine learning problems with small samples and can find the
nonlinear relationship between variables well. For unbalanced data sets, ensemble trees can
balance errors to a certain extent. Gaussian process regression can quantify the prediction
uncertainty in a principled way.

In this paper, the three machine learning estimation models were trained with multiple
samples, and the fivefold cross-validation method was used to test model accuracy. Finally,
the model parameters, when the goodness of fit (R2) of the model is the highest, are
determined. According to the training results, the important parameters of the machine
learning model with the highest R2 are selected (see Table 1). Among them, the parameter
of random forest Model II is the minimum leaf size, and the parameters of Model III support
vector machine and Model IV Gaussian process regression are the kernel function.

Table 1. Important parameters of the various PM2.5 concentration estimation models based on
machine learning.

Model Parameters Spring Summer Autumn Winter Annual

Model II smallest leaf 12 4 12 12 12
Model III kernel function Linear Linear Linear Linear Quadratic
Model IV kernel function Exponential Exponential Matern 5/2 Exponential Matern 5/2

Model parameters Spring Summer Autumn Winter Annual

4. Results
4.1. Importance Analysis of PM2.5 Concentration Estimation Model Factors

To explore the influence of characteristic factors on the model estimation results,
nighttime light radiance, elevation, slope, precipitation, air temperature, relative humidity,
and wind speed were selected as Factor Set A. In addition, the more relevant feature
factors from the Factor Set A were selected as Factor Set B. Finally, the precipitation,
temperature, relative humidity, and wind speed of commonly used meteorological elements
were selected from Factor Set A as Factor Set C.

In this paper, the partial least squares method was used to analyze the importance of
the model factors. The VIP score of each factor obtained by the formula (1) determines the
correlation between the factor and the PM2.5 concentration. The results showed that (Table 2)
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four meteorological factors (air temperature T, relative humidity RHU, precipitation R,
and wind speed W) had high VIP scores. The mean VIP scores of quarterly and annual
were 1.552, 0.795, 0.835, and 1.100, respectively. The air temperature T factor is the most
important factor affecting the temporal and spatial distribution of PM2.5 concentration.
There was a high correlation between nighttime light radiance I and PM2.5 concentration,
with an average VIP score of 0.504. The topographic factors (elevation E and slope S)
had a low correlation with the PM2.5 concentration, with average VIP scores of 0.320 and
0.304, respectively. Therefore, this paper selected temperature T, relative humidity RHU,
precipitation R, wind speed W, and nighttime light radiance I as Factor Set B.

Table 2. VIP scores of different factors for the PM2.5 concentration estimation.

Factor Spring Summer Autumn Winter Annual

I 1.138 0.464 0.366 0.302 0.249
T 1.381 1.507 1.658 1.465 1.748

RHU 1.157 1.449 0.530 0.662 0.178
W 0.508 0.985 0.979 0.986 0.719
R 0.943 0.526 0.742 1.384 1.907
E 0.414 0.257 0.322 0.442 0.164
S 0.723 0.249 0.175 0.283 0.091

4.2. The Results and Accuracy Evaluation of the PM2.5 Concentration Estimation Model for the
Chang-Zhu-Tan Urban Agglomeration

Based on the multiple linear regression model and three machine learning regression
models, combined with the environmental monitoring site data of the Chang-Zhu-Tan
urban agglomeration, model verification was carried out for the four seasons as well as
annually (see Tables 3 and 4).

Since the temporal and spatial distribution of PM2.5 concentration is a complex ge-
ographical phenomenon, the variation law of PM2.5 concentration, under the action of
multiple factors, may be different in different time periods. Therefore, this paper considers
selecting a variety of models to analyze the relationship between PM2.5 concentration and
factors, in order to improve the estimation accuracy of PM2.5 concentration. The results
showed that there were obvious differences in the estimation results of PM2.5 concentration
models in different seasons, among which the PM2.5 concentration estimation model in
spring had the worst results, and the R2 value was significantly lower than those from the
other three seasonal and annual estimation models. The annual estimation model had the
best effect, followed by the winter, summer, and autumn estimation models, which had
similar effects.

There were also obvious differences in the estimation effects of different models. The
multiple linear regression models had better estimation results for the seasonal PM2.5
concentration, while the machine learning model had better estimation results for the
annual PM2.5 concentration. The number of sample points for the construction of seasonal
and annual PM2.5 concentration estimation models was different. The number of sample
points for seasonal PM2.5 concentration was small, only one-fourth of the number of annual
PM2.5 concentration sample points, resulting in opposite results in the season and year
for PM2.5 concentration estimation accuracy based on multivariate linear and machine
learning models.

The effect of the estimation model of Factor Set B was obviously better than that
of Factor Set C, indicating that adding nighttime light image information can effectively
improve the performance of the estimation model. In addition, the estimation model
effect of Factor Set A was better than that of Factor Set B, which also shows that adding
topographic information can also effectively improve the model estimation ability.
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Table 3. R2 values of the PM2.5 concentration estimation model in the Chang-Zhu-Tan urban agglomeration.

Model Factor Set Spring Summer Autumn Winter Annual

Factor set A 0.36 0.81 0.76 0.89 0.82
Model I Factor set B 0.31 0.79 0.75 0.88 0.82

Factor set C 0.25 0.78 0.75 0.85 0.82

Factor set A 0.17 0.65 0.72 0.79 0.90
Model II Factor set B 0.16 0.66 0.72 0.80 0.92

Factor set C 0.07 0.71 0.67 0.80 0.91

Factor set A 0.23 0.69 0.69 0.77 0.88
Model III Factor set B 0.20 0.55 0.66 0.75 0.90

Factor set C 0.13 0.67 0.69 0.73 0.90

Factor set A 0.08 0.64 0.54 0.73 0.89
Model IV Factor set B 0.07 0.63 0.64 0.72 0.90

Factor set C 0.06 0.67 0.63 0.72 0.92

Table 4. Root mean square errors of the PM2.5 concentration estimation model in the Chang-Zhu-Tan
urban agglomeration.

Model Factor Set Spring Summer Autumn Winter Annual

Factor set A 4.48 3.74 6.06 7.75 11.80
Model I Factor set B 4.64 3.88 6.11 8.11 11.85

Factor set C 4.85 3.94 6.15 8.91 11.90

Factor set A 5.14 5.12 6.79 11.06 8.65
Model II Factor set B 5.19 5.49 6.72 10.40 7.73

Factor set C 5.50 4.64 7.10 10.69 8.25

Factor set A 4.94 4.76 7.19 11.58 9.85
Model III Factor set B 5.05 6.30 7.30 11.77 8.73

Factor set C 5.34 4.98 6.90 12.45 8.75

Factor set A 5.40 5.14 8.71 12.68 9.22
Model IV Factor set B 5.44 5.69 7.57 12.30 8.67

Factor set C 5.54 4.92 7.54 12.67 8.14

At the same time, this paper established a scatter diagram between the annual esti-
mated and actual PM2.5 concentrations (Figure 3). The results showed that there was a high
correlation between the two, in which the R2 values in 2015 and 2018 were 0.87 and 0.92,
respectively, indicating that there were good estimation results for the PM2.5 concentration.
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4.3. Spatial Analysis of the PM2.5 Concentration in the Chang-Zhu-Tan Urban Agglomeration

In this paper, kriging interpolation analysis was performed on the seasonal PM2.5
concentration of the Chang-Zhu-Tan urban agglomeration in 2018, and the continuous
spatial interpolation of PM2.5 concentration was realized. The results are shown in Figure 4.
According to the inversion results, the temporal and spatial distributions of seasonal
PM2.5 concentrations in the Chang-Zhu-Tan urban agglomeration were analyzed. The
results showed that the PM2.5 concentration of the Chang-Zhu-Tan urban agglomeration in
winter was significantly higher than that in the other three seasons, with the lowest PM2.5
concentration in summer and similar PM2.5 concentrations in spring and autumn.

Int. J. Environ. Res. Public Health 2022, 19, x  10 of 19 
 

 

4.3. Spatial Analysis of the PM2.5 Concentration in the Chang-Zhu-Tan Urban Agglomeration 

In this paper, kriging interpolation analysis was performed on the seasonal PM2.5 

concentration of the Chang-Zhu-Tan urban agglomeration in 2018, and the continuous 
spatial interpolation of PM2.5 concentration was realized. The results are shown in Figure 

4. According to the inversion results, the temporal and spatial distributions of seasonal 
PM2.5 concentrations in the Chang-Zhu-Tan urban agglomeration were analyzed. The 
results showed that the PM2.5 concentration of the Chang-Zhu-Tan urban agglomeration 

in winter was significantly higher than that in the other three seasons, with the lowest 
PM2.5 concentration in summer and similar PM2.5 concentrations in spring and autumn. 

The study area is located in the subtropical monsoon region. The northerly wind 
prevails in the Chang-Zhu-Tan urban agglomeration in winter, the atmospheric struc-
ture is stable, and the meteorological conditions are not conducive to the diffusion of 

PM2.5 and other particles. The study area is prone to temperature inversion in winter, 
which makes PM2.5 particles gradually accumulate on the surface. In addition, the burn-

ing of a large amount of coal for heating in winter increases the PM2.5 concentration. 
In summer, the southerly wind prevails, and the meteorological conditions are 

conducive to the diffusion of PM2.5 and other particles. In summer, strong winds are 

more likely to lead to the diffusion of PM2.5. In addition, it is rainy and humid in sum-
mer, and it is difficult for PM2.5 particles to stay in the air. The high temperature in 

summer makes it less likely for temperature inversion to occur, and the atmosphere is 
prone to convection, which is conducive to the diffusion of PM2.5 particles. Therefore, the 

concentration of PM2.5 is relatively high in winter and low in summer. At the same time, 
there are differences in the spatial distribution of PM2.5 concentrations. The PM2.5 con-
centration in the northwestern part of the Chang-Zhu-Tan urban agglomeration is rela-

tively high, and the PM2.5 concentration in some central areas is low, which is signifi-

cantly different from the adjacent areas. 

  
(a) Spring (b) Summer 

Int. J. Environ. Res. Public Health 2022, 19, x  11 of 19 
 

 

  
(c) Autumn (d) Winter 

Figure 4. Inversion of seasonal PM2.5 concentration in 2018 in the Chang Zhu Tan urban 
agglomeration. AC means average PM2.5 concentration. 

5. Discussion 

With the rapid development of industry and the increasing number of vehicles, the 
problem of air pollution is becoming increasingly serious [69]. Monitoring the spatial and 
temporal distribution of polluted gases is the key to solving the problem of air pollution. 

Among them, PM2.5 has always been one of the main air pollutants monitored by hu-
mans. At present, the model used by daytime remote sensing satellite technology for 

PM2.5 concentration estimation is relatively mature, and it can better perform spatial 
processing of large-scale PM2.5 concentrations. Human production and living activities 
greatly affect the temporal and spatial distributions of PM2.5 concentrations. Human so-

cial activities at night can reflect the intensity of human activities and reflect the state of 
human production, and living, to a certain extent. Therefore, this paper added nighttime 

light image information to PM2.5 concentrations. In the concentration estimation model, 
the results showed that the accuracy of the PM2.5 concentration estimation results has 
been somewhat improved, indicating that nighttime light images are of practical signifi-

cance for PM2.5 concentration estimation. 
In this paper, the partial least squares method was used to calculate the factor im-

portance of the PM2.5 concentration. The partial least squares method can better solve the 
multicollinearity problem on the basis of retaining all factors, and the partial least 
squares method extracts, as much as possible, real PM2.5 concentration-related factor in-

formation to obtain a more objective and reliable correlation between factors and PM2.5 
concentration. Compared with other factor analysis methods, the partial least squares 

method can calculate factor VIP scores on the basis of more effectively solving the mul-
ticollinearity problem. 

In this paper, the multivariate linear model was used to obtain the estimated value 

of the seasonal PM2.5 concentration, and scatter plots (Figure 5) of the estimated value and 
the actual value of the PM2.5 concentration in the four seasons were constructed. The re-

sults showed that the estimated value and the actual value of the PM2.5 concentration in 
the four seasons was very close to y = x, indicating that the error distribution of the 
model, underestimating and overestimating PM2.5 concentration, was relatively balanced. 

The estimated R2 value of the PM2.5 concentration model in spring was significantly lower 

Figure 4. Inversion of seasonal PM2.5 concentration in 2018 in the Chang Zhu Tan urban agglomera-
tion. AC means average PM2.5 concentration.



Int. J. Environ. Res. Public Health 2022, 19, 4306 11 of 18

The study area is located in the subtropical monsoon region. The northerly wind
prevails in the Chang-Zhu-Tan urban agglomeration in winter, the atmospheric structure is
stable, and the meteorological conditions are not conducive to the diffusion of PM2.5 and
other particles. The study area is prone to temperature inversion in winter, which makes
PM2.5 particles gradually accumulate on the surface. In addition, the burning of a large
amount of coal for heating in winter increases the PM2.5 concentration.

In summer, the southerly wind prevails, and the meteorological conditions are con-
ducive to the diffusion of PM2.5 and other particles. In summer, strong winds are more
likely to lead to the diffusion of PM2.5. In addition, it is rainy and humid in summer, and it
is difficult for PM2.5 particles to stay in the air. The high temperature in summer makes it
less likely for temperature inversion to occur, and the atmosphere is prone to convection,
which is conducive to the diffusion of PM2.5 particles. Therefore, the concentration of PM2.5
is relatively high in winter and low in summer. At the same time, there are differences
in the spatial distribution of PM2.5 concentrations. The PM2.5 concentration in the north-
western part of the Chang-Zhu-Tan urban agglomeration is relatively high, and the PM2.5
concentration in some central areas is low, which is significantly different from the adjacent
areas.

5. Discussion

With the rapid development of industry and the increasing number of vehicles, the
problem of air pollution is becoming increasingly serious [69]. Monitoring the spatial and
temporal distribution of polluted gases is the key to solving the problem of air pollution.
Among them, PM2.5 has always been one of the main air pollutants monitored by humans.
At present, the model used by daytime remote sensing satellite technology for PM2.5
concentration estimation is relatively mature, and it can better perform spatial processing of
large-scale PM2.5 concentrations. Human production and living activities greatly affect the
temporal and spatial distributions of PM2.5 concentrations. Human social activities at night
can reflect the intensity of human activities and reflect the state of human production, and
living, to a certain extent. Therefore, this paper added nighttime light image information
to PM2.5 concentrations. In the concentration estimation model, the results showed that
the accuracy of the PM2.5 concentration estimation results has been somewhat improved,
indicating that nighttime light images are of practical significance for PM2.5 concentration
estimation.

In this paper, the partial least squares method was used to calculate the factor impor-
tance of the PM2.5 concentration. The partial least squares method can better solve the
multicollinearity problem on the basis of retaining all factors, and the partial least squares
method extracts, as much as possible, real PM2.5 concentration-related factor information
to obtain a more objective and reliable correlation between factors and PM2.5 concentra-
tion. Compared with other factor analysis methods, the partial least squares method can
calculate factor VIP scores on the basis of more effectively solving the multicollinearity
problem.

In this paper, the multivariate linear model was used to obtain the estimated value of
the seasonal PM2.5 concentration, and scatter plots (Figure 5) of the estimated value and the
actual value of the PM2.5 concentration in the four seasons were constructed. The results
showed that the estimated value and the actual value of the PM2.5 concentration in the
four seasons was very close to y = x, indicating that the error distribution of the model,
underestimating and overestimating PM2.5 concentration, was relatively balanced. The
estimated R2 value of the PM2.5 concentration model in spring was significantly lower than
that in the other three seasons, while the estimated R2 value of the PM2.5 concentration
model in winter was significantly higher than that in the other three seasons, indicating
that the model estimation accuracy had seasonality.
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In addition, the spatial distribution of PM2.5 concentration is a complex geographic
phenomenon, and the spatial characteristics of different air quality monitoring stations are
different, resulting in obvious spatial differences in the accuracy of PM2.5 concentration
estimation models. In this paper, the multivariate linear estimation model, with high
estimation accuracy of seasonal PM2.5 concentration, was used to obtain the estimated
PM2.5 concentration in the four seasons, and the estimated PM2.5 concentration in the
four seasons was compared with the actual value (Figure 6). The results showed that the
estimated and actual PM2.5 concentrations in the four seasons had similar trends, indicating
that the overall effect of the model estimation was good, but there were still obvious local
differences. The estimated value of the PM2.5 concentration, at some stations, was quite
different from the actual value. To further analyze the spatial difference in model estimation
accuracy, this paper also analyzed the actual error of PM2.5 concentration estimation at the
stations. At the same time, it can be seen from the figure that the spring PM2.5 concentration
of most air quality monitoring stations in the Chang-Zhu-Tan urban agglomeration was
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higher than the Level 1 standard but lower than the Level 2 standard. The summer PM2.5
concentration of most air quality monitoring stations was lower than the Level 1 standard,
and the autumn PM2.5 concentration of air quality monitoring stations was similar to spring
but significantly higher than the spring PM2.5 concentration. The PM2.5 concentration of air
quality monitoring stations in winter was significantly higher than that of the other three
seasons, and the winter PM2.5 concentration of most air quality monitoring stations was
higher than the Level 2 standard.
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sequence. The blue line represents the Level 1 standard, and the orange line represents the Level 2
standard. The Level 1 standard refers to the 24-h average PM2.5 concentration lower than 35 µg·m−3.
The Level 2 standard refers to the 24-h average PM2.5 concentration lower than 75 µg·m−3.

In this paper, a total of 48 air quality monitoring stations, in 2015 and 2018, were
analyzed for the real error of PM2.5 concentration, and the average estimation errors of
48 stations in the four seasons were calculated (Figure 7). The results showed that the
estimation error fluctuated greatly between stations, and there was an obvious uneven
spatial distribution of model estimation errors. The total average error of 48 stations in
the four seasons was 4.22 µg·m−3, and the estimation error of 23 stations was greater than
the total average error. The spatial distribution of these 23 stations was further analyzed.
Among them, 15 and 8 stations in 2015 and 2018, respectively, had estimation errors greater
than the total average error, indicating that the estimation errors of PM2.5 concentrations,
at stations in 2015, were relatively large.
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RE refers to the real error of each station in the four seasons. MRE refers to the mean real error of
47 stations in the four seasons.

Generally, an error higher than 4.22 µg·m−3 is a high error site, and an error lower
than 4.22 µg·m−3 is a low error site. By analyzing the spatial locations of the 23 stations
with large estimation errors, it can be found that the stations with high errors in 2015 and
2018 were mostly distributed in Xiangtan and Zhuzhou, and the economic development of
these two cities was much slower than that of Changsha (Figure 8). The GDP of Changsha
is 2.30 times that of the sum of the GDPs of Xiangtan and Zhuzhou, and the nighttime light
area of Changsha is also much larger than that of Xiangtan and Zhuzhou. In addition, most
stations distributed in dark areas at night had larger estimation errors, which was similar
to the conclusion of Wang et al. [40]. The estimated models tended to underestimate PM2.5
concentrations in darker nighttime areas.
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In this paper, a variety of estimation models for seasonal and annual PM2.5 con-
centrations were constructed based on nighttime light images, meteorological data, and
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topographic data. Except for spring, the models achieved high estimation accuracy, but
further research is needed in terms of temporal and spatial resolution. In terms of temporal
resolution, follow-up research should be more refined to the hourly scale. Nighttime light
images, meteorological data, and topographic data can meet the requirements of this scale.
However, in terms of spatial resolution, due to too few meteorological stations, the spatial
resolution of meteorological conditions is limited. It is difficult to meet the high-precision
inversion of PM2.5 concentrations. At the same time, the spatial resolution of the nighttime
light images used in this paper is low, at only 500 m, and subsequent research should
attempt to select higher spatial resolution images.

6. Conclusions

Based on multisource data and monitoring station PM2.5 concentration data, this paper
constructed a variety of PM2.5 concentration estimation models for the Chang-Zhu-Tan
urban agglomeration. The seasonal and annual PM2.5 concentrations of the Chang-Zhu-Tan
urban agglomeration, in 2015 and 2018, were estimated, respectively, and the correlation
between characteristic factors and PM2.5 concentrations was analyzed. The results showed
that, in terms of the estimation results of the seasonal PM2.5 concentration model, the spring
estimation results were the worst, and the winter estimation results were the best. Due
to the increase in the number of samples in the annual PM2.5 concentration model, the
estimation results of the machine learning model were better than the seasonal estimation
results. In terms of the correlation of PM2.5 concentration, meteorological elements had a
greater correlation with PM2.5 concentration, followed by nighttime light radiance, and
terrain elements and PM2.5 concentration were the smallest.

This paper proposes a PM2.5 concentration estimation method based on multisource data.
At the same time, there are some limitations in multisource data fusion and continuous surface
PM2.5 concentration inversion, so further exploration is needed in subsequent research.
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