
Original Article

Corresponding author: 
Mohamed Alkafafy  
Department of Biotechnology, Faculty of Science, Taif University, Al-
Haweiah, P.O. Box 888, 21974, Taif, Saudi Arabia
Tel: +966-582696768, Fax: +966-02-7274299, E-mail: dr_alkafafy@
yahoo.com

Th is is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2011. Anatomy & Cell Biology

http://dx.doi.org/10.5115/acb.2011.44.4.284
pISSN 2093-3665   eISSN 2093-3673

Histological and immunohistochemical 
studies on the epididymal duct in the 
dromedary camel (Camelus dromedarius)
Mohamed Alkafafy1,2, Reda Rashed3, Saad Emara1, Mohamed Nada1, Amr Helal4

1Department of Cytology and Histology, Faculty of Veterinary Medicine, Minufi ya University, Sadat City Branch, Sadat City, Minufi ya, Egypt, 2Department 
of Biotechnology, Faculty of Science, Taif University, Al-Haweiah, Taif, Saudi Arabia, 3Department of Anatomy and Embryology, Faculty of Veterinary 
Medicine, Minufi ya University, Sadat City Branch, Sadat City, Minufi ya, 4Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig 
University, Zagazig, Egypt

Abstract: This study was conducted to underscore the spatial distribution of some biologically active proteins within the 
epididymal duct in the dromedary camel. Paraffi  n-embedded sections from diff erent regions of epididymis were stained by 
conventional histological techniques and by immunohistochemistry. A battery of primary antibodies against six proteins 
(S100, alpha smooth muscle actin [α-SMA], connexin-43 [Cx43], galactosyltransferase [GalTase], angiotensin converting 
enzyme [ACE], and vascular endothelial growth factor [VEGF]) were used. Th e epididymal epithelium consisted of fi ve cell 
populations: principal, basal, apical, dark, and halo cells. Th e histochemical fi ndings indicated the absence of binding sites for 
VEGF and Cx43. Th e principal cells (PCs) showed variable immunoreactivity (IR) for ACE, S100, and GalTase throughout the 
whole length of the duct. Th e apical surfaces of most PCs (at the caput) and some PCs (at the corpus) exhibited intense ACE-
IR, whereas those at the cauda displayed alternating negative and strong immunostaining. Similarly, moderate S100-IR was 
found in cytoplasm and nuclei of all PCs at the caput, few PCs at the corpus, and several PCs alternating with negative PCs 
at the cauda. In contrast, only some PCs showed weak to strong GalTase-IR in diff erent regions. Apart from negative to weak 
positive S100-IR, basal cells failed to show IR for all other proteins. Apical cells displayed strong IR for ACE, S100, and GalTase 
with some regional diff erences. Th e peritubular and vascular smooth muscle cells revealed strong α-SMA-IR in all regions. 
In conclusion, the spatial distribution of diff erent proteins in camel epididymis showed similarities and diff erences to other 
mammalian species. Th e region-specifi c topographic distribution of diff erent proteins and cell types might indicate that the 
caput and cauda are metabolically more active than that of the corpus.
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about their reproductive biology is remarkably scarce. Several 
studies have investigated the histology and histochemistry of 
the epididymal duct in different mammalian species [1-9]. 
However, data about the dromedary camel are still relatively 
limited [10-14]. 

Camels are seasonal breeders; however, information about 
their breeding season is rather contradictory [15]. As atypical 
seasonal breeders, camels exhibit spermatogenesis throughout 
the year but with a slight reduction compared to that during 

Introduction

Despite the economic value of dromedary camels, literature 
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the breeding season. Consequently, camels may maintain their 
reproductive capacity throughout the year [16]. Furthermore, 
both morphometric and histological characteristics of the 
camel epididymis show slight seasonal differences during 
rutting and non-rutting seasons [12, 13]. 

The epididymal epithelium in most mammalian species 
consists of two main cell types, principal (PCs) and basal cells 
(BCs), and two accessory cell types, apical cells (ACs) and 
intraepithelial leukocytes (IELs). However, dark cells (DCs) 
constitute a fifth cell type reported in the camel epididymis 
[12-14]. The diverse cellular populations of the epididymal 
epithelium may account for its wide range of functional 
capacity. This allows the epididymis to create regionalized 
and complicated sequential changes in the composition 
of the luminal fluid throughout its length. This helps the 
transformation of immature testicular sperm into mature 
sperm. The maturation process includes morphological 
and biochemical changes in the sperm plasma membrane 
in response to the proteins secreted by the epididymal 
epithelium. Some of these proteins are responsible for in-
ducing progressive motility and for acquiring fertilizing 
capacity [17-21].

Histochemistry is a biological approach to study the mole-
cular characterization of tissues in relation to their structural 

organization in situ [22]. In a continuing series of studies 
on the epididymal duct in diff erent mammalian species, the 
current work used immunohistochemistry to underscore 
the spatial distribution of some biologically active proteins 
within the different regions of the epididymal duct and to 
highlight the potential structural-functional relationships. A 
comparative interpretation with other mammalian species 
(Table 1) [2, 7, 9] was also considered. 

The proteins studied were carefully chosen according to 
their functional relevance; mainly absorption, secretion and 
contractility. They included angiotensin converting enzyme 
(ACE), S100, galactosyltransferase (GalTase), alpha smooth 
muscle actin (α-SMA), connexin-43 (Cx43) and vascular 
endothelial growth factor (VEGF). ACE is a membrane-
bound glycoprotein, which is detectable in all tissues and 
body fl uids of mammals [23]. It converts angiotensin I (locally 
produced by epididymal epithelial cells) into angiotensin II, 
which plays a role regulating electrolyte and fluid transport 
in the epididymis [24]. S100 belongs to a multifunctional 
subfamily of Ca2+-binding proteins that have many functions 
including motility, chemotaxis, and secretion [25]. GalTase is 
a member of a functional family of enzymes involved in the 
biosynthesis of glycoconjugate carbohydrate moieties [26]. 
α-SMA is a contractile protein mainly found in cells with 

Table 1. Immunolocalization of diff erent proteins in the epididymis in diff erent mammalian species

Proteins Regions 
Ox (2) Donkey (7) Buff alo-bull (9)

AC BC PC PMC AC BC PC PMC AC BC PC PMC

ACE Caput - + +++, SC - +++ - ++ - +++ ++ ++, SC -
Corpus - -/+ - - +++ - ++, GZ - +++ ++ - -
Cauda NF -/+ +++, SC - NF - +++, SC - +++ - - -

S100 Caput - - ++ - +++ - +++ - -/+ - +++ -
Corpus - - + - +++ - ++ - -/+ - - -
Cauda NF - - - NF - +++ ++ -/+ - - -

GalTase Caput - -/+ +++, SC, GZ - +++ + -/+++ + - - ++, GZ -
Corpus - -/+ ++ - ++ + -/++ + - - - -
Cauda NF -/+ + - NF + +++ + - - - -

α-SMA Caput - - - +++ - - - +++ - - - +++
Corpus - - - +++ - - - +++ - - - +++
Cauda NF - - +++ NF - - +++ - - - +++

Cx43 Caput - - - - - - - - - +++, BP +++, BP +++
Corpus - - - - - - - - - +++, BP +++, BP +++
Cauda NF - - - NF - - - - +++, BP +++, BP +++

VEGF Caput - - - - - ++ - - - - - -
Corpus - - - - - + - - - - - -
Cauda NF - - - NF +++ - - - - - -

Negative (-), weak (+), moderate (++), strong (+++), negative to weak (-/+), negative to moderate (-/++), negative to strong (-/+++) reactivity. AC, apical cell; BC, 
basal cell; PC, principal cell; PMC, peritubular muscle coat; ACE, angiotensin converting enzyme; SC, stereocilia; GZ, Golgi zone; NF, not found; GalTase, 
galactosyltransferase; α-SMA, alpha smooth muscle actin; Cx43, connexin-43; BP, basal part; VEGF, vascular endothelial growth factor.
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contractile function and is a valuable marker for studying 
diff erentiation of smooth muscle cells (SMCs) under normal 
and pathological conditions [27]. Connexins comprise a large 
family of trans-membrane proteins that permit intercellular 
communication [28]. VEGF is a heparin-binding growth 
factor specific to vascular endothelial cells with potent 
angiogenic capacity, which is involved in both physiological 
and pathological conditions [29]. Th is may be credited to its 
ability to increase microvascular permeability [30].

Materials and Methods

Animals and tissues 
Epididymal tissue specimens were obtained from seven adult 

clinically healthy, dromedary camels (Camelus dromedarius) 
slaughtered at the central abattoir in Cairo, Egypt. The 
epididymal duct was divided into three main parts: the caput, 
corpus, and cauda epididymis. Specimens were taken from 
each part of the epididymal duct immediately aft er slaughter. 

Chemicals and methods 
Specimens were fi xed in Bouin’s solution and in a mixture 

of methanol/glacial acetic acid (2 : 1). Bouin’s-fi xed specimens 
were used for routine histological and immunohistochemical 
staining (ACE, S100, α-SMA, and Cx43). Some proteins 
(GalTase and VEGF) could not be resolved in Bouin’s-fixed 
sections, and these specimens were fixed in the methanol/
glacial acetic acid mixture. Tissue specimens were dehydrated 
in a graded series of ethanol, cleared in xylene, embedded 
in Paraplast wax (Sigma-Aldrich, St. Louis, MO, USA) and 
sectioned at 5 μm thickness. Tissue sections were mounted 
on positively charged and coated slides (Thermo Scientific, 
Menzel-Gläser GmbH, Braunschweig, Germany).

Conventional histological techniques
Several conventional stains were used according to 

stan dard histological protocols [31] to investigate general 
histological structure. Th ese included hematoxylin and eosin, 
Masson’s and Goldner’s trichrome stains, and the periodic 
acid-Schiff  (PAS) reaction aft er McManus. 

Immunohistochemistry 
Dewaxed and rehydrated sections were subjected to inac-

tivation of endogenous peroxidases by an incubation in 1% 
H2O2 for 15 minutes. Th en, the sections were placed in 0.01 
M citrate buffer (pH 6) and heated in a microwave oven 
(700 watts) for 10 minutes for antigen retrieval. Th e sections 
were blocked in phosphate buff ered saline (PBS) containing 
5% bovine serum albumin for 1 hour, and then each section 
was incubated with its corresponding primary antibody 
(types, sources, antibody dilutions, and the duration of 
incubation are shown in Table 2) in a humidified chamber. 
The sections were washed three times in PBS for 5 minutes 
and incubated with biotinylated secondary antibodies (types, 
sources, and dilutions are shown in Table 2) for 30 minutes 
at room temperature. The sections were washed in PBS for 
10 minutes. Then, the secondary antibody was detected 
using the Vectastain ABC kit (Vector Laboratories Inc., 
Burlingame, CA, USA). First, each section was covered with a 
100× dilution of A and B reagent in PBS (1 μl reagent A, 1 μl 
reagent B, and  98 μl PBS), washed three times in PBS for 10 
minutes, and color was developed using DAB reagent (Sigma-
Aldrich). Sections were counterstained with hematoxylin 
for 30 seconds, washed in water, dehydrated through graded 
ethanol, cleared in xylene, and mounted with DPX permanent 
mounting media (Sigma-Aldrich).

Table 2. Identity, sources, and working dilutions of primary and secondary antibodies

Primary antibodies Secondary antibodies

Against Origin Source Dilution Incubation time Type Source Dilution

ACE Chicken Institute of Veterinary Anatomy, 
  LMU-Munich, Munich

1 : 500 Overnight at 4oC Biotinylated rabbit anti-chicken IgG Rockland, 
  Gilbertsville, PA

1 : 400

S100 Rabbit Dako, Hamburg 1 : 400 30 min at room temperature Biotinylated pig anti-rabbit IgG Dako, Hamburg 1 : 300
GalTase Chicken Institute of Veterinary Anatomy, 

  LMU-Munich, Munich
1 : 500 Overnight at 4oC Biotinylated rabbit anti-chicken IgG Rockland, 

  Gilbertsville, PA
1 : 400

α-SMA Mouse Dako, Hamburg 1 : 200 1 h at room temperature Biotinylated rabbit anti-mouse IgG Dako, Hamburg 1 : 300
Cx43 Mouse BD Bioscience, Heidelberg 1 : 200 Overnight at 4oC Biotinylated rabbit anti-mouse IgG Dako, Hamburg 1 : 300
VEGF Rabbit Dako, Hamburg 1 : 800 Overnight at 4oC Biotinylated pig anti-rabbit IgG Dako, Hamburg 1 : 300
ACE, angiotensin converting enzyme; GalTase, galactosyltransferase; α-SMA, alpha smooth muscle actin; Cx43, connexin-43; VEGF, vascular endothelial growth 
factor.
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Positive and negative controls
Immunohistochemical negative controls, in which the 

primary or secondary antisera or the ABC reagent was omit-
ted, produced no positive staining. Positive controls were used 
according to the instructions provided by the manufacturers 
of the primary antibodies. 

Labeling assessment and photomicrography
A semi-quantitative subjective scoring was used by three 

independent observers to assess the immunolabeling. Photo-
micrographs were taken using an imaging system consisting 
of a light microscope (Leica DM LB, Leica Microsystems, 
Wetzlar, Germany) and a digital camera (Leica EC3, Leica 
Microsystems Ltd., Heerbrugg, Switzerland). 

Results 

Histological fi ndings
A cross section of the camel epididymal duct at the ca-

put region revealed an irregular contour that varied from 
triangular to stellate-shaped lumina containing no or few 
spermatozoa (Fig. 1A). In contrast, the lumina at the cor-
pus and cauda were more regular and were generally oval 
or circular. Unlike the case in the caput region, the lumi na 
possessed many spermatozoa (Fig. 1B, D). All three epidi-
dymal duct regions were lined by pseudostratifi ed columnar 
epithelium. PCs and BCs were seen along the entire length of 
the duct (Fig. 1). Th e apical borders of the PCs had stereocilia, 
which exhibited a weak to moderate PAS reaction (Fig. 
1C). In addition to these cell types, ACs were variably seen 
in different regions of the duct (Fig. 1C, D). DCs appeared 
among the PCs as narrow, tall, and darkly stained cells, 

Fig. 1. (A) Hematoxylin and eosin (H&E)-stained section of epididymal caput displaying triangular (arrowhead) and stellate shaped (asterisk) 
lumina. (B) Trichrome-stained section of epididymal corpus showing thin lamina propria (arrowheads), pseudostratifi ed columnar epithelium 
(asterisk) provided with stereocilia (arrow). (C) Periodic acid-Schiff-stained section of corpus epididymis lined by pseudostratified columnar 
epithelium (asterisk) showing positive (longhead arrows) and negative (arrows) apical cells (ACs) and basal cells (arrowheads). (D) H&E-stained 
section of epididymal cauda showing ACs (arrowheads), flat basal cell (arrow), principal cells (longhead arrow), and peritubular muscle coat 
(asterisk). Scale bars=100 μm (A), 20 μm (B-D). 
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extending from the basement membrane to the lumen (Fig. 
1A). DCs had dark, elongated, and fusiform nuclei and were 
observed in all epididymal segments but their frequency 
increased toward the cauda. Additionally, IELs were found 
throughout the entire length of the epididymal duct. The 
epithelium contained intraepithelial glands, whose lumina 
were surrounded by simple columnar or cuboidal cells. 
Although intraepithelial glands were observed mainly in the 
distal part of the corpus, they were infrequently seen in other 
parts.

Th e epididymal epithelium was surrounded by thin lamina 
propria (Fig. 1B) and a peritubular muscle coat (PMC) of 
numerous layers of circularly and obliquely oriented SMCs. 
Th e interstitium contained loose connective tissue in which 
the epididymal blood and lymph vessels and nerve fibers 
were distributed. Many diff erent cell types were found in the 
interstitium. These cells were mainly fibroblasts as well as 
macrophages, lymphocytes, and plasma cells. 

Immunohistochemical fi ndings 
ACE: Apical surfaces of most PCs in several tubules at 

the caput of the epididymis displayed intense ACE-immu-
noreactivity (IR) (Table 3, Fig. 2A, B); however, some tubules 
expressed partial staining or were completely negative. Both 

ACs and DCs expressed variable IR ranging from negative 
to strongly positive (Fig. 2A, B). BCs were mainly negative. 
The epithelium lining the corpus region displayed variable 
IR ranging from negative to strongly positive. With the 
exception of ACs, which expressed strong ACE-IR, all other 
cell types showed variable IR ranging from negative to strong 
binding (Fig. 2C). Most tubules at the cauda epididymis 
showed moderate to strong reacting PCs alternating with 
totally negative PCs (Fig. 2D). Stereocilia expressed ACE-IR 
weakly. DCs showed variable staining ranging from negative 
to moderate IR. BCs, IELs, and stereocilia of the PCs failed to 
express any IR throughout the length of the duct. 

S100: Some tubules at the caput region displayed moderate 
S100-IR. The epithelium showed moderate and intense 
binding in PCs (cytoplasm and nuclei) and DCs, respectively. 
The PMC was moderately reactive (Fig. 3A). Other tubules 
exhibited somewhat weaker cytoplasmic IR, but the nuclei 
displayed variable reactivity ranging from negative to strongly 
intense. BC nuclei expressed negative to weak IR. Stereocilia 
of PCs, IELs, and ACs were mostly negative. At the corpus 
region, all other parameters were absolutely negative except 
for strong S100-IR expressed by PMC and some ACs (Fig. 
3B). Some tubules showed intensely positive PCs alternating 
with negatively reactive ones at the cauda (Fig. 3C). Although 

Table 3. Immunolocalization of diff erent proteins in the camel epididymis 

Proteins Region
Epididymal epithelium Interstitium 

AC BC DC IEL PC BV PMC

S100 Caput - - ++ - +/++ - ++
Corpus +/+++ - - - - - ++
Cauda -/++ - ++ - -/++ - +++

ACE Caput -/+++ - -/+++ - -/+++ ++ -
Corpus -/+++ - -/+ - -/++ ++ -
Cauda -/+++ - -/+++ - -/+++ ++ -

GalTase Caput +++ - - - +/++ ++/+++ -
Corpus ++ - - - -/++ ++/+++ -
Cauda + - - - - ++/+++ -

α-SMA Caput - - - - - +++ +++
Corpus - - - - - +++ +++
Cauda - - - - - +++ +++

Cx43 Caput - - - - - - -
Corpus - - - - - - -
Cauda - - - - - - -

VEGF Caput - - - - - - -
Corpus - - - - - - -
Cauda - - - - - - -

Negative (-), weak (+), moderate (++), strong (+++), negative to weak (-/+), negative to moderate (-/++), negative to strong (-/+++) and moderate to strong (++/+++) 
reactivity. AC, apical cell; BC, basal cell; DC, dark cell; IEL, intraepithelial leukocyte; PC, principal cell; BV, blood vessel; PMC, peritubular muscle coat; ACE, 
angiotensin converting enzyme; GalTase, galactosyltransferase; α-SMA, alpha smooth muscle actin; Cx43, connexin-43; VEGF, vascular endothelial growth factor. 
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PCs displayed negative reactivity in other tubules, many other 
strongly reactive PCs were found bordering the intraepithelial 
gland lumina (Fig. 3D). Similarly, the ACs manifested a 
reaction ranging from negative to moderately intense. 
Additionally, PMCs displayed consistent IR.

GalTase: The epithelium lining the caput epididymis 
showed mostly negative BCs and weak to moderate GalTase-
immunoreactive PCs. The apical surface of the epithelium 
presented strongly reactive ACs (Fig. 4A). Although most 
PCs at the corpus region were negative, some PCs bordering 
the intraepithelial glands expressed strong IR (Fig. 4B). 
Reactivity at the cauda was similar to that at the caput but was 
rather weaker, stereocilia of PCs, BCs, DCs, and IELs were 
negative along the length of the duct, whereas the vascular 
endothelium generally showed moderate to strong positive 
reactivity (Fig. 4A, B).

α-SMA: A consistently strong immunostaining for α-SMA 
was expressed by the peritubular and the vascular SMCs in all 

epididymal regions (Fig. 4C, D). 
Cx43: No binding sites or IR were found in any epithelial 

or interstitial structures along the duct.
VEGF: VEGF-IR was entirely absent from both epithelial 

and interstitial structures along the whole length of the duct.

Discussion

The results of the present study revealed that the epidi-
dymal epithelium in the dromedary camel, similar to the 
other species, consists of the well-known PCs, BCs, ACs, and 
IELs [2, 6, 32, 33]. Additionally, DCs were also found in the 
camel epididymal epithelium in agreement with previous 
work [12-14]. 

Th e variable regional S100-IR displayed by PCs agrees with 
previous studies in the ox [2], donkey [7], and buffalo bull 
[9] epididymis. Additionally, ACs exhibited obvious S100-

Fig. 2. Angiotensin converting enzyme-immunostained sections of epididymal (A) caput showing strongly reactive apical cells (ACs) (arrowheads) 
and sporadic negatively reactive AC (arrow); (B) caput displaying strongly positive ACs (arrow and arrowhead); (C) corpus displaying strongly 
reactive ACs (arrowheads); corpus (D) cauda presenting intensly reactive principal cells (arrowheads) alternating with negative ones. Scale bars=50 
μm (A, B, D) and 20 μm (C). 
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IR in the diff erent epididymal regions. Similar fi ndings were 
reported for buff alo bulls and the donkey, but not in the ox. 
As a multifunctional subfamily of Ca2+-binding proteins, 
S100 has a wide range of diverse functions [25]. Although the 
exact biological role of S100 in the epididymis is unknown, 
it is thought to be involved in the absorptive and secretory 
functions of the intra-testicular excurrent duct system [34]. 
Similarly, S100 may promote comparable tasks in the camel 
extra-testicular excurrent duct system. In disagreement with 
the findings reported in the epididymis from ox [2] and 
European bison [35], no S100-IR was observed in endothelia 
lining the blood and lymph vessels.

The current findings indicate that the luminal surfaces 
of the PCs showed remarkable ACE reactivity, particularly 
at the caput and cauda. ACE binding sites were localized in 
some tubules and absent in others. Th is variation may refl ect 
sub-regional functional differences. Similar results were 
reported in humans [36], ox [2], and donkey [7], but not in 

buffalo bulls [9]. In contrast, camel epididymis stereocilia 
displayed a somewhat weaker reaction. Moreover, ACs exhi-
bited a variable reaction ranging from negative to strong 
ACE binding throughout the whole length of the duct. Th ese 
findings agree with the results reported in buffalo bulls and 
donkey, but contradict the case in ox that exhibit no ACE 
reactivity in ACs. It is evident that ACE converts angiotensin I, 
locally produced by epididymal epithelium, into angiotensin 
II. Angiotensin II regulates electrolytes and fl uid transport in 
the epididymis [24]. Furthermore, the vascular endothelium, 
mainly consisting of subepithelial blood vessels, expressed 
moderate ACE reactivity. Similar findings were reported in 
epididymis from humans [36], ox [2], donkey [7], and buff alo 
bulls [9]. It is worth mentioning that endothelial ACE may 
participate in regulating vascular tone and, in turn, control 
blood fl ow [37, 38] through epididymal tissues.

PCs of the epididymal epithelium at the caput and corpus 
regions of large ruminants [2, 9] express strong to moderately 

Fig. 3. S100-immunostained sections of epididymal (A) caput displaying moderately reactive dark cells (arrowheads) and intensely stained nuclei 
of principal cells (PCs) (arrows); (B) corpus showing strongly reactive apical cells (arrow) and moderately stained peritubular muscle coat (PMC) 
(arrowheads); (C) cauda presenting intensly reactive PMC (arrowheads) and PCs (arrows) alternating with negative ones; (D) cauda presenting 
moderately reactive PMC (arrowheads) and intensely stained PCs (arrows) surrounding an intraepithelial gland (asterisk). Scale bars=50 μm (A), 
20 μm (B-D). 
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intense GalTase-immunostaining, particularly in stereocilia 
and the Golgi zone (GZ). Unlike the case in large ruminants, 
PCs in camel epididymis exhibited a different distribution 
pattern represented by a well-distinct reaction in the apical 
surfaces of only some PCs but not in the GZ or stereocilia. 
These findings agree with those reported in the donkey [7]. 
In the present work and in agreement with the findings 
reported in large ruminants, but not in the donkey, the 
epithelium lining the cauda was entirely negative. Similarly, 
ACs expressed moderate to strong GalTase-IR. Th is disagrees 
with the case in ruminants but agrees with that in the donkey, 
confirming distinct species differences. Moreover, the PCs 
surrounding the intraepithelial glands, mainly at the camel 
corpus epididymis, exhibited strong GalTase-IR. In contrast 
to large ruminants [2, 9], it seems that the PCs of the camel 
caput epididymis are not the main secretory cells, and that 
the ACs and the PCs bordering the intraepithelial glands 
might co-play such a role. Although the significance of the 

epididymal and seminal plasma GalTase activity is unknown, 
the enzyme may be implicated in glycosylation events that are 
important during gamete interaction [39]. Notably, GalTase 
belongs to a functional family of enzymes that are responsible 
for the biosynthesis of glycoprotein carbohydrate moieties 
[40]. Alterations in sperm membranes may result from the 
incorporation of glycoproteins, which are of epididymal 
origin [18, 20, 21]. 

In agreement with previous work on the epididymal duct 
in the ox [2] and buff alo bulls [9], no VEGF-IR was observed 
in epididymal epithelium of the camel. In contrast, VEGF 
is expressed in the BCs of donkey epididymis [7], in the 
BCs and certain peritubular cells in humans [41], and in rat 
[42] epididymis. This variation may be attributed to species 
differences. VEGF is an angiogenic protein implicated in 
physiological and pathological conditions [30], which may 
be due to its ability to increase microvascular permeability 
[41]. This might be of importance not only for molecular 

Fig. 4. (A) Galactosyltransferase (GalTase)-immunostained section of epididymal caput displaying strongly reactive apical cells (arrowheads). (B) 
GalTase-immunostained section of epididymal corpus showing intensely stained blood vessel (arrowhead) and strongly reactive principal cells 
(arrows) surrounding an intraepithelial gland (gl). (C, D) Alpha smooth muscle actin-immunostained section of epididymal caput and cauda 
presenting intensly reactive peritubular muscle coat (arrowheads) and vascular smooth muscles (arrows). Scale bars=50 μm (A, C, D), 20 μm (B). 
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transport but also for migration of mononuclear cells from 
blood into interstitium and, consequently, into the epididymal 
epithelium. Th e leukocytes that occur both in the interstitium 
and within the epididymal epithelium may participate in the 
induction of immune tolerance in the male excurrent duct 
system [43], preventing the initiation of an immune reaction 
against sperm.

The cytoplasm of the periductal and vascular SMCs 
showed distinct α-SMA immunostaining. This agrees with 
the findings reported in the epididymal duct from different 
mammalian [2, 7, 9, 44] and avian species [44]. α-SMA is 
very signifi cant to study SMCs diff erentiation under normal 
and pathological conditions [27]. Additionally, the periductal 
SMCs in camel epididymis displayed a variable S100-IR 
ranging from moderate (at the caput and corpus) to strong 
(at the cauda) binding. Similar findings were reported for 
the epididymis from donkey [7] and rodents [45]. These 
findings agree with those reported for myoepithelial cells 
in sweat glands [46], in periacinar myoepithelial cells, in 
periductal SMCs, in the poll gland of male camels [47], and 
in the vascular smooth muscle in European bison [35]. As 
intracellular Ca2+-binding proteins, S100 proteins exert several 
important functions regulating Ca2+ homeostasis and are the 
key molecules to transduce Ca2+ signaling by interacting with 
various kinds of target proteins in SMCs to enhance their 
contractility [25, 35, 48]. Th e movement of spermatozoa along 
the epididymal duct is aided by the contraction of peritubular 
SMCs [49]. 

Binding sites for Cx43 were not found either within the 
epididymal epithelium or in the interstitium. Similar results 
were reported for the epididymis of the ox [2]. In contrast, 
the current fi ndings disagree with those reported in rat [50], 
stallion [4] and buffalo bulls [9], which express a positive 
reaction in the epithelium. This may be another aspect of 
species variation in the function of the epididymis. 

Th e diverse cell populations in the epididymal epithelium 
of camels exhibited variable immunostaining for most pro-
teins under study. Accordingly, certain structural-functional 
relationships might be proposed for each cell type. 

Although a general name is given for the most numerous 
cell populations in the epididymal epithelium, PCs may 
perform either absorptive or secretory activities or both [51]. 
Th is notion is supported by the current fi ndings, which show 
remarkable ACE-IR on luminal surfaces of the PCs (at the 
caput and cauda), variable regional S100-IR displayed by 
PCs, and distinct GalTase-IR on the apical surfaces of some 

PCs at the caput and in PCs surrounding the intraepithelial 
glands of the camel corpus. Furthermore, PCs at the cauda 
displayed alternating IR for both ACE and S100, suggesting 
different populations of PCs with variable and probably 
complementary functional capacities. 

BCs comprise the second most frequent cell population in 
the epididymal epithelium. BCs failed to express immuno-
staining for any of the proteins under study. Though the 
func tion of BCs is unknown [52], they are assumed to be 
reserve cells [53] for epididymal epithelium renewal, but this 
assumption was disproved in previous work on the equine 
epididymis [54]. However, BCs express positive reactivity with 
antibodies that recognize intraepithelial macrophages and 
their transformation into macrophages has been postulated 
[55]. 

ACs are another type of cell encountered in the epididymal 
epithelium, yet they are relatively less frequent than PCs and 
BCs. Describing ACs with the term “apical cell” is confusing 
[56], as it has been used to designate different cell types in 
the mammalian epididymal duct including clear cells, apical 
mitochondria-rich cells, and a subgroup of PCs with apically 
located nuclei [57]. ACs have also been called narrow cells 
[58] and fl ask cells [57]. DCs are a population of cells in the 
epithelium lining the epididymal duct in the camel [12, 13]. 
DCs appear as narrow, tall, and darkly stained cells with dark, 
elongated, and fusiform nuclei. These characteristics may 
coincide with the term “narrow cell” or “fl ask cell,” describing 
some forms of ACs. Because they share expression of ACE 
and S100 with ACs, DCs might be special forms or certain 
stages of ACs. Despite several studies on ACs, the uncertainty 
of their description has delayed a better understanding of 
their structural-functional characteristics [56]. Th us, the exact 
functional significance of ACs is not yet known; however, 
they may be involved in reabsorption and acidification of 
epididymal fl uid [59]. Moreover, the strong reactivity to S100, 
ACE, and GalTase expressed by ACs in the diff erent regions 
of the camel epididymis might point to the signifi cance of this 
cell type for absorptive and secretory activities.

In conclusion, the spatial distribution of diff erent proteins 
in camel epididymis showed similarities and differences to 
other mammalian species. No binding sites could be found 
for either VEGF (similar to large ruminants) or Cx43 (similar 
to ox). Distinct binding sites for α-SMA and S100 were 
consistently evident in the periductal SMCs throughout the 
whole length of the duct. BCs failed to express any IR with 
any of the proteins under study, whereas ACs expressed 
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moderate to strong immunostaining for S100, ACE, and 
GalTase. Consequently, ACs are assumed to perform both 
absorptive and secretory activities. PCs at the cauda displayed 
probable complementary and alternating IR for both ACE 
and S100, suggesting different populations of PCs with 
variable functional capacities. 
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