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Abstract: Learning and memory require structural and functional modifications of synaptic con-
nections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-
containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by
affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene
expression by interacting with the cAMP-response element-binding protein. Accumulating evidence
indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will
review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term
potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic
plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also
discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of
synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations
of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren
syndrome, schizophrenia, and autism spectrum disorders.
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1. Introduction

Long-term modifications in the efficacy of signal transmission at excitatory synapses,
such as long-term potentiation (LTP) and long-term depression (LTD), are considered
to be the major cellular mechanisms that contribute to the plasticity of neuronal circuits
underlying learning and memory [1–6]. One of the key mechanisms for LTP and LTD
involves postsynaptic modifications, including changes in size and number of dendritic
spines, as well as synaptic trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid-type glutamate receptors (AMPARs), the principal mediators of excitatory synaptic
transmission [7–16]. In the mammalian central nervous system, most excitatory synapses
are located on small dendritic protrusions called dendritic spines, which represent the
major postsynaptic component of excitatory synapses [17,18]. Although dendritic spines
can be found in various shapes and can alter their morphology during development and
synaptic plasticity, mushroom spines with a narrow, short neck and a large distinguishable
round head represent the major form of mature spines [19,20]. In addition to mushroom
spines, spines may also exhibit other shapes, such as thin spines which lack a clear dis-
tinction between the head and neck and stubby spines, with no distinguishable neck.
Thin spines represent young, immature spines that are more likely to undergo structural
changes [17–19]. Dendritic filopodia are protrusions that are believed to actively search for
presynaptic partners to initiate neuronal connections during synaptogenesis and are consid-
ered precursors of dendritic spines [21,22]. The unique shape of the mature dendritic spine
(e.g., large head and narrow neck) is thought to be critical for compartmentalizing local
electrical and chemical signals within the spine and restricts diffusion of synaptic molecules
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out of the spines [20,23–27]. Spine changes, including spine enlargement and shrinkage,
are closely associated with LTP, LTD, and memory formation [10,13,20,28,29]. Dendritic
spines possess a dense structure called the postsynaptic density (PSD), which is enriched
in various synaptic molecules, including AMPARs and associated proteins, allowing for
the conversion of synaptic electric signals into biochemical responses to maintain basal
synaptic transmission and promote synaptic plasticity [11,17,24,30–33]. Since the actin cy-
toskeleton is the major structural component of dendritic spines, many studies have shown
that actin reorganization plays a central role in spine formation, maintenance, and dynamic
changes under both basal conditions and activity-dependent neural plasticity [31,32,34–40].
There are two distinct pools of actin filaments within the spine [41]. The stable pool, which
is mainly localized at the base of the spine head, is important for the stability of the spine
neck, whereas the dynamic pool, localized at the tip of the spine, can generate an expansive
force by actin polymerization to mediate activity-dependent enlargement of the spine [28].
As key regulators of the actin cytoskeleton, LIM-domain kinase proteins (LIMKs) play
a critical role in synaptic development and plasticity. In addition, studies suggest that
LIMK1 could regulate synaptic plasticity and memory by actin-independent mechanisms.
Abnormalities in LIMK1 signaling have been reported in multiple neurological and mental
disorders. In this review, we will focus on the roles of LIMK1, the most abundant and exten-
sively studied family member, in the regulation of the dendritic spine, synaptic plasticity,
memory, and its dysfunction in brain diseases, including Alzheimer’s disease, Parkinson’s
disease, Williams–Beuren syndrome, schizophrenia, and autism (Table 1).

Table 1. Summary of key studies on LIMK1.

Experimental Model
and Procedure Spine Properties Synaptic Function Behaviour, Learning,

and Memory Mechanism

Meng et al., 2002
LIMK1 KO mice;
cultured neurons; slices

-Reduced mature
spines
-Increased immature
spines

-Enhanced mEPSC
frequency and LTP

-Increased locomotor
activity
-Enhanced cued fear
response

-Impaired basal and
activity-induced
change of p-cofilin
-Abnormal actin

George et al., 2015
Rats; cultured neurons;
LIMK1 knockdown

-Impaired spine density
and plasticity
-Rescued by LIMK1
overexpression

N/A N/A
-Palmitoylation and
spine translocation of
LIMK1

Meng et al., 2004
LIMK2 KO; LIMK1 and
LIMK2 DK mice; slices

N/A

-Enhanced basal
synaptic transmission
and LTP in
LIMK1/LIMK2 DK
mice

N/A
-Impaired p-cofilin in
LIMK1/LIMK2 DK
mice

Meng et al., 2005
PAK3 KO mice;
cultured neurons; slices

Normal
dendritic/spine
morphology

-Normal E-LTP
-Impaired L-LTP N/A

-Normal basal level of
p-cofilin
-Impaired basal level of
pCREB

Asrar et al., 2009
PAK1 KO mice;
cultured neurons; slices

-Normal
synaptic/spine
structures

-Normal LTD
-Impaired LTP N/A

-Impaired
activity-induced
change of p-cofilin
-Abnormal actin

Boda et al., 2004
Mice; cultured slices;
PAK3 knockdown

-Increased immature
spines N/A N/A N/A

Wang et al., 2018
PAK2 KO mice; slices

-Reduced spine and
synapse density N/A N/A

-Impaired basal levels
of p-cofilin and
pLIMK1

Hayashi et al., 2004
Transgenic DN PAK;
slices

-Reduced spine density
and increased spine
size

N/A N/A N/A
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Table 1. Cont.

Experimental Model
and Procedure Spine Properties Synaptic Function Behaviour, Learning,

and Memory Mechanism

Tashiro et al., 2004
Mice; cultured slices;
inhibition of ROCK

-Reduced spine density
-Increased spine length N/A N/A N/A

Zhou et al., 2009
ROCK2 KO mice; slices

-Reduced synaptic
density
-Increased spine length

-Impaired basal
synaptic transmission
-Impaired LTP
-Normal LTD

N/A

-Impaired basal level of
p-cofilin
-Normal
activity-induced
change of p-cofilin

Shi et al., 2009
Mice; cultured neurons;
cofilin S3A and S3D
expression

-Increased immature
spines by cofilin S3A N/A N/A N/A

Rust et al., 2010
Conditional n-cofilin
KO mice; slices

-Increased spine
density, length, and
width

-Impaired L-LTP
-LTD resistance

-Impaired spatial and
fear learning and
memory

N/A

Wolf et al., 2015
Conditional
ADF/cofilin DK mice;
slices

-Reduced
synapse/spine density
-Increased spine size

-Impaired PPF -Faster
synaptic depression N/A

-Increased F/G-actin
ratio
-Impaired synaptic
actin dynamics

Todorovski et al., 2015
LIMK1 KO mice; slices N/A

-Impaired L-LTP,
rescued by PKA
activator

-Impaired spatial and
contextual fear LTM
-Rescued by PKA
activator

-Normal basal pCREB
-Impaired
activity-induced
change in pCREB

Huang et al., 2011
PAK1/PAK3 DK mice;
slices

-Reduced spine density
-Increased spine size

-Enhanced basal
synaptic transmission
-Impaired LTP
-Impaired LTD

-Increased locomotor
activity and anxiety
-Impaired spatial and
fear memory

N/A

Lunardi et al., 2018
Rats; LIMK1 inhibitor N/A N/A -Impaired contextual

fear memory N/A

Wang et al., 2013
Rats; cofilin peptides
(S3 and pS3)

N/A N/A

-Cofilin S3 and pS3
enhanced and impaired
memory extinction,
respectively

N/A

Pennucci et al., 2019
Rac1/Rac3 and Rac3
DK mice; cultured
neurons

-Reduced dendritic
spines
-Increased filipodia

N/A N/A N/A

McNair et al., 2010
RhoB KO mice

-Reduced spine density
-Increased spine size

-Reduced E-LTP
-Normal L-LTP N/A -Impaired level of

pLIMK1

Henderson et al., 2019
hAPP mice; cultured
neurons; Aβ42
treatment

-Reduced spine density
-Rescued by LIMK1
inhibitor

-Increased excitability
-Rescued by LIMK1
inhibitor

N/A
-ROCK2-LIMK1-
dependent
mechanism

Heredia et al., 2006
Mice cultured neurons;
human tissue

-Neuronal
degeneration
-Rescued by LIMK1
inhibitor

N/A N/A -Increased pLIMK1
level

Woo et al., 2015
Transgenic APP/PS1
mice; cultured neurons

-Synapse loss
-Rescued by cofilin
inhibitor

-Impaired LTP
-Rescued by cofilin
inhibitor

-Impaired fear memory
-Rescued by cofilin
inhibitor

-Increased cofilin
dephosphorylation by
Aβ42 oligomers
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Table 1. Cont.

Experimental Model
and Procedure Spine Properties Synaptic Function Behaviour, Learning,

and Memory Mechanism

Hou et al., 2012
STZ-model Rats

-Synapse loss
-Rescued by ROCK
inhibitor

N/A

-Impaired learning and
memory
-Rescued by ROCK
inhibitor

-Increased level of
p-LIMK2 and p-cofilin

Segura-Puimedon et al.,
2014
WBS-mice

-Reduced spine density -Impaired LTP
-Enhanced sociability
and visuospatial
deficits

N/A

Hoogenraad et al., 2002
Clip2 KO mice N/A -Impaired LTP -Impaired contextual

fear memory N/A

Fujiwara et al., 2006
HPC-1/syntaxin 1A
KO mice

N/A -Impaired LTP -Impaired fear LTM N/A

Gory-Fauré et al., 2021
MAP6 KO mice

-Reduced spine density
-Rescued by LIMK1
inhibitor

-Impaired LTP
-Rescued by LIMK1
inhibitor N/A N/A

Pyronneau et al., 2017
Fmr1 KO mice

-Increased immature
spine density
-Rescued by PAK
inhibitor

-Reduced mEPSC
frequency
-Rescued by PAK
inhibitor

-Impaired sensory
processing
-Rescued by PAK
inhibitor

-Increased Rac1-PAK1-
LIMK1-cofilin
signaling

2. LIM-Domain Kinases (LIMKs) and Their Regulation

LIMKs are a family of serine/threonine protein kinases that are critical for the actin
regulation [42–45]. In addition to the kinase domain at the C-terminus, LIMKs also con-
tain two LIM domains and one PDZ domain at the N-terminus [46,47]. LIM domains
can bind to the C-terminal kinase domain and negatively regulate kinase activity [48].
The LIM and PDZ domains also likely affect LIMK function through protein–protein in-
teractions [49]. LIMKs consist of two members, LIMK1 and LIMK2. Both are expressed
in multiple tissues in mammals, with LIMK1 being the most abundant in neuronal tis-
sues [42,50]. Studies have shown that LIMK1 is highly expressed within the hippocampus,
a brain region critical for learning and memory [51]. Thus, LIMK1 has been the focus
of multiple studies in the context of learning and memory. LIMKs are key effectors of
the Rho family of small GTPases (e.g., RhoA, Rac1, and Cdc42), the central mediators of
actin reorganization in various cell types in response to extracellular and intracellular sig-
nals [52–56]. However, it is important to note that LIMKs are not direct substrates of these
GTPases, and that activation of Rho proteins does not necessarily lead to the activation of
LIMKs. The Rho GTPases regulate LIMKs activity through Rho kinases (ROCKs) and p-21
activated kinases (PAKs) [52,54,57,58]. Both ROCKs and PAKs can directly phosphorylate
LIMKs at Thr 508/Thr 505 and increase their kinase activity. In addition to ROCKs and
PAKs, protein kinase A (PKA) can also phosphorylate LIMK1 at Ser 323/596 and facilitate
its kinase activity [59]. On the other hand, slingshot protein phosphatase (SSH) can directly
dephosphorylate LIMKs at Thr 508 and reduce their kinase activity [60]. In addition to ki-
nase activity, the protein level of LIMK1 is also regulated through several mechanisms such
as micro-RNA (miRNA)-mediated translation [61] and E3 ubiquitin ligase Rnf 6-dependent
proteasomal degradation [62]. Once activated, LIMKs phosphorylate actin-depolymerizing
factor, cofilin, at Ser 3 [63,64]. Phosphorylation of cofilin at Ser 3 prevents the binding of
cofilin to actin filaments, thus inhibiting filament severing and depolymerization [65,66].
In addition to cofilin, several studies have identified transcription factors as potential
targets for LIMK1 in neurons. These include cAMP response element-binding protein
(CREB) [67] and Nurr1 [68]. In the case of CREB, which regulates the expression of nu-
merous cyclic-AMP responsive genes by binding to the gene promoter cAMP-response
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elements, it was shown that the activation of LIMK1 by basic fibroblast growth factor
in immortalized hippocampal progenitor cells led to increased CREB phosphorylation
and CREB-responsive promoter activity [67]. Nurr1 is an orphan member of the nuclear
receptor family that regulates gene transcription via hormone response elements [69].
Purification of Nurr1-binding proteins from immortalized mesencephalic neurons identi-
fied LIMK1 as a binding partner, and further analysis revealed that LIMK1 phosphorylated
Nurr1 and reduced its transcriptional activity [68]. Therefore, although cofilin is the best
characterized LIMK substrate, there are multiple pathways by which LIMKs exert their
effects in neurons. This will be further discussed in later sections.

3. LIMK1 in Spine Regulation

One of the earliest studies revealing the involvement of LIMK1 in spine regulation
comes from Meng and colleagues in 2002, who generated global LIMK1 knockout (KO)
mice by homologous recombination. Although these mice showed no changes in the
gross anatomy of the CNS, including the hippocampus and cortex, where LIMK1 is highly
expressed, LIMK1 KO neurons showed abnormalities in dendritic spines and the actin
cytoskeleton [70]. LIMK1 KO hippocampal and cortical neurons had longer, thinner
immature spines compared to wild type (e.g., 70–80% of KO spines had a head/neck ratio
less than 2, whereas 70–80% of wild type spines had a ratio greater than 2). In addition,
the amount of actin filaments in the spine head of LIMK1 KO neurons were reduced
and not significantly greater than those of adjacent dendritic areas, as opposed to wild-
type neurons where actin filaments were highly enriched in the spines [70]. These data
suggest that LIMK1 is critical for the assembly of actin filaments within spines and that
abnormalities in the actin cytoskeleton underlie the abnormal spine morphology in LIMK1
KO mice. This conclusion was supported by changes in the activity of cofilin in LIMK1 KO
mice, where both basal and activity-dependent cofilin phosphorylation were reduced [70].
Consistent with the genetic study, recent studies using shRNA knockdown showed that
LIMK1, specifically LIMK1 palmitoylation at Cys 7/8, plays an important role in actin
turnover and spine regulation [71]. In this study, impairment in spine actin turnover was
detected immediately following LIMK1 knockdown in hippocampal neurons. In addition,
the chronic loss of LIMK1 resulted in spine elimination and reduced spine density by
approximately 40%. Reintroduction of wild-type LIMK1, but not a palmitoylation-deficient
mutant, rescued both actin turnover and spine density [71]. Although no changes in spine
density were detected in LIMK1 KO mice, it is possible that compensatory mechanisms
may have occurred in these mice. As discussed earlier, although LIMK1 and LIMK2 have
different expression patterns and subcellular localization, they show significant structural
and functional similarities, including protein domain organization and their ability to
regulate actin dynamics through cofilin [44,72]. Indeed, it has been shown that LIMK1
and LIMK2 double KO mice had more severe deficits in cofilin phosphorylation and
synaptic function than LIMK1 and LIMK2 single KO mice, suggesting that LIMK2 may be
able to compensate for the loss of LIMK1 [73]. Further studies are needed to investigate
this possibility.

In addition to its role in basal spine properties, LIMK1 is also required for the activity-
dependent changes in dendritic spines [71]. The knockdown of LIMK1 induced by the
focal activation of glutamate receptors using 2-photon (2P) uncaging of glutamate reduced
dendritic spine enlargement by 20% [28,71,74]. LIMK1 palmitoylation was also shown to be
required for this spine enlargement [71]. How LIMK1 regulates these spine changes during
synaptic plasticity remains unknown; however, studies have suggested that the cofilin-
dependent actin reorganization may play a key role. It has been shown that following
glutamate uncaging, cofilin underwent spine translocation and this process appears to
be regulated by cofilin phosphorylation [75,76]. Spine accumulation of cofilin and its
subsequent effect on local actin filaments may reduce the density of membrane-proximal
actin and triggers new membrane protrusions as shown in other systems [77]. Similarly, the
activation of glutamate receptors has been shown to induce accumulation and stabilization
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of LIMK1 to the juxtamembrane of the dendritic spines through a palmitoylation-dependent
mechanism [71].

Other evidence supporting the role of LIMK1 in spine regulation comes from manipula-
tions of its upstream regulators, including PAKs, ROCKs, RhoA, and Rac1. For example, al-
though PAK1 or PAK3 single KO mice showed no structural deficits in spines or synapses [78,79],
PAK1/3 double KO mice resulted in longer, thinner spines similar to the ones detected in
LIMK1 KO [70,80]. Similarly, studies using antisense and RNA interference to inhibit PAK3
activity revealed abnormalities in dendritic spines, with increased levels of filipodia-like
protrusions by approximately 500% and immature spines in rat organotypic slice culture
by more than 100% [81]. In addition, PAK2 heterozygous mice had a 30% reduction in
spine density that was associated with reduced LIMK1 and cofilin phosphorylation as well
as impaired actin polymerization in the cortex and the hippocampus [82]. Cortical neurons
in the dominant-negative PAK1 transgenic mice exhibited approximately 20% fewer spines
and an increase in the proportion of larger synapses [83] These data suggest that PAKs
regulate dendritic spines through LIMK1-dependent mechanisms. Another LIMK1 ac-
tivator, ROCK2, can also regulate dendritic spines through LIMK1 and cofilin. In one
study, using cultured mouse hippocampal slices, neurons treated with the ROCK inhibitors
Y-27632 were found to have longer spines (spine length increased by 50%), similar to
spines detected in LIMK1 KO neurons [84]. ROCK2 KO mice had reduced synaptic den-
sity (by 30%), increased spine length (by 40%), and filipodia-like protrusions, and these
spine abnormalities were associated with altered spine actin filaments and reduced cofilin
phosphorylation [85].

Numerous studies have shown that the downstream effector of LIMKs, cofilin, is in-
volved in both basal spine properties and spine plasticity [86]. For example, overexpression
of a constitutively inactive form of cofilin in hippocampal cultures led to the formation of
more mature spines and elevated spine density, whereas overexpression of a constitutively
active form of cofilin induced the formation of immature spines [87]. In cofilin conditional
KO mice, hippocampal neurons showed a small increase in synapse density (10%) and
spine size (20%) [88], and these changes were more pronounced in actin-depolymerization
factor (ADF) and cofilin-1 double KO mice [89]. Therefore, the PAK/ROCK-LIMK1-cofilin
signaling pathway may represent a key mechanism to regulate basal spine properties
and activity-dependent spine plasticity. It is important to note that the results from the
manipulations of LIMK1 upstream and downstream regulators only provided indirect
evidence that suggests the involvement of LIMK1 in spine regulation. Further studies,
such as LIMK1 rescue experiments, are needed to determine whether the effects of these
proteins are mediated by LIMK1.

4. LIMK1 in Synaptic Plasticity

Numerous studies have shown that LIMKs are involved in both LTP and LTD (Figure 1,
Table 1). Electrophysiological recordings in the hippocampal CA1 region showed that al-
though basal synaptic strength was not altered, early-phase long-term potentiation (E-LTP)
induced by high-frequency stimulation was enhanced. Importantly, the effect of actin-
depolymerizing drugs, such as cytochalasin-D, which also increased E-LTP in wild-type
mice, was attenuated in LIMK1 KO mice, suggesting that the role of LIMK1 on E-LTP is
mediated by the actin cytoskeleton [70]. No differences in enhanced E-LTP between LIMK1
KO and LIMK1 and LIMK2 double KO mice were observed [73], suggesting that LIMK2
may not play a role in E-LTP. This may be because LIMK1 is more predominantly expressed
in the hippocampus and cortex compared to LIMK2 [90]. How LIMK1 regulates E-LTP is
unclear, but studies have shown that the LIMK1/cofilin pathway affects the trafficking and
accumulation of AMPA receptors at the synapse following LTP induction [88,91].



Cells 2021, 10, 2079 7 of 24Cells 2021, 10, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 1. LIMK1 in synaptic plasticity. During LTD, the activation of NMDARs and influx of Ca2+ activates SSH. Activated 
SSH dephosphorylates and inactivates LIMK1. In addition, SSH dephosphorylates and activates cofilin, which mediates 
actin depolymerization. This results in dendritic spine shrinkage, internalization, and lateral movement of AMPARs out 
of the synapse. During E-LTP, NMDAR activation and Ca2+ influx activates LIMK1. Activated LIMK1 phosphorylates and 
inactivates cofilin, which subsequently leads to actin polymerization. Actin polymerization results in dendritic spine 
enlargement, insertion, and lateral movement of AMPARs into the synapse. During L-LTP, LIMK1 phosphorylates and 
activates CREB in the nucleus. The activation of CREB activates the transcription and the translation of plasticity-related 
proteins (PRPs) which help to maintain synaptic changes, including dendritic spine enlargement and AMPAR 
distribution. 

In addition to its impact on E-LTP, LIMK1 has been shown to regulate late-phase LTP 
(L-LTP), and this effect appears to be mediated by a cofilin-independent pathway through 
CREB activation. In 2015, Todorovski and colleagues showed that LIMK1 KO mice 
exhibited impairments in hippocampal L-LTP. However, the impairment in L-LTP was 
not mitigated by cofilin peptides designed to increase or decrease cofilin phosphorylation. 
Interestingly, deficits in L-LTP in LIMK1 KO mice were rescued by increasing CREB 
activity pharmacologically [92]. Consistent with these data, the L-LTP induction protocol 
increased CREB phosphorylation, and this activity-dependent CREB activation was 
attenuated in LIMK1 KO mice. Therefore, LIMK1 appears to play a dual role in LTP 
regulation: E-LTP through AMPAR trafficking and spine enlargement mediated by 
cofilin-dependent actin mechanisms and L-LTP through new gene expression and protein 
synthesis mediated by CREB-dependent mechanisms. How LIMK1 exerts its effects on 
CREB activation in neurons is yet to be investigated. 

The role of LIMK1 in LTP is further supported by studies on its upstream regulators, 
such as PAK [79] and ROCK [85], and its downstream target cofilin [88,91]. For example, 
it was shown that both PAK1 KO mice and PAK3 KO mice were impaired in hippocampal 
LTP [78,79]. Interestingly, L-LTP, but not E-LTP, was impaired in PAK3 KO mice, and this 
impaired L-LTP was associated with reduced CREB phosphorylation without alteration 
of cofilin phosphorylation [78]. These results suggest that the PAK3-LIMK1-CREB 

Figure 1. LIMK1 in synaptic plasticity. During LTD, the activation of NMDARs and influx of Ca2+ activates SSH. Activated
SSH dephosphorylates and inactivates LIMK1. In addition, SSH dephosphorylates and activates cofilin, which mediates
actin depolymerization. This results in dendritic spine shrinkage, internalization, and lateral movement of AMPARs out
of the synapse. During E-LTP, NMDAR activation and Ca2+ influx activates LIMK1. Activated LIMK1 phosphorylates
and inactivates cofilin, which subsequently leads to actin polymerization. Actin polymerization results in dendritic spine
enlargement, insertion, and lateral movement of AMPARs into the synapse. During L-LTP, LIMK1 phosphorylates and
activates CREB in the nucleus. The activation of CREB activates the transcription and the translation of plasticity-related
proteins (PRPs) which help to maintain synaptic changes, including dendritic spine enlargement and AMPAR distribution.

In addition to its impact on E-LTP, LIMK1 has been shown to regulate late-phase
LTP (L-LTP), and this effect appears to be mediated by a cofilin-independent pathway
through CREB activation. In 2015, Todorovski and colleagues showed that LIMK1 KO mice
exhibited impairments in hippocampal L-LTP. However, the impairment in L-LTP was
not mitigated by cofilin peptides designed to increase or decrease cofilin phosphorylation.
Interestingly, deficits in L-LTP in LIMK1 KO mice were rescued by increasing CREB activity
pharmacologically [92]. Consistent with these data, the L-LTP induction protocol increased
CREB phosphorylation, and this activity-dependent CREB activation was attenuated in
LIMK1 KO mice. Therefore, LIMK1 appears to play a dual role in LTP regulation: E-LTP
through AMPAR trafficking and spine enlargement mediated by cofilin-dependent actin
mechanisms and L-LTP through new gene expression and protein synthesis mediated
by CREB-dependent mechanisms. How LIMK1 exerts its effects on CREB activation in
neurons is yet to be investigated.

The role of LIMK1 in LTP is further supported by studies on its upstream regulators,
such as PAK [79] and ROCK [85], and its downstream target cofilin [88,91]. For example, it
was shown that both PAK1 KO mice and PAK3 KO mice were impaired in hippocampal
LTP [78,79]. Interestingly, L-LTP, but not E-LTP, was impaired in PAK3 KO mice, and this
impaired L-LTP was associated with reduced CREB phosphorylation without alteration
of cofilin phosphorylation [78]. These results suggest that the PAK3-LIMK1-CREB sig-
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naling pathway plays a role in L-LTP regulation. As expected, PAK1 and PAK3 double
KO mice had more severe deficits compared to single KO mice with abnormalities in
spines and LTP, as well as reduced brain size, neuronal complexity, and altered neuronal
excitability [80]. In addition to PAKs, ROCK2 KO mice were also impaired in basal synaptic
transmission and LTP that were accompanied by reduced cofilin phosphorylation [85].
Furthermore, in cofilin-1 conditional KO mice, where cofilin-1 is selectively deleted in
the excitatory neurons of the postnatal forebrain, decreased LTP was observed in these
neurons [88]. Therefore, the PAK/ROCK2-LIMK1-cofilin pathway is clearly important in
both hippocampal basal synaptic transmission and plasticity, but whether the effects of
PAKs and ROCK2 are mediated by LIMK1 or cofilin remains to be investigated. In addition,
how the PAKs/ROCK2-LIMK1-cofilin pathway interacts with the CREB-dependent process
to regulate L-LTP requires further investigation.

LIMK1 is also involved in the regulation of LTD through cofilin-dependent mecha-
nisms. Although NMDAR-dependent LTD induced by low-frequency stimulation (LFS)
was normal in LIMK1 KO mice [70], metabotropic glutamate receptor-dependent LTD
(mGluR-LTD) induced by paired-pulse LFS (PP-LFS) required intact LIMK1-cofilin signal-
ing [93]. mGluR-LTD induced cofilin dephosphorylation and AMPAR internalization, both
of which were dependent on the extracellular interaction between GluA2 and cadherin
and subsequent activation of Rac1. In GluA2 KO mice, mGluR-LTD was impaired, but this
impairment was rescued in LIMK1 KO mice or by manipulations to inhibit cofilin phos-
phorylation [93]. These results suggest that mGluR activation triggers GluA2-dependent
inhibition of Rac1-LIMK1 and dephosphorylation of cofilin, which facilitates AMPAR
internalization, spine shrinkage, and mGluR-LTD [93]. In support of this, mGluR-LTD
was completely abolished in PAK1 and PAK3 double KO mice [80]. Furthermore, cofilin 1
conditional KO mice showed impairments in LTD [88].

In addition to postsynaptic regulation, LIMK1 is also involved in presynaptic function.
LIMK1 KO mice exhibited an enhanced synaptic depression in response to intense neuronal
activity and an increased frequency of miniature excitatory postsynaptic currents (mEPSCs),
both of which are indicators of increased neurotransmitter release [70]. These results are
consistent with the data obtained from ADF and cofilin double KO mice, which exhibited
an enhancement in synaptic vesicle exocytosis [89,94]. Furthermore, disruption of Rho
proteins, ROCK2, and PAKs also affected synaptic vesicle exocytosis, further supporting the
presynaptic role of LIMK1 [79,80,95], but whether the effects of these upstream regulators
are mediated by LIMK1 requires more investigation. The presynaptic effects of LIMK1 may
be mediated by actin changes as pharmacological perturbations of actin dynamics rescued
the increased mEPSCs in LIMK1 KO mice [70]. This possibility is consistent with the
results obtained from other studies showing that direct disruption of the actin cytoskeleton
affected synaptic vesicle mobilization and exocytosis [34,96].

5. Mechanisms Regulating LIMK1 Activity at the Synapse

At many central synapses, the induction of LTP is dependent on postsynaptic Ca2+ in-
flux through NMDARs and subsequent activation of Ca2+-dependent protein kinases, such
as Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), and
protein kinase A (PKA) [97–99]. These signaling molecules ultimately affect the trafficking
and channel properties of AMPARs to achieve enhanced synaptic transmission [100–103].
Similarly, both NMDARs and some of the NMDAR-dependent signaling molecules in-
volved in LTP, such as CaMKII, are required for dendritic spine enlargement [28,104,105].
Induction of LTD and associated spine shrinkage are also dependent on Ca2+ influx from
NMDARs, although distinct signaling molecules such as protein phosphatases are ac-
tivated [2,3,106,107]. How is LIMK1 regulated by these NMDAR-dependent signaling
processes during synaptic and spine plasticity? Many studies have indicated that LIMK1 is
regulated by NMDARs through the Rho GTPase signaling process.

The Rho family of small GTPases (e.g., Rac1, RhoA, and Cdc42) can be activated by
NMDARs and CaMKII. For example, NMDAR activation induced activation and translo-
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cation of Rac1 to the cell surface in the CA1 region of hippocampal slices [108]. The
activity of small GTPases is modulated by guanine-nucleotide-exchange factors (GEFs)
that promote the formation of active, GTP-bound state and GTPase-activating proteins
(GAPs), which catalyze GTP hydrolysis and the formation of the inactive, GDP-bound
state [109]. It was shown that stimulation of NMDARs led to CaMKII-dependent activa-
tion of Rac1 via Kalirin, a GEF for Rac1, which was associated with rapid enlargement
of dendritic spines, synaptic delivery of AMPARs, and LTP [110]. Other studies showed
that Rac1 was activated by NMDARs through Tiam, another Rac1-associated GEF, in a
CaMKII-dependent manner [111,112]. Direct manipulations of Rac1 affect spine density
and morphology. For example, overexpression of either Rac1 or Rac3 increased spine num-
ber [113,114]. Double KO of Rac1 and Rac3 inhibited the formation of dendritic spines and
increased filopodia-like spines, similar to the genetic deletion of LIMK1 [114]. Similarly, the
activity-dependent activation of RhoA was shown to require NMDARs and Rho-associated
GAP p250 [115]. Moreover, RhoB KO mice showed reduced LTP and altered spine mor-
phology, and these changes were accompanied by decreased phosphorylated LIMKs in the
hippocampus [116]. These data suggest that LIMK1 is activated by NMDARs through Rho
GTPases during spine and synaptic plasticity.

In addition to glutamate receptors, other neuronal surface proteins and receptors have
also been shown to regulate the actin cytoskeleton and dendritic spines through LIMK1-
dependent mechanisms. For example, neuroligin (NLG1), a postsynaptic cell adhesion
molecule, regulates spine density and synaptic plasticity through LIMK1-cofilin mediated
actin remodeling [117]. It was shown that neuronal activities induce proteolytic cleavage
of NLG1 and the release of its C-terminal domain (CTD), which then interacts with den-
dritic spine-associated Rap GTPase activating protein (SPAR), activates Rac1, and increases
phosphorylated-cofilin. Importantly, the effects of the NLG1 CTD on cofilin phosphoryla-
tion, spine enlargement, and synaptic plasticity are eliminated in LIMK1/2 double KO mice,
suggesting a central role of LIMK1/2 in these processes [117]. In addition, growth factors
and their receptors regulate spine growth and synaptic function through LIMK1-dependent
mechanisms. For example, overexpression of neuregulin1 (NRG1), an epidermal growth
factor, in cultured hippocampal neurons and in transgenic mice, reduced spine density
and frequency of mEPSCs through the activation of LIMK1 and subsequent inactivation
of cofilin [118]. Brain-derived neurotrophic factor (BDNF), is another growth factor that
induces translational upregulation of LIMK1 in the dendrites, modulates the activity of
cofilin, and enhances dendritic spine growth. The effect of BDNF is mediated by relieving
the miR134-dependent repression of LIMK1 mRNA translation [61,119]. Another important
regulatory pathway to regulate LIMKs involves type II bone morphogenic protein receptor
(BMPRII). In rat primary cortical neurons, BMPRII interacts with LIMK1 [120] and affects
dendritic growth [121] and influences synaptic stability in Drosophila [122]. Other receptors
that regulate dendritic spines through the LIMK1 signaling pathway include ephrin recep-
tors. In hippocampal neurons, the activation of EphB receptors affects RhoA activity and
cofilin-mediated dendritic spine remodeling [123] and this requires ROCK and LIMK1 [87].
Hormones can also regulate dendritic spines through the LIMK1 signaling pathway. In the
hippocampus, estrogen can induce remodeling of the actin cytoskeleton and spines by
rapid activation of LIMK1 [124–126] and blocking the LIMK1-cofilin pathway eliminates
the effects of estrogen on spines and LTP [127–129]. In summary, these data suggest that
LIMK1 acts as a converging point for multiple signaling pathways to regulate spines and
E-LTP through cofilin-dependent actin reorganization (Figure 2). The signaling pathways
that regulate LIMK1 and CREB during L-LTP remain largely unexplored, although studies
suggest that they may involve PKA and mitogen-activated protein kinase (MAPK), key
signaling molecules critical for CREB activation and L-LTP [130]. Both PKA and MAPK
have been shown to directly or indirectly affect LIMK1 activity [59,131]. Further studies
are required to investigate how these signaling pathways regulate LIMKs.
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6. LIMK1 in Memory

LTP and LTD are regarded as key mechanisms for learning and memory [1,3,4,6].
The demonstrated role of LIMK1 in these forms of synaptic plasticity suggests that LIMK1
is important in memory, which is supported by several studies. For example, LIMK1
KO mice have enhanced cued fear response in fear conditioning and impaired spatial
learning [70]. Similarly, intra-hippocampal administration of a LIMK inhibitor interfered
with contextual fear memory acquisition, consolidation, retrieval, and reconsolidation
without affecting memory extinction [132]. Furthermore, LIMK1 KO mice were impaired
in long-term spatial and fear memory [92], which is consistent with the role of LIMK1 in
L-LTP, as discussed earlier. How LIMK1 affects these different forms of memory is unclear,
but it may be related to the fact that LIMK1 can regulate multiple synaptic and molecular
processes as discussed above. Indeed, pharmacological manipulations of the PKA-CREB
signaling pathway, but not of cofilin activity, was able to improve long-term memory per-
formance in LIMK1 KO mice, suggesting that the CREB-dependent mechanism and L-LTP
may be particularly important in mediating the effect of LIMK1 in long-term memory [92].
Other mechanisms, including LTD and spine plasticity, as discussed above, may play a role
in other forms of memory. Further studies are needed to address these possibilities.

Other indirect evidence supporting the importance of LIMK1 in memory comes
from studies on LIMK1 upstream and downstream proteins. Impaired learning and
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memory have been documented for mice lacking PAK1/2/3, ROCK2, Rho GTPases, and
cofilin [80,86,133,134]. For example, PAK1 and PAK3 double KO mice had profound
deficits in fear conditioning memory that were associated with LIMK1-cofilin changes [80].
Expression of dominant-negative PAK3 in the entorhinal cortex impaired social recognition
memory [135]. Pharmacological inhibition of ROCK2 in the lateral amygdala prior to train-
ing significantly impaired long-term memory during fear conditioning [133]. Inhibition
of cofilin activity impaired contextual fear memory extinction in rats [86,88,134,136]. It is
important to determine whether the memory deficits in these mice are related to LIMK1.

7. LIMK1 in Brain Diseases

Given the role of LIMK1 in the regulation of actin dynamics, dendritic spines, synaptic
plasticity, and learning and memory, it is not surprising that deficits in LIMK1 are im-
plicated in a wide range of brain disorders [137]. These conditions include Alzheimer’s
disease, Parkinson’s disease, Williams–Beuren syndrome, schizophrenia, and autism spec-
trum disorders. The role of LIMK1 in these diseases will be discussed briefly below.

7.1. LIMK1 in Alzheimer’s Disease

Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative condition
characterized by cognitive impairment and memory loss [138,139]. The accumulation of
extracellular β-amyloid (Aβ) peptides into senile plaques and neurofibrillary tangles of
hyperphosphorylated tau are two pathological hallmarks in AD brains [138,140,141]. In the
brain, Aβ results from the proteolytic processing of the amyloid precursor protein (APP)
and it has been proposed that the accumulation of toxic Aβ42 plays a major role in the im-
pairment of cognitive functions [141,142]. How Aβ peptides lead to cognitive impairments
remains unclear but synapses appear to be a major target underlying dementia [143,144].
Loss of dendritic spines, synapses, and synaptic proteins have been widely reported in ani-
mal models of AD [145,146], as well as postmortem brain tissues from AD patients [145,146].
Given the role of the actin cytoskeleton in mediating changes in dendritic spines and synap-
tic plasticity, multiple studies reported abnormalities in actin networks and underlying
regulatory processes [147,148]. For example, a recent study found that Aβ42 peptides
induced spine degeneration and neuronal hyperexcitability through LIMK1-dependent
mechanisms in rat hippocampal neurons [149]. It was shown that Aβ42 oligomers induced
activation of ROCK2 and LIMK1, and that ROCK2 and LIMK1 activity were increased
in hAPPJ20 transgenic mice [149,150]. Importantly, pharmacological inhibition of LIMK1
rescued Aβ-induced spine loss and morphological aberrations in the hippocampus [149].
In addition to synaptic effects, it was shown that treatment of rat hippocampal neurons
with high levels of fibrillar Aβ (fAβ) induced LIMK1-mediated cofilin phosphorylation,
neuritic dystrophy and neuronal cell death, and that inhibition of cofilin phosphoryla-
tion prevents neuronal degeneration [151]. Similarly, immunostaining analysis of brain
tissues from AD patients showed a significant increase in the number of phosphorylated
LIMK1-positive neurons in areas affected with AD pathology [151]. In support of this,
several studies also showed elevated levels of inactive phosphorylated cofilin brain tissues
from AD patients and mouse models [152–154]. Aβ42 oligomers also induced LIMK1
activation through Rac1 and Cdc42 and subsequent activation of PAK1 [155]. Although
increased LIMK1 activity is associated with AD, both activation and inactivation of cofilin
are observed in AD. For example, Aβ42 oligomers promoted cofilin dephosphorylation in
the hippocampus-derived HT22 cell line and primary cortical neurons [156] and reducing
cofilin activity rescued Aβ42-induced synaptic protein loss, as well as deficits in LTP and
contextual memory in APP/PS1 mice [156]. Aβ42-induced spine loss can be blocked by
expression of constitutively inactive cofilin (S3D) [157]. These results suggest that increased
LIMK1 activity in AD brains may serve as a compensatory mechanism to reduce cofilin
activation caused by other changes, such as cofilin phosphatases SSH. Indeed, it was
shown that Aβ42-induced cofilin dephosphorylation in the HT22 cell line was mediated
by β1-integrin, a cell receptor important in the maintenance of synapses [158], and the
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subsequent activation of SSH [156]. Thus, the balanced action of LIMK1 and SSH critical
for cofilin regulation may be particularly venerable to Aβ42 effects. In addition to LIMK1,
LIMK2 also seems to be involved in AD. Injection of streptozotocin in rats led to inhibition
of the neuronal insulin receptor and induced an AD-like phenotype and these effects were
associated with increased phosphorylated LIMK2, degeneration of synaptic structures, and
memory deficits [159]. Importantly, the effect was abolished by fasudil hydrochloride, a
ROCK inhibitor [160], suggesting a role of the ROCK2–LIMK2 pathway. Taken together,
these results suggest that dysregulated Rho GTPase–LIMKs-cofilin pathway contributes
to the spine, synaptic, and memory deficits of AD and, therefore, targeting this pathway
may provide a therapeutic strategy to preserve synaptic function and cognition in AD
patients [149,161,162].

7.2. LIMK1 in Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
motor dysfunctions including tremor at rest, rigidity, akinesia (or bradykinesia), and postu-
ral instability [163,164]. These pathological symptoms result from the progressive loss of
dopaminergic neurons primarily from the substantia nigra pars compacta, the aggregation
of α-synuclein in cellular inclusions, and the formation of Lewy bodies in the substantia
nigra [165,166]. Studies of the brains of PD patients and animal models have demon-
strated that motor deficits are associated with dendritic atrophy, reduced spine density,
and abnormal spine morphology in the medium spiny neurons in the striatum [146,167].
In neurotoxin-induced rodent and primate PD models, a marked decrease in the number
of spines and alterations in spine head volume in striatal neurons were reported [168,169].
Using the A53T α-synuclein transgenic mouse, a model for early stages of PD showing
hyposmia and rapid eye movement sleep behaviour disorders without obvious motor
dysfunction, it was demonstrated that thin-type, immature spines were more prevalent
compared to WT mice [170]. These data suggest that synaptic impairment occurs during
early stages of PD pathology. In addition to the striatum, changes in dendritic spines and
synapses were also reported in other brain regions such as the hippocampus [171] and
the olfactory bulb [172]. Several studies demonstrated the involvement of LIMK1 in PD.
In 2007, Lim and colleagues showed that Parkin, whose mutations are associated with
loss of neurons in PD [173], interacts with LIMK1. Parkin ubiquitinates LIMK1 in human
dopaminergic neuronal BE(2)-M17 cells but not in HEK cells, suggesting tissue-specific
regulation. Furthermore, Parkin reduces LIMK1-mediated cofilin phosphorylation and
assembly of actin filaments [174]. Thus, Parkin mutations may contribute to impairments in
spines and synaptic function through LIMK1-dependent mechanisms. Leucine-rich repeat
serine/threonine-protein kinase (LRRK), another key player in PD [175,176], also interacts
with and regulates LIMK1. It was shown that increased kinase activity of LRRK2 reduced
neurite outgrowth, whereas LRRK2 deficiency increased neurite length and branching
in primary neuronal cultures and in the rat brain [177]. These findings, combined with
evidence for high levels of LRRK2 expression in striatal neurons [178] and involvement
of LRRK2 in the formation of actin-enriched precursors of dendritic spines during neural
development [179], suggest that LRRK2 may contribute to spine deficits through actin
regulation. Indeed, it was shown that mutant LRRK2 led to abnormal synaptogenesis
and synaptic transmission through LIMK1-cofilin signaling [179]. α-Synuclein is another
protein reported to accumulate within Lewy body in PD and shown to regulate LIMK1
signaling. In culture neurons, α-synuclein activated a signaling cascade resulting in cofilin
inactivation, stabilization of actin filaments, and axonal and synaptic integrations through
the Rac1-LIMK pathway [180]. In addition, increased cell death and reduced survival of
newborn neurons in synuclein transgenic animals may be due to an altered actin cytoskele-
ton and LIMK1 [171]. These studies suggest that LIMK1-cofilin mediated dysregulation of
actin dynamics contributes to early deficits in synaptic structure and function that precede
neurodegeneration in PD.
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7.3. LIMK1 in Williams–Beuren Syndrome (WBS)

WBS is a developmental disorder that affects multiple body systems. Genetically,
it is caused by a hemizygous deletion of 1.5–1.8 Mb on the chromosome 7q11.23 [181].
Patients affected by WS are characterized by dysmorphic facial features alongside infantile
hypercalcemia and abnormalities in connective tissue [182]. Neurologically, individuals
with WBS are overly social and have well-developed linguistic skills but severe deficits
in learning abilities and visuospatial cognition [182]. Brain anatomy and structure are
also affected in WBS. For example, reduction in overall brain and cerebral volume and
abnormal distribution of white and grey matter were reported in WBS patients [183–185].
Abnormalities in the structure and the function of the amygdala, hippocampus, and
cerebral cortex have also been described [183,186,187]. Depression of hippocampal energy
metabolism and synaptic activity suggested an abnormal functionality of the hippocampus
in WBS [186]. Alterations in brain structure and function have also been reported in
different WBS mouse models [188–191]. For example, mice with the complete deletion
(CD) that mimic the most common and recurrent deletion found in WBS patients, showed
a significant reduction in brain weight, hippocampus volume, and cellular density of the
amygdala [191]. These CD mice presented with many features similar to WBS, such as
growth deficiency, craniofacial, and cardiovascular abnormalities, and several behavioural
alterations including hypersociability and visuospatial deficits [191]. The fact that these
mice have deficits in hippocampal dendritic spines and LTP suggests that these synaptic
alterations may underlie the cognitive deficits associated with WBS [191,192].

The neurological phenotypes of WBS could be attributed to the deletion of several
genes, including LIMK1, Stx1a, and Clip2 [193]. For example, KO mice of LIMK1, Stx1a,
and Clip2 all presented impairments in hippocampal LTP and memory deficits during the
contextual fear conditioning test [70,92,194,195]. The fact that only LIMK1 KO mice showed
impairments in spatial learning and memory suggests that LIMK1 may be specifically
linked to the visuospatial deficits in WBS [70,92,196]. In addition, it was shown that LIMK1
heterozygous mice, which lack only one copy of the LIMK1 gene, as occurred in WBS
patients, were also impaired in long-term, but not short-term, memory [92]. These results
are consistent with selective impairments in long-term memory associated with WBS, and
suggests that LIMK1 is a direct cause of visuospatial memory deficits of this disorder.
It remains to be investigated whether LIMK1 KO mice have altered social behaviour as
shown in WBS patients. In addition, further experiments are needed to determine whether
the synaptic and circuit abnormalities found in LIMK1 KO mice also exist in WBS brains and
whether restoration of these abnormalities is able to improve neurological and cognitive
deficits in WBS patients.

7.4. LIMK1 in Schizophrenia

Actin-based neuronal and synaptic defects including spines and synaptic plasticity are
also landmarks of psychiatric disorders, including schizophrenia [197–199]. For example,
proteins encoded by genes linked to schizophrenia, such as dysbindin, disrupted one in
schizophrenia (DISC1) and collapsin response mediator proteins (CRMPs) were found to
localize with and regulate the actin cytoskeleton in neurons [200–203]. In addition, NRG1,
whose gene mutations are linked with increased susceptibility to schizophrenia [204,205],
affects dendritic spines and synaptic function through interacting and regulating LIMK1
signaling [117,118]. For example, NRG1 transgenic mice, which mimic high levels of
NRG1 in excitatory neurons of forebrain in schizophrenic patients, exhibited increased
LIMK1 activity and reduced spine density, and pharmacological inhibition of LIMK1
rescued spine density [118]. In patients with schizophrenia, the expression of LIMK1 was
dysregulated [206,207], which makes LIMK1 a potential target for therapeutic interventions.
For example, through pharmacological inhibition of LIMK1 using Pyr1, it was shown that
the synaptic and behavioural deficits, including reduced spine density, impaired LTP,
social withdrawal and anxiety-like behaviour in MAP6 KO mice (an animal model of
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schizophrenia), were rescued [208]. Whether manipulations of LIMK1 signaling pathway
have an effect in other animal models of schizophrenia remains to be examined.

7.5. LIMK1 in Autism Spectrum Disorders

Autism spectrum disorders (ASD) are complex neurodevelopmental conditions char-
acterized by impairments in social interaction, speech, and non-verbal communication,
as well as repetitive and stereotyped behaviours [209,210]. Several genetic syndromes
are known to have significant associations with ASD. A prominent example is fragile X
syndrome (FXS), the most prevalent single-gene-linked intellectual disability with high in-
cidence of autism [211]. It is caused by mutation in the fragile X mental retardation 1 (fmr1)
gene on the X chromosome. Fragile X mental retardation protein 1 (FMRP1), the product of
the fmr1 gene, is an RNA-binding protein that plays a key role in the translational regula-
tion of various mRNAs, many of which are involved in the development and maintenance
of dendritic spine morphology and synaptic plasticity [212–215]. Multiple studies sug-
gest that FXS and ASD may share common molecular and cellular mechanisms [215–218].
In particular, dysregulations of the synaptic actin cytoskeleton, spine morphology, and
synaptic plasticity were commonly observed in both ASD and FXS [219–221]. Analysis of
postmortem brain samples showed a higher spine density in cortical neurons from ASD
patients [222]. In addition, disrupted actin regulation at glutamatergic synapses has been
reported in various animal models of ASD, and in some cases identified as the underlying
cause of ASD-related behavioural phenotypes [223–225]. Similarly, several studies have
shown that the brain of FXS patients and FMR1 KO mice exhibited abnormal dendritic spine
density and morphology [226–228]. In line with its function in regulation of the synaptic
actin cytoskeleton, considerable evidence suggests that Rac1-PAK-LIMK1 signaling is a
point of convergence of several known risk genes linked to ASDs and FXS. Mutations in
the Rac1 gene were detected in ASD patients and disruption of Rac1 signaling was shown
to contribute to ASD-like behaviours in animal models [224,229,230]. ASD-related aberrant
Rac1 activation led to increased spine density [220] and changes in glutamatergic synaptic
transmission [230]. Similarly, Rac1 levels/activity were increased in FXS patients [231] and
in FMR1 KO mice [232]. In addition, PAKs have been implicated in ASD and FXS [82,233].
Rac1-PAK1-LIMK1-cofilin signaling was increased in the somatosensory cortex of FMR1
KO mice and overexpression of constitutively active cofilin or PAK inhibition rescued aber-
rant spine morphology and density in the somatosensory cortex of FMR1 KO mice [220].
A recent study suggested that a defect in activity-dependent regulation of cofilin activity
and local translation of cofilin mRNA in dendrites may underlie the impairments in struc-
tural and functional plasticity in FMR1 KO mice [234]. PAK2 haplo-insufficiency has also
been reported in ASD patients and PAK2 heterozygous mice exhibited a marked decrease
in synapse density and impaired LTP, as well as autism-relevant behaviours that were
related to reduced activity of LIMK1 and subsequent activation of cofilin [82]. In FXS
patients, the full-length isoform of bone morphogenetic protein type II receptor (BMPR2)
was abnormally high and heterozygosity for BMPR2 or pharmacological inhibition of
LIMK1 reduced the density of immature spines and restored synaptic function in FMR1 KO
mice [235,236]. Taken together, these studies suggest that LIMK1 may serve as a converging
point of aberrant processes associated with ASD and FXS and, therefore, could be used as a
therapeutic target.

8. Concluding Remarks

In summary, accumulating evidence indicates that LIMK1/2 are a common effector of
many signaling pathways in the brain. Through their effects on cofilin and transcription
factors, LIMK1/2 regulate actin reorganization, spine properties, synaptic plasticity, and
memory formation (Figures 1 and 2, Table 1). In addition, changes in LIMK signaling,
including upstream regulators and downstream targets, are widely reported in brain
disorders and in some cases, manipulations of LIMK1 improve synaptic and behavioural
functions associated with these disorders. However, despite this progress, several issues
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remain to be addressed. (1) Is the subcellular distribution of LIMK1 regulated by synaptic
activity? Although it has been shown that cofilin is dynamically regulated within spines
during LTP and LTD, whether and how LIMK1 is also translocated to the spines during
these processes remains to be determined. (2) How LIMK1 regulates CREB to control
L-LTP and memory? It would be important to determine whether LIMK1 is transported
to the nucleus and if so, how this process is regulated during synaptic plasticity and how
it is related to cofilin. It is interesting to note that LIMK1 contains a nuclear localization
motif within its kinase domain and its nuclear translocation has been reported in other cell
types [237,238]. (3) How LIMK1-mediated actin dynamics are associated with and affect
behaviour in living animals? In this respect, photoactivatable cofilin and Rac1 may be used
to rapidly stimulate the LIMK-cofilin signaling pathway, although Rac1 activation is not
specific to this pathway. (4) What is the translational potential to treat brain disorders by
manipulating LIMK1? To facilitate this, detailed analysis of LIMK1 changes in various
brain regions and cell types is necessary. It is expected that a better understanding of LIMK
signaling pathways will not only provide important insight into synaptic structure and
function, but also the treatment of related brain diseases.
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