
been annotated in the genome of P. aeruginosa (Williams et al., 2007). 
P. aeruginosa has five terminal oxidases that catalyze the four-electron 
reduction of molecular oxygen to water (Matsushita et al., 1982, 1983; 
Fujiwara et al., 1992; Cunningham and Williams, 1995; Cunningham 
et al., 1997; Stover et al., 2000; Comolli and Donohue, 2002, 2004). 
Three of them are cytochrome c oxidases that receive electrons via 
the cytochrome bc

1
 complex and c-type cytochromes. The other two 

are quinol oxidases that receive electrons directly from ubiquinol 
(Figure 1). The respiratory chain is also branched to the denitrifica-
tion enzymes that reduce nitrogen oxides. These alternative respira-
tory branches enable P. aeruginosa to grow under anaerobic conditions 
in the presence of nitrate or nitrite (Zumft, 1997). P.  aeruginosa also 
has the ability to ferment arginine and pyruvate anaerobically. A fun-
damental understanding of the respiratory systems and the physiology 
of aerobic and anaerobic energy metabolism would be necessary for 
better comprehension of the ubiquity and pathogenicity of P. aerugi-
nosa. Some excellent reviews on the aerobic and anaerobic respiration 
of P. aeruginosa are now available (Williams et al., 2007; Schobert and 
Jahn, 2010; Schobert and Tielen, 2010). This article will additionally 
focus on some recent information on the transcriptional regulation 
of the aerobic and anaerobic respiratory genes.

Multiple terMinal oxidases for aerobic respiration
Pseudomonas aeruginosa has five terminal oxidases for aerobic res-
piration (Figure 1; Matsushita et al., 1982, 1983; Fujiwara et al., 
1992; Cunningham and Williams, 1995; Cunningham et al., 1997; 

introduction
The opportunistic pathogen Pseudomonas aeruginosa has a remark-
able ability to grow under a variety of environmental conditions, 
including soil and water as well as animal-, human-, and plant-host-
associated environments. It is responsible for severe nosocomial 
infections in immunocompromised patients. In particular, it causes 
life-threatening chronic lung infection in patients with the inher-
ited disease cystic fibrosis (CF; Lyczak et al., 2002). The genome of P. 
aeruginosa is relatively large (6.3 Mb) and carries a large number of 
genes for utilization of various carbon sources, energy metabolisms, 
and regulatory systems, which might contribute to the environmental 
adaptability of this bacterium (Stover et al., 2000). The main energy 
producing system of P. aeruginosa is respiration, which utilizes a pro-
ton motive force for ATP synthesis. In the case of eukaryotic respira-
tion in mitochondria, the electron transfer pathway consists of four 
complexes, NADH dehydrogenase (complex I), succinate dehydro-
genase (complex II), a cytochrome bc

1
 complex (complex III), and a 

cytochrome c oxidase (complex IV). Protons are pumped across the 
membrane during electron transfer through complexes I, III, and IV, 
producing the proton gradient. On the other hand, P. aeruginosa as 
well as many other bacterial species use a variety of electron donors 
and acceptors for respiration and therefore have far more complex 
and flexible electron transfer pathways. At least 17 respiratory dehy-
drogenases that are predicted to be responsible for feeding electrons 
from respiratory substrates into the quinone pool, including three 
types of NADH dehydrogenases and a succinate dehydrogenase, have 
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Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil 
and water as well as animal-, human-, and plant-host-associated environments. The ubiquity 
would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched 
respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five 
terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of 
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Stover et al., 2000; Comolli and Donohue, 2002, 2004). Three of 
them, the cbb

3
-1 oxidase (Cbb3-1), the cbb

3
-2 oxidase (Cbb3-2), 

and the aa
3
 oxidase (Aa3), are cytochrome c oxidases. The other 

two, the cytochrome bo
3
 oxidase (Cyo) and the cyanide-insensitive 

oxidase (CIO), are quinol oxidases. These terminal oxidases are 
expected to have their specific affinity for oxygen, efficiency of 
proton-translocation, and resistance to various stresses such as 
cyanide and reactive nitrogen species. We have constructed five 
kinds of quadruple mutant strains, which lack four out of the five 
terminal oxidase gene clusters, and used them to characterize the 
features of each terminal oxidase (unpublished data). The K

m
 val-

ues of Aa3, CIO, and Cyo for oxygen were high, whereas those of 
Cbb3-1 and Cbb3-2 were one order lower than those of the other 
three terminal oxidases, indicating that Aa3, CIO, and Cyo are low 
affinity enzymes and Cbb3-1 and Cbb3-2 are high affinity enzymes. 
The analysis of the proton-pumping activity (H+/O ratio) using 
the quadruple mutant strains showed that the electron transport 
complex terminated by Aa3 has the highest efficiency to create a 
proton gradient across the cell membrane, whereas that by CIO has 
the lowest efficiency. Carrying multiple terminal oxidases of such 
different characteristics and the differential use of them under dif-
ferent conditions must contribute to the ubiquity of P.  aeruginosa 

in various environmental niches. Two redox-responsive transcrip-
tional regulators, ANR (anaerobic regulation of arginine deiminase 
and nitrate reduction) and RoxSR, mainly regulate the expression 
of the terminal oxidase genes. ANR is a direct oxygen sensor and 
functions as a global regulator for anaerobic gene expression of P. 
aeruginosa (Zimmermann et al., 1991). RoxSR is a two-component 
transcriptional regulator consisting of the membrane-bound sensor 
kinase RoxS and the response regulator RoxR. RoxSR corresponds 
to PrrBA of Rhodobacter sphaeroides and RegBA of Rhodobacter 
capsulatus, which are the principal regulators controlling the 
expression of the genes for photosynthesis, carbon dioxide fixation, 
nitrogen fixation, and hydrogen metabolism, as well as numerous 
other functions in these purple photosynthetic bacteria (Dubbs 
and Tabita, 2004; Elsen et al., 2004; Eraso et al., 2008). The function 
and regulatory features of each terminal oxidase of P. aeruginosa 
are described below and in Figure 2.

the cytochroMe cbb3 oxidases
 The cbb

3
-type cytochrome c oxidase is phylogenetically the most 

distant member of the heme–copper oxidase superfamily and exclu-
sively found in bacteria (Pitcher and Watmough, 2004). The X-ray 
structure of the enzyme from Pseudomonas stutzeri was reported 
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Figure 1 | Branched respiratory chain of P. aeruginosa. Under aerobic 
conditions, oxygen is utilized as a terminal electron acceptor and reduced to 
water by five terminal oxidases. Two quinol oxidases, the bo3 oxidase and the 
cyanide-insensitive oxidase, receive electrons directly from quinol. Three 

cytochrome c oxidases, the aa3 oxidase and the two cbb3 oxidases, receive 
electrons via the cytochrome bc1 complex and c-type cytochromes or a small 
blue-copper protein azurin. Under anaerobic conditions, electrons are transferred 
to nitrogen oxides via the denitrification enzymes.

cbb3-2 (cco2)

cbb3-1 (cco1)

bo3 (cyo)

aa3 (cox)

CIO (cio)

ANR

RpoS

Fur

RoxSR

Upregulation conditionsRegulators Terminal
oxidases

Nutrient starvation

Constitutive

Low O2, Stationary phase

Cyanide, Copper starvation,
Inhibition of other oxidases

Iron starvation

Low O2

Redox 
status?

Stationary
phase

Iron

Affinity
for O2

High

High

Low

Low

Low

Sensing
signals

Figure 2 | Schematic model of the regulatory network controlling the multiple terminal oxidases in P. aeruginosa. The sensing signals for the regulators are 
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Inhibition is indicated by bars with dotted lines.
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to be the dominant oxidase, especially under the normal aerobic 
growth conditions at exponential phase in LB medium. Disruption 
of the cco1 genes slightly affected the aerobic growth (Comolli and 
Donohue, 2004; Alvarez-Ortega and Harwood, 2007). Mutation 
of the cco1 genes also showed a small colony phenotype (Schurek 
et al., 2008). In contrast, the cco2 genes for Cbb3-2 were upregu-
lated under low oxygen conditions or at the stationary phase. The 
expression level of Cbb3-2 surpassed that of Cbb3-1 under those 
induced conditions (Kawakami et al., 2010). ANR is involved in 
the transcriptional activation of the cco2 genes under low oxygen 
conditions (Comolli and Donohue, 2004; Kawakami et al., 2010). 
The induction of the cco2 genes at the stationary phase likely 
occurred because the oxygen concentration in the medium was 
depleted to the level that induces the activation by ANR. RoxSR is 
also involved in the induction of the cco2 genes (Kawakami et al., 
2010). A similar RoxSR-dependent regulation was also reported in 
the case of cco1 (corresponding to cco2 of P. aeruginosa) in P. putida 
(Fernández-Piñar et al., 2008). A cco1 cco2 double mutant of P. 
aeruginosa showed very slow growth under a 2% oxygen condition 
and failed to grow under a 0.4% oxygen condition (Alvarez-Ortega 
and Harwood, 2007). These results indicate that Cbb3-1 plays a 
primary role in aerobic growth irrespective of oxygen concentra-
tion and that Cbb3-2 plays a compensatory or supplementary role 
under the oxygen-depleted conditions.

the cytochroMe aa3 oxidase
The aa

3
-type cytochrome c oxidase is a major member of the 

heme–copper oxidase superfamily and is distributed in a wide 
range of bacteria. This type of heme–copper oxidase enzyme is 
closely related to the mitochondrial terminal oxidase and has a 
high proton-pumping activity. The aa

3
-type oxidases have low 

affinity for oxygen and usually play a dominant role under high 
oxygen conditions in many bacteria, such as P. denitrificans, B. 
japonicum, R. sphaeroides, and Bacillus subtilis (Bosma et al., 1987; 
Gabel and Maier, 1993; Flory and Donohue, 1997; Winstedt and 
von Wachenfeldt, 2000; Arai et al., 2008).

In P. aeruginosa, the aa
3
 oxidase (Aa3) is encoded by the coxBA-

PA0107-coIII (coxC) gene cluster (PA0105–0108; Stover et al., 2000). 
The coxA, coxB, and coIII (coxC) genes encode subunits I, II, and 
III, respectively. Subunit I carries the heme a

3
−Cu

B
 binuclear cata-

lytic center. Subunit II has a binding site of Cu
A
, which is the elec-

tron transfer site with cytochrome c. PA0107 encodes a putative 
cytochrome c oxidase assembly protein involved in the insertion 
of copper into subunit I. The expression level of the cox genes is 
kept very low under normal laboratory growth conditions even 
at high oxygen tension, although these genes are slightly upregu-
lated at the stationary phase in P. aeruginosa (Schuster et al., 2004; 
Alvarez-Ortega and Harwood, 2007). We recently found that the 
cox genes were significantly induced under starvation of carbon, 
nitrogen, or iron (Kawakami et al., 2010). The cox promoter was 
found to be dependent on a stationary phase sigma factor RpoS and 
repressed by RoxSR (Schuster et al., 2004; Kawakami et al., 2010). 
At the stationary phase, RpoS is highly expressed and activates 
the cox promoter, but the promoter is simultaneously repressed 
by RoxSR, which is expected to be active in the hypoxic high-cell-
density stationary phase culture. Therefore, the expression level of 
the cox genes might be kept low under any nutrient-rich conditions. 

recently (Buschmann et al., 2010). This type of enzyme is known 
to have very high affinity for oxygen and low proton-transloca-
tion efficiency. The K

m
 values for oxygen were determined to be 7 

and 40 nM for the enzymes from Bradyrhizobium japonicum and 
Campylobacter jejuni, respectively (Preisig et al., 1996; Jackson et al., 
2007). The cbb

3
 oxidase is known to be induced under low oxygen 

conditions in many bacteria, such as Paracoccus denitrificans, R. 
sphaeroides, and R. capsulatus (Mouncey and Kaplan, 1998; Otten 
et al., 2001; Swem and Bauer, 2002). In the symbiotic nitrogen 
fixation bacterium B. japonicum, the cbb

3 
oxidase is essential for 

nitrogen fixation in hypoxic root nodules, in which the oxygen 
concentration is extremely low (∼20 nM; Preisig et al., 1993, 1996). 
The cbb

3
 oxidase is also known to be functioning in the obligately 

microaerophilic bacteria Helicobacter pylori and C. jejuni (Nagata 
et al., 1996; Jackson et al., 2007). From these observations, the cbb

3
 

oxidase is recognized as the major player under the low oxygen 
environments.

The cbb
3
 oxidase is also known to have a repressive role in 

the PrrBA-dependent expression of the photosynthesis genes in 
R. sphaeroides (O’Gara et al., 1998; Oh and Kaplan, 1999, 2000). 
The photosynthesis genes are usually induced under low oxygen 
or anaerobic conditions in non-oxygenic photosynthetic bacteria. 
However, disruption of the cbb

3
 oxidase genes or inhibition of the 

cbb
3
 oxidase activity results in expression of the photosynthesis 

genes even under aerobic conditions in R. sphaeroides. It has been 
proposed that the cbb

3
 oxidase senses the electron flow through the 

respiratory chain and generates an inhibitory signal that prevents 
the activation of PrrBA (Oh et al., 2004).

The cbb
3
 oxidase is encoded by a tetracistronic operon ccoNOQP 

(fixNOQP). The ccoN (fixN) product is the catalytic subunit that 
contains the binuclear center consisting of a high spin heme b

3
 and 

Cu
B
. The ccoO (fixO) and ccoP (fixP) genes encode transmembrane 

monoheme and diheme cytochrome c subunits, respectively. The 
gene product of ccoQ (fixQ) is thought to be required for stabiliza-
tion of the core complex of the cbb

3
-type oxidases (Zufferey et al., 

1996; Oh and Kaplan, 2002; Peters et al., 2008).
Two complete sets of the genes encoding the cbb

3
 cytochrome 

oxidases (Cbb3-1 and Cbb3-2) are tandemly clustered in the 
genome of P. aeruginosa (Stover et al., 2000). Cbb3-1 and Cbb3-2 
are encoded by the ccoN1O1Q1P1 genes (PA1552–1554) and the 
ccoN2O2Q2P2 genes (PA1555–1557), respectively. The small ccoQ1 
and ccoQ2 genes were not annotated in the genome previously 
(Stover et al., 2000). Tandem repeats of the genes for two cbb

3
-type 

cytochrome oxidases are also found in the genomes of other pseu-
domonads, such as Pseudomonas putida, Pseudomonas fluorescens, 
and P. stutzeri. In addition to the two complete sets of the cco gene 
clusters, two orphan ccoN-like genes (PA1856 and PA4133), which 
are highly similar to the main subunit genes of the cbb

3
 oxidases, 

have been identified in the P. aeruginosa genome (Stover et al., 
2000). Both of these ccoN-like genes are followed by small genes 
(PA1855 and PA4134) that have similarity with the ccoQ genes. 
These extra ccoNQ-like gene clusters might have complementary 
functions for aerobic respiration.

The cco1 genes for Cbb3-1 were constitutively expressed at a high 
level even under high oxygen conditions and slightly downregu-
lated at the stationary phase (Comolli and Donohue, 2004; Alvarez-
Ortega and Harwood, 2007; Kawakami et al., 2010). Cbb3-1 seemed 
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in the presence of Fe2+ and represses the iron-regulated promot-
ers (Vasil and Ochsner, 1999; Vasil, 2007). Because the predicted 
number of iron atoms sequestered in the Cyo complex is lower than 
those of the other terminal oxidase complexes and the respiratory 
complex terminated by Cyo does not require the iron-containing 
cytochrome bc

1
 complex and soluble cytochrome c (Fujiwara et al., 

1992; Thöny-Meyer, 1997), the demand for iron might be lower 
when Cyo is utilized. The cyo genes were upregulated by GSNO, 
but the role of Cyo in nitrosative stress resistance is not certain. 
Because Fur is known to lose its DNA-binding ability in the pres-
ence of NO (D’Autréaux et al., 2002), the upregulation by GSNO 
might be merely due to the inactivation of Fur by NO. An obligately 
aerobic bacterium, P. putida, also has five sets of terminal oxidases 
corresponding to those of P. aeruginosa (Ugidos et al., 2008). In P. 
putida, inactivation of the cyo genes relieves the catabolite repres-
sion of the phenol- or alkane-degradation genes (Petruschka et al., 
2001; Dinamarca et al., 2002). The cyo mutation also leads to a 
significant change in the transcriptome profile, and the absence of 
Cyo in P. putida was compensated for by upregulation of CIO and 
one of the cbb

3
 oxidases corresponding to Cbb3-2 of P. aeruginosa 

(Morales et al., 2006). In contrast to P. aeruginosa, Cyo might make 
a major contribution to the aerobic growth of this obligately aerobic 
bacterium, although it remains to be investigated whether inactiva-
tion of Cyo has a significant influence in P. aeruginosa.

the cyanide-insensitive oxidase
The cyanide-insensitive quinol oxidase (CIO) has been found and 
described from P. aeruginosa and C. jejuni (Matsushita et al., 1983; 
Cunningham et al., 1997; Jackson et al., 2007). While the Cbb3-1, 
Cbb3-2, Aa3, and Cyo oxidases belong to the heme–copper oxi-
dase superfamily, CIO is the only copper-free terminal oxidase in 
P. aeruginosa. It consists of two subunits encoded by the cioAB 
genes, which are highly homologous to the cydAB genes for the 
cytochrome bd-type quinol oxidases (Cunningham et al., 1997; 
Jünemann, 1997; Jackson et al., 2007). The bd oxidases have high 
affinity for oxygen and contain low-spin heme b

558
, high spin heme 

b
595

, and heme d (D’mello et al., 1996; Jünemann, 1997). E. coli has 
two bd oxidases (Bekker et al., 2009), one of which is known to be 
induced and predominant under oxygen-limited conditions (Rice 
and Hempfling, 1978; Cotter et al., 1990). In the free-living nitro-
gen-fixing bacterium Azotobacter vinelandii, the bd oxidase rapidly 
consumes oxygen and protects the oxygen-sensitive nitrogenase 
complex (Kelly et al., 1990; Poole and Hill, 1997). This phenomenon 
is called respiratory protection.

Although the cioAB genes for CIO are highly homologous to the 
cydAB genes for the bd oxidase, CIOs from P. aeruginosa and C. 
jejuni lack the spectral features for heme b

595
 and heme d (Matsushita 

et al., 1983; Cunningham and Williams, 1995; Cunningham et al., 
1997; Jackson et al., 2007). It had been considered that the hemes 
of the bd oxidase are replaced by other unknown redox centers in 
CIO. However, recent analysis using the membrane vesicle of a CIO-
overproducing Gluconobacter oxydans revealed that CIO carries 
all of the hemes b

558
, b

595
, and d. The absence of the spectroscopic 

properties was predicted to be caused by the unique ligand-binding 
properties of CIO (Mogi et al., 2009). A distinctive feature that 
could be used easily to discriminate CIO from the bd oxidase is 
that the conserved sequence of the periplasmic loop (Q-loop) that 

The cco1 cco2 cio cyo quadruple mutant, which is deficient in the 
four terminal oxidase gene clusters other than the cox gene cluster, 
was not able to grow under aerobic conditions. However, suppres-
sor mutants that are able to grow aerobically emerged after aerobic 
incubation for several weeks (unpublished data). The cox structural 
genes had no mutation, but the roxS gene was inactivated and the 
RpoS-dependent promoter region of the cox genes was altered in 
the suppressor mutants, confirming the tight regulation of the cox 
genes by RoxSR and RpoS. The respiratory chain terminated by 
Aa3 has the highest ability to create a proton gradient across the 
membrane (the H+/O ratio is 6) among the five terminal oxidases 
of P. aeruginosa (unpublished data). Therefore, it is reasonable that 
Aa3 is utilized only under starvation conditions for efficient energy 
production. Utilization of Aa3 might be advantageous for prolifera-
tion in natural oligotrophic environments. However, if Aa3 were 
highly expressed under the nutrient-rich laboratory growth condi-
tions, its high proton-pumping activity might cause an imbalance 
of energy and redox homeostasis in P. aeruginosa cells.

the bo3 quinol oxidase
The bo

3
-type quinol oxidase is also a member of the heme–copper 

oxidase superfamily. This type of the terminal oxidase is homolo-
gous to the aa

3
-type cytochrome oxidase but contains heme b and 

heme o. It lacks the Cu
A
-binding site, which is involved in the inter-

action with cytochrome c, and receives electrons from ubiquinol. 
The bo

3
 oxidase of Escherichia coli is known to have a low affinity 

for oxygen and functions under high oxygen conditions (Cotter 
et al., 1990; D’Mello et al., 1995). It is encoded by the cyoABCDE 
genes in E. coli (Nakamura et al., 1997). The cyoA, cyoB, and cyoC 
genes encode the subunits corresponding to the subunits II, I, and 
III of the aa

3
-type cytochrome oxidase, respectively. The cyoD gene 

encodes subunit IV, which is proposed to assist the Cu
B
-binding to 

subunit I during biosynthesis or assembly of the oxidase complex 
(Saiki et al., 1996). The cyoE encodes a protoheme IX farnesyltrans-
ferase (heme o synthetase), which is required for production of 
heme o from heme b (Saiki et al., 1992; Mogi et al., 1994).

The cyoABCDE genes (PA1317–1321) of the P. aeruginosa bo
3
 

oxidase (Cyo) are highly homologous with the corresponding genes 
of E. coli. Cyo was identified as a quinol oxidase and shown to have 
a high K

m
 value for oxygen by using the cco1 cco2 cox cio quadruple 

mutant (unpublished data). The H+/O ratio of Cyo was speculated 
to be 4, which was comparable to that of the bo

3
 oxidase from E. 

coli (Puustinen et al., 1989). The cyo genes were downregulated 
at the stationary phase or under the low oxygen conditions in P. 
aeruginosa cells (Alvarez-Ortega and Harwood, 2007; Kawakami 
et al., 2010). Considering that the affinity for oxygen is low, Cyo 
might function under high oxygen conditions as in the case of E. 
coli. However, because the expression level of the cyo genes was 
significantly lower than that of the cco1 genes without stresses, 
Cyo might make a minor contribution to the cell growth under 
normal laboratory growth conditions. The cyo genes were found 
to be significantly induced by iron starvation or in the presence 
of a nitric oxide (NO)-generating reagent, S-nitrosoglutathione 
(GSNO; Ochsner et al., 2002; Kawakami et al., 2010). Cyo is likely 
responsible for respiration under iron-limiting conditions and the 
expression of the cyo genes is regulated by the transcriptional regu-
lator Fur (ferric uptake regulator), which is known to bind to DNA 
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regulatory factors controlling the Multiple terMinal 
oxidases
Two redox-responsive transcriptional regulators, ANR and RoxSR, 
and a stationary phase sigma factor RpoS play dominant roles in the 
control of the multiple terminal oxidases in P. aeruginosa (Figure 2). 
ANR functions as a global regulator for anaerobic gene expression 
in response to oxygen depletion (Galimand et al., 1991; Sawers, 
1991; Zimmermann et al., 1991). Approximately 170 transcription 
units are predicted to belong to the ANR regulon (Trunk et al., 
2010). ANR is an analog of E. coli FNR (fumarate nitrate reductase 
regulator), which senses intracellular oxygen levels by an oxygen-
sensitive [4Fe–4S]2+ cluster bound to N-terminal Cys residues (Kiley 
and Beinert, 1998; Unden et al., 2002).

RoxSR is an analog of PrrBA/RegBA of purple photosynthetic 
bacteria, which activates expression of the photosynthesis genes 
under low oxygen conditions (Dubbs and Tabita, 2004; Elsen et al., 
2004; Eraso et al., 2008). It has been proposed that PrrBA of R. 
sphaeroides receives an inhibitory signal from the electron flow 
through the cbb

3
 oxidase because the PrrBA-dependent genes are 

upregulated even under aerobic conditions when the cbb
3
 oxi-

dase activity is blocked by inhibitors or mutations (O’Gara et al., 
1998; Oh and Kaplan, 1999, 2000; Kim et al., 2007). The activity 
of RegBA of R. capsulatus and Rhodospirillum rubrum is proposed 
to be controlled by the redox status of ubiquinones (Grammel and 
Ghosh, 2008; Wu and Bauer, 2010). The sensing signal of RoxSR of 
P. aeruginosa is not certain at present. Mutation of the cco1 genes for 
Cbb3-1 caused upregulation of the RoxSR-dependent expression 
of CIO in P. aeruginosa PAK, suggesting the possibility that RoxSR 
senses the electron flow through Cbb3-1 (Comolli and Donohue, 
2004). However, because Cbb3-1 is the dominant terminal oxidase 
under normal aerobic growth conditions, deletion of Cbb3-1 might 
greatly influence the redox status of the ubiquinone pool. In the case 
of P. putida, in which Cyo might make a major contribution under 
aerobic conditions, the absence of Cyo causes upregulation of CIO 
as well as a significant change in the transcriptome profile (Morales 
et al., 2006). In any case, the activity of RoxSR of Pseudomonas spe-
cies is expected to be controlled, directly or indirectly, by the redox 
status of the respiratory chain.

ANR activates the expression of Cbb3-2, which is a high affinity 
enzyme and predicted to be dominant under low oxygen condi-
tions (Ray and Williams, 1997; Comolli and Donohue, 2004). ANR 
represses the expression of CIO (Cunningham et al., 1997; Cooper 
et al., 2003; Comolli and Donohue, 2004), which was recently found 
to be a low affinity enzyme (unpublished data). Another low affinity 
enzyme, Cyo, is probably repressed in an indirect manner by ANR 
(Kawakami et al., 2010), which is in contrast to the direct repression 
of Cyo by ANR in P. putida (Ugidos et al., 2008). RoxSR regulates 
the expression of all five terminal oxidases, though whether directly 
or indirectly is not certain (Comolli and Donohue, 2002; Kawakami 
et al., 2010). Aa3 is repressed and the other four terminal oxidases 
are activated by RoxSR. Some other genes related to respiratory 
function, such as hemB and nuoAL, are under the control of RoxSR, 
indicating that RoxSR plays an extensive role in the regulation of 
respiration in P. aeruginosa (Kawakami et al., 2010). Cbb3-2, Aa3, 
and CIO are upregulated at the stationary phase. RpoS plays a 
significant role in the expression of Aa3, but make a minor con-
tribution to the regulation of CIO and no contribution to that of 

contains the putative quinol oxidizing site is significantly shorter 
in CioA than in CydA (Cunningham et al., 1997). CIO is known 
to have higher resistance to cyanide than Cyo (Mogi et al., 2009). 
In contrast to the finding that the bd oxidases have high affinity 
for oxygen, CIO of C. jejuni was reported to have low affinity for 
oxygen, with a K

m
 value of 0.8 μM (Jackson et al., 2007). It has been 

recognized that CIO of P. aeruginosa has high affinity for oxygen 
because the cco1 cco2 cio triple mutant, which lacks Cbb3-1, Cbb3-2, 
and CIO, could not grow microaerobically under a 2% O

2
 concen-

tration (Alvarez-Ortega and Harwood, 2007). However, our recent 
analysis using the cco1 cco2 cox cyo quadruple mutant revealed that 
the K

m
 value of CIO of P. aeruginosa for oxygen is significantly 

higher than those of Cbb3-1 and Cbb3-2 and comparable to those 
of Aa3 and Cyo, indicating that CIO of P. aeruginosa is a low affinity 
enzyme like CIO of C. jejuni (unpublished data).

Pseudomonas aeruginosa produces a respiratory chain inhibi-
tor, hydrogen cyanide, at concentrations up to 300 μM under 
low oxygen conditions. The concentrations are high enough to 
inhibit the activity of the heme–copper oxidases. Therefore, CIO 
is believed to have a role as an electron sink under cyanogenic 
conditions (Cunningham and Williams, 1995; Cunningham et al., 
1997; Blumer and Haas, 2000). The reason why the cco1 cco2 cio 
triple mutant could not grow under the 2% O

2
 condition (Alvarez-

Ortega and Harwood, 2007) was probably because of the inhibition 
of Aa3 and Cyo by the endogenous cyanide. Cyanide is reported 
to be the primary toxic factor responsible for the paralytic killing 
of Caenorhabditis elegans by P. aeruginosa (Gallagher and Manoil, 
2001). CIO appeared to be required for this pathogenicity because 
the mutant of the cioAB genes (PA3929–3930) had lower killing 
activity against the nematoda (Zlosnik et al., 2006).

The cioAB genes are upregulated at stationary phase or at very 
low ambient oxygen concentration (0.4–0.5%) in P. aeruginosa 
(Cooper et al., 2003; Alvarez-Ortega and Harwood, 2007; Kawakami 
et al., 2010). Respiratory chain inhibitors, cyanide and sodium 
nitroprusside (SNP), significantly induce the cio genes (Comolli 
and Donohue, 2002; Cooper et al., 2003; Kawakami et al., 2010). The 
cio genes are also induced by copper starvation or disruption of the 
senC gene (PA0114), which encodes a putative copper chaperone 
for the heme–copper oxidases (Frangipani et al., 2008; Frangipani 
and Haas, 2009). Since CIO is the only non-heme– copper oxidase 
in P. aeruginosa, CIO must be important for respiration under 
copper-restricted conditions. The cio genes are positively regu-
lated by RoxSR and disruption of the cco1 genes for Cbb3-1 causes 
upregulation of the cio promoter (Comolli and Donohue, 2004). 
Regulation of the RoxSR activity by the electron flow through the 
cbb

3
 oxidase might be operative in P. aeruginosa as in the case of 

PrrBA in R. sphaeroides (Oh and Kaplan, 2000). The expression of 
CIO is negatively regulated by ANR and an anr mutant has been 
shown to express a high level of CIO, especially under low oxy-
gen concentrations (Cooper et al., 2003). It seems likely that ANR 
prevents the overproduction of CIO when it is not necessary. The 
stationary phase sigma factor RpoS also activates the expression 
of the cio genes, although its contribution is minor when ANR or 
RoxSR is operative (Kawakami et al., 2010). The regulation of the 
cio genes in P. aeruginosa is thus complicated, but CIO seems to be 
controlled so as to be expressed when the other terminal oxidases 
of the heme–copper superfamily are not functioning.
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virulence factors, such as elastase and pyocyanin, into the culture 
supernatant of P. aeruginosa has been reported to be enhanced by 
the microaerobic culture conditions (Sabra et al., 2002).

anaerobic energy MetabolisM
Pseudomonas aeruginosa had been considered as an obligately aero-
bic bacterium previously, but it is now recognized to be highly 
adapted to anaerobic conditions. Because the P. aeruginosa-infected 
mucus in the CF airway is depleted of oxygen, the anaerobic physiol-
ogy of P. aeruginosa is believed to be important for its pathogenesis 
(Yoon et al., 2002; Schobert and Jahn, 2010; Schobert and Tielen, 
2010). In the absence of oxygen, P. aeruginosa can grow by dissimi-
latory nitrate respiration by using nitrogen oxides as alternative 
terminal electron acceptors of the respiratory chain. This process is 
called denitrification because soluble nitrate and nitrite are reduced 
to and released as gaseous nitrous oxide (N

2
O) or dinitrogen (N

2
; 

Zumft, 1997). This pathway is ecologically important because it is 
one of the very few routes for generating atmospheric N

2
. Complete 

denitrification consists of four sequential steps to reduce nitrate to 
N

2
 via nitrite, nitric oxide (NO), and N

2
O. Each step of the pathway 

is catalyzed by individual metalloenzymes, i.e., nitrate reductase, 
nitrite reductase, NO reductase, and N

2
O reductase (Figure 3).

denitrification enzyMes and genes
Nitrate reductase catalyzes the first step of denitrification, reduction 
of nitrate to nitrite. Three types of nitrate reductases, Nar, Nap, 
and Nas, which are localized to the cytoplasmic membrane, peri-
plasm, and cytoplasm, respectively, are encoded in the genome of P. 
aeruginosa (Berks et al., 1995; Stover et al., 2000). They all contain 
a molybdopterin guanine dinucleotide cofactor. The membrane-
bound Nar is the enzyme responsible for anaerobic nitrate respi-
ration of P. aeruginosa in CF sputum (Palmer et al., 2007). Nar is 
encoded in the narK1K2GHJI gene cluster (PA3872–3877). NarG, 
NarH, and NarI are the structural subunits of the enzyme and NarJ 
is required for the assembly of the functional enzyme (Philippot 
and Højberg, 1999). The narK1 and narK2 genes encode putative 
nitrate/nitrite transporters homologous to each other, but only 
narK2 has been reported to be required for denitrifying growth 
(Sharma et al., 2006). The narXL genes (PA3878–3879) encoding a 
two-component transcriptional regulator, NarXL, which is required 
for the nitrate-responsive expression of the narK1K2GHJI operon, 
is located upstream from the narK1 gene (Schreiber et al., 2007). 
Reduction of nitrate by Nar is coupled to quinol oxidation and 
consumes two protons from the cytoplasm, thereby contributing to 
creation of a proton gradient across the membrane (Zumft, 1997).

The periplasmic enzyme Nap and related proteins are encoded 
in the napEFDABC gene cluster (PA1172–1177). Nap is a quinol 
oxidase, but nitrate reduction in the periplasm by Nap does not 
contribute to generation of the proton gradient. The physiologi-
cal function of Nap in P. aeruginosa is not certain at present. In 
R. sphaeroides, Nap is regulated by both nitrate and electron supply 
and predicted to be involved in redox balancing by using nitrate as an 
ancillary oxidant to dissipate excess reductant (Gavira et al., 2002). 
The cytoplasmic enzyme Nas is exclusively involved in nitrate assimi-
lation. The nasC gene (PA1779) for Nas is clustered with the nirBD 
genes (PA1780–1781) encoding assimilatory nitrite reductase, which 
catalyzes the reduction of nitrite to ammonium (Berks et al., 1995).

Cbb3-2 (Cooper et al., 2003; Schuster et al., 2004; Kawakami et al., 
2010). RpoS is known to be necessary for survival under carbon 
starvation in P. aeruginosa (Jørgensen et al., 1999; Suh et al., 1999). 
Therefore, the induction of Aa3 under nutrient starvation condi-
tions might be mainly the effect of the function of RpoS.

Regulation of the terminal oxidases not only by peripheral oxy-
gen tension by ANR but also by the redox status of the respira-
tory chain by RoxSR might be a sophisticated mechanism for fine 
tuning of multiple enzymes with different characteristics, because 
the redox status of the respiratory components is significantly 
affected by nutritional conditions and respiratory stressors as well 
as oxygen availability. Availability of nitrogen oxides that act as 
alternative electron acceptors for anaerobic respiration might also 
influence the redox status of the respiratory chain under low oxy-
gen conditions.

Microaerobic physiology of P. aeruginosa
The cbb

3
 oxidases are dominantly expressed and function even under 

the aerobic conditions in P. aeruginosa. This feature is unique to P. 
aeruginosa, because the cbb

3
 oxidases are known to have very high 

affinity for oxygen and are usually repressed under high oxygen con-
ditions in other bacterial species (Preisig et al., 1996; Mouncey and 
Kaplan, 1998; Otten et al., 2001; Swem and Bauer, 2002; Jackson 
et al., 2007). Our preliminary experiment revealed that both of the 
two cbb

3
 oxidases of P. aeruginosa also have high affinity for oxygen 

(unpublished data). The low affinity enzymes are highly induced only 
under starvation or stressed conditions (Kawakami et al., 2010). This 
is in contrast to the case of the non-pathogenic obligately aerobic 
bacterium P. putida, which is phylogenetically close to P. aeruginosa 
and has the same set of five terminal oxidases, but in which Cyo might 
make a major contribution under aerobic conditions (Morales et al., 
2006; Fernández-Piñar et al., 2008; Ugidos et al., 2008).

The dominant expression and function of the high affinity 
enzymes might indicate that the P. aeruginosa cells are maintained 
in a microaerobic state even under aerobic conditions. P. aerugi-
nosa actively produces a microaerobic environment even at high 
aeration rates by reducing the transfer rate of oxygen from the gas 
phase into the liquid phase (Sabra et al., 2002). This phenomenon 
was predicted to be due to the production of biosurfactants such 
as rhamnolipid. P. aeruginosa strains infected in the CF airway 
show the mucoid phenotype by overproduction of the exopoly-
saccharide alginate, which is known to act as a physical barrier to 
oxygen entering the cell. Even the non-mucoid strain PAO1 forms 
a mucoid polysaccharide capsule, which might consist primarily of 
alginate, on the cell surface as a response to oxidative stress (Sabra 
et al., 2002). Alginate is also reported to restrict the diffusion of 
oxygen (Hassett, 1996). A nitrogen-fixing bacterium, A. vinelandii, 
which is closely related to Pseudomonas, is also known to produce 
alginate as a barrier to protect oxygen-sensitive nitrogenase from 
oxygen (Sabra et al., 2000).

The microaerobic physiology of P. aeruginosa might be signifi-
cantly related to its pathogenesis. During pulmonary infection, 
P. aeruginosa is exposed to reactive oxygen species produced by 
the host immune cells. The physical blockage of oxygen transfer 
by production of the polysaccharide layer and reduction of the 
oxygen diffusion rate would be advantageous for P. aeruginosa to 
survive under such oxidative stress conditions. Moreover, release of 
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electrons for its reaction are supplied through the cytochrome 
bc

1
 complex via soluble cytochrome c. The NO reductase of P. 

aeruginosa has been purified and characterized and its crystal 
structure has been reported recently (Kumita et al., 2004; Hino 
et al., 2010). NO reductase is encoded in the norCBD operon 
(PA0523–0525), which is clustered with the nir genes for nitrite 
reductase in the genome of P. aeruginosa (Arai et al., 1995a). 
norC and norB encode cytochrome c and cytochrome b subu-
nits of the enzyme, respectively. norD encodes a soluble protein 
predicted to be required for production of the active enzyme. 
NorB carries the binuclear catalytic center consisting of heme b

3
 

and non-heme Fe
B
. NorC mediates electron transfer from soluble 

cytochrome c to NorB (Zumft, 2005). NO reductase functions not 
only for anaerobic energy conservation as a respiratory enzyme, 
but also for detoxification of exogenous NO. The machinery for 
detoxification of NO and its derivative reactive nitrogen species 
is necessary because the infected P. aeruginosa cells are subjected 
to nitrosative stress by the attack of the host immune system. The 
NO reductase-deficient mutant of P. aeruginosa shows a reduced 
survival rate in NO-producing macrophages (Kakishima et al., 
2007). P. aeruginosa has another NO-detoxification enzyme, fla-
vohemoglobin, which is encoded by the fhp gene (PA2664; Arai 
et al., 2005). Flavohemoglobin is known to exhibit NO dioxyge-
nase activity under aerobic conditions and NO reductase activity 
under anaerobic conditions (Poole and Hughes, 2000). However, 
flavohemoglobin of P. aeruginosa is necessary for detoxification 
of NO under aerobic conditions but does not support denitri-
fying growth by complementing the function of NO reductase 
under anaerobic conditions (Arai et al., 2005). The fhp gene is 
regulated by the NO-responsive transcriptional regulator FhpR 
and transcribed as an operon with the following two genes, ppyR 
(PA2663) and nnrS (PA2662), which encode putative membrane 
proteins. Disruption of these ppyR and nnrS genes has no effect 
on the aerobic tolerance to reactive nitrogen species, but the nnrS 
mutant shows very poor growth under anaerobic denitrification 
conditions (unpublished data). The ppyR gene has been reported 
to have a role in the formation of biofilm (Attila et al., 2008).

The nirQOP operon (PA0520–0522) is located between the 
structural genes for nitrite reductase (nirS) and NO reductase 
(norCB; Arai et al., 1994, 1996, 1998). The activities of nitrite reduct-
ase and NO reductase should be coordinately regulated in order 
to avoid accumulation of highly cytotoxic intermediate, NO. The 
function of NirQ is predicted to be the fine tuning of the expression 
and activation of nitrite reductase and NO reductase (Jüngst and 
Zumft, 1992; Arai et al., 1996). The nirO and nirP genes encode 
transmembrane proteins. NirO has sequence similarity to subunit 
III of cytochrome c oxidases. The function of the nirOP genes is 
not certain, but it has been proposed that these genes are involved 
in efficient energy conservation under anaerobic conditions (Arai 
et al., 1996, 1998).

The final step of the denitrification pathway, reduction of 
N

2
O to N

2
, is catalyzed by N

2
O reductase. This enzyme has been 

intensively studied in P. stutzeri and P. denitrificans (Zumft, 
1997; Zumft and Kroneck, 2007) and has also been purified 
and characterized from P. aeruginosa (SooHoo and Hollocher, 
1991). N

2
O reductase is a periplasmic enzyme and predicted to 

receive electrons from the cytochrome bc
1
 complex via soluble 

Nitrite reductase catalyzes the second step of denitrification, 
reduction of nitrite to NO. Two types of dissimilatory nitrite reduct-
ases, the copper-containing type and the cytochrome cd

1
-type, have 

been reported so far and P. aeruginosa has the latter type (Zumft, 
1997). Both types are located in the periplasm. The cytochrome 
cd

1
 nitrite reductase consists of two identical subunits, each con-

taining a covalently attached heme c and a non-covalently bound 
heme d

1
, which is a prosthetic group unique to this type of nitrite 

reductase (Silvestrini et al., 1994). In P. aeruginosa, nitrite reductase 
is encoded in the nirSMCFDLGHJEN gene cluster (PA0509–0519). 
nirS is the structural gene for the enzyme (Silvestrini et al., 1989). 
nirM encodes cytochrome c-551 and nirC encodes another mono-
heme cytochrome c, and both these cytochromes mediate electron 
transfer from the cytochrome bc

1
 complex to nitrite reductase (Arai 

et al., 1990; Nordling et al., 1990; Hasegawa et al., 2001, 2003). The 
nirFDLGHJE genes are necessary for the biosynthesis of heme d

1
 

(Kawasaki et al., 1995, 1997). nirN encodes a c-type cytochrome, 
which is similar to nirS, but its function is not certain (Hasegawa 
et al., 2001).

Reduction of NO to N
2
O is catalyzed by NO reductase 

(Hendriks et al., 2000; Zumft, 2005). Two types of bacterial NO 
reductases, designated cNOR and qNOR, have been characterized. 
cNOR is a membrane-bound cytochrome bc complex and receives 
electrons from soluble cytochrome c. qNOR lacks the cytochrome 
c component and receives electrons from quinol. P. aeruginosa 
and many denitrification bacteria have cNOR. qNOR has been 
found in bacteria and cyanobacteria such as Ralstonia eutropha, 
Neisseria gonorrhoeae, and Synechocystis sp. PCC6803 (Cramm 
et al., 1999; Householder et al., 2000; Büsch et al., 2002). Bacterial 
NO reductase shows similarity to the main subunit of cytochrome 
c oxidases of the heme–copper superfamily and is predicted to be 
the ancestor of oxygen-based respiratory enzymes (Saraste, 1994; 
Saraste and Castresana, 1994; Zumft, 2005). NO reductases have 
no proton-pumping activity, but cNOR contributes to genera-
tion of the proton gradient across the membrane because the 

NO3
- NO2

- NO N2O N2

NAR NIR NOR N2OR

ANR

DNRNarXL
NO

Low O2

NirQ

Figure 3 | Schematic model of the regulatory network controlling the 
denitrification genes in P. aeruginosa. ANR activates the expression of DNR 
under anaerobic or low oxygen conditions. DNR activates the expression of all 
denitrification genes in response to nitric oxide. A two-component nitrate 
sensing regulator, NarXL is required for expression of the nar genes encoding 
nitrate reductase. Both ANR and DNR can activate the nar gene expression. 
NirQ is predicted to be involved in the fine tuning of the activities of nitrite 
reductase and nitric oxide reductase. NAR, NIR, NOR, and N2OR indicate 
nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide 
reductase, respectively.
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anaerobic ferMentation
Pseudomonas aeruginosa is able to grow in the absence of oxygen 
and nitrogen oxides, although very slowly, by using arginine as 
an energy source in rich medium (Shoesmith and Sherris, 1960; 
Vander Wauven et al., 1984). Anaerobic degradation of arginine 
to ornithine through the arginine deiminase (ADI) pathway is a 
non-redox process but produces 1 mol of ATP per arginine by a 
substrate-level phosphorylation. The ADI pathway enzymes are 
encoded in the arcDABC operon (PA5170–5173; Lüthi et al., 1990). 
The arcABC genes encode arginine deiminase, catabolic orni-
thine carbamoyltransferase, and carbamate kinase, respectively. 
arcD encodes an arginine-ornithine antiporter. The arc genes are 
induced by ANR in response to oxygen depletion (Gamper et al., 
1991). An arginine-responsive regulator, ArgR, which is involved 
in the regulation of many arginine metabolic pathways, enhances 
the arcD promoter activity (Lu et al., 1999). The expression of the 
arc genes is partially repressed by NarXL in the presence of nitrate, 
indicating that the more energetically efficient denitrification is 
preferred over arginine fermentation (Benkert et al., 2008).

Pyruvate fermentation allows long-term anaerobic survival of 
P. aeruginosa under stationary conditions, although it does not 
sustain significant anaerobic growth (Eschbach et al., 2004). Acetate 
kinase and phosphotransacetylase encoded by the ackA-pta operon 
(PA0835–0836) and NADH-dependent lactate dehydrogenase 
encoded by ldhA (PA0927) are responsible for pyruvate fermenta-
tion. ATP is produced by the acetate kinase activity. Lactate dehy-
drogenase functions for reoxidation of NADH produced by the 
pyruvate dehydrogenase activity. ANR and the integration host 
factor (IHF) are required for the expression of the ackA-pts operon 
(Eschbach et al., 2004).

role of pyocyanin in anaerobic survival
Pseudomonas aeruginosa produces a small redox-active phenazine 
compound, pyocyanin. Pyocyanin generates reactive oxygen species 
and acts as an antibiotic agent in the soil or a virulence factor during 
infection. Recently, Newman’s group proposed that pyocyanin has 
additional roles for maintenance of redox  homeostasis and control 
of multicellular behavior (Price-Whelan et al., 2007; Dietrich et al., 
2008; Ramos et al., 2010; Wang et al., 2010; Figure 4). Pyocyanin 
decreases the intracellular NADH levels under energy starvation 
conditions, indicating that the reoxidation of NADH could be cou-
pled to the reduction of pyocyanin. Because pyocyanin is auto-oxi-
dized by oxygen, it could function as an extracellular electron shuttle. 
When the P. aeruginosa cells form a biofilm or colony, a steep oxygen 
gradient is present in the cell community. The cells at the bottom 
are limited for oxygen but pyocyanin could serve as an alternative 
electron acceptor. The reduced pyocyanin could be reoxidized after 
diffusion to the oxygen-rich surface. Thus, pyocyanin contributes 
to the redox homeostasis and survival of the cells in the deeper 
anaerobic niches. Further experimental evidence would be required 
to certify this hypothesis. Pyocyanin is also reported to stimulate 
pyruvate excretion by decreasing the carbon flux through the central 
metabolic pathway in P. aeruginosa PA14 at the late stationary phase 
(Price-Whelan et al., 2007). The pyruvate secreted by the cells at 
the aerobic niches, such as the surfaces of biofilms, might support 
the survival of the cells at anaerobic niches of the community as a 
substrate of anaerobic pyruvate fermentation.

cytochrome c or pseudoazurin. It has two types of copper cent-
ers, the mixed-valent dinuclear Cu

A
 species at the electron entry 

site and the tetranuclear Cu
Z
 center at the catalytically active 

site (Zumft and Kroneck, 2007). The Cu
A
 site of N

2
O reductase 

shows similarity to the corresponding electron entry site in 
subunit II of cytochrome oxidases of the heme–copper super-
family, suggesting an evolutionary relationship between the two 
enzymes for anaerobic and aerobic respiration (Saraste, 1994; 
Saraste and Castresana, 1994). In P. aeruginosa, N

2
O reductase 

is encoded in the nosRZDFYL operon (PA3391–3396; Arai et al., 
2003). The structural gene for the enzyme is nosZ. The nosDFY 
gene products are thought to be involved in the processing 
and insertion of copper into the enzyme. The nosL gene prod-
uct is proposed to be an outer membrane disulfide isomerase. 
nosR encodes a membrane protein of unknown function. Many 
denitrifying bacteria can grow on N

2
O as the only electron 

acceptor under anaerobic conditions. However, P. aeruginosa 
cannot grow on exogenous N

2
O as the only electron accep-

tor, although it can utilize endogenous N
2
O for the generation 

of energy for growth during denitrification. This is probably 
because the nosR promoter is regulated by NO and exogenous 
N

2
O does not induce the nos genes (SooHoo and Hollocher, 

1990; Arai et al., 2003).

transcriptional regulation of the denitrification genes
Denitrification enzymes are induced under anaerobic or low oxy-
gen conditions in the presence of nitrate or nitrite (Arai et al., 
1991a,b; Figure 3). Two transcriptional regulators, ANR and DNR 
(dissimilatory nitrate respiration regulator), are required for full 
expression of all denitrification genes (Arai et al., 1994, 1995b, 
1997, 1999, 2003; Ye et al., 1995; Schreiber et al., 2007). NarXL regu-
lates some of the denitrification promoters, such as narK1, nirQ, 
and dnr (Schreiber et al., 2007). Denitrification is also regulated 
by quorum-sensing signal molecules (Yoon et al., 2002; Toyofuku 
et al., 2007, 2008).

The dnr gene (PA0527) encoding DNR is clustered with the 
nir–nor genes for nitrite reductase and NO reductase. Both ANR 
and DNR belong to the CRP/FNR superfamily of transcriptional 
regulators and activate a synthetic promoter that has a consensus 
FNR-binding motif (TTGAT----ATCAA; Hasegawa et al., 1998). 
However, the promoters of the denitrification genes, which have 
sequences similar to the FNR-binding motif, are activated only by 
DNR, but not by ANR. Expression of DNR is under the control of 
ANR. Thus, the ANR-mediated anaerobic induction of the denitri-
fication genes is an indirect event that occurs by way of DNR (Arai 
et al., 1997). The hemN, hemF, and narK1 promoters are known to 
be recognized by both ANR and DNR (Rompf et al., 1998; Schreiber 
et al., 2007). It is not certain how ANR and DNR distinguish their 
target promoters. Transcriptome analysis of the ANR and DNR 
regulons revealed that DNR specifically regulates the denitrification 
genes (Trunk et al., 2010). DNR specifically senses NO and does not 
respond to CO (Arai et al., 2003). Heme is required for the in vivo 
activity of DNR (Castiglione et al., 2009). The crystal structures of 
the apo-forms of full-length and truncated DNR have been solved 
recently (Giardina et al., 2008, 2009, 2011). The structural analyses 
showed that DNR undergoes a very large conformation rearrange-
ment on activation.
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which poorly produces pyocyanin under anaerobic conditions, 
does not construct the multilayered biofilm. These results indi-
cate that pyocyanin has the ability to construct the organized 
layered structure in the multispecies biofilm. Pyocyanin might 
also serve as an electron acceptor for the anaerobic preservation 
of the P. aeruginosa cells at the oxygen-depleted bottom of the 
multilayered biofilm.

conclusions and future perspectives
The respiratory chain of P. aeruginosa is highly branched and ter-
minated either by multiple terminal oxidases of different charac-
teristics or by the denitrification enzymes that reduce nitrogen 
oxides. This versatile respiratory function as well as fermentative 
energy generating systems contribute to the ubiquitous distribution 
and persistence of P. aeruginosa in various environments under 
both aerobic and anaerobic conditions. One of the characteristic 
features of the respiratory chain of P. aeruginosa is that high affinity 
terminal oxidases of the cbb

3
-type are dominant even under aerobic 

conditions. P. aeruginosa seems to actively produce microaerobic 
environments by itself. The microaerobic and anaerobic physiol-
ogy of P. aeruginosa is significantly related to its pathogenicity. All 
terminal oxidases for aerobic respiration are directly or indirectly 
regulated by RoxSR, which is predicted to sense the redox status 
of the respiratory chain either by the redox status of the ubiqui-
none pool or by the electron flow through the terminal oxidases. 
Because ubiquinone is located at the pivotal point of the divergent 
electron transport chain of both aerobic and anaerobic respiration 
(Figure 1), its redox status must be important for the traffic con-
trol of the electron flow. The oxygen sensing global regulator ANR 
directly regulates a subset of the terminal oxidases and indirectly 
induces all denitrification enzymes. The NO-sensing regulator 
DNR directly regulates the expression of all denitrification enzymes. 
Thus, the respiratory function of P. aeruginosa is efficiently control-
led by oxygen, NO, and the redox status of the respiratory chain.

In recent years, bacteria-specific energy metabolism has been 
garnering increasing attention as a therapeutic target (Hurdle et al., 
2011). Most of the classical antibiotics target the bioprocesses of 
actively growing bacteria, such as biosynthesis of proteins, DNA, 
and peptidoglycan. However, these antibiotics are not effective for 
eradicating persistent infections, in which most of the bacterial cells 
are under slow-growing and/or non-growing conditions. Because 
maintenance of the cellular energy and redox homeostasis is neces-
sary even for the non-growing cells to maintain viability, inhibition 
of the energy metabolism is expected to be effective to kill the persist-
ing cells. The problem is the versatility of the bacterial respiratory 
chains when considering the respiratory components as drug targets. 
Actually, inactivation of a subset of the multiple terminal oxidases 
of P. aeruginosa has no or only minor effect. In contrast to the rich 
variety of the enzymes of energy metabolism, the regulatory machin-
ery for the energy metabolism is less variable, with many bacterial 
species sharing common regulatory systems. Therefore, the regula-
tory systems might be worth considering as a possible drug target.
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Another example of the relationship between pyocyanin and 
biofilm lifestyle has been reported in a mixed-species biofilm 
(Narisawa et al., 2008; Figures 4B,C). The pyocyanin-overpro-
ducing P. aeruginosa strain P1 forms a multilayered multispecies 
biofilm when cocultured with a pyocyanin-resistant Raoultella 
strain R1 and a pyocyanin-sensitive Brevibacillus strain S1. The 
layer of strain P1 at the bottom was covered with the layers of 
resistant and sensitive strains. The sensitive strain was separated 
from strain P1 by the layer of the resistant strain. This multilay-
ered structure is expected to be advantageous for strain P1 for 
protection from antibiotics, grazing, desiccation, and many other 
stresses, although the bottom of the biofilm is disadvantageous 
for oxygen acquisition. A pyocyanin non-producing derivative 
of strain P1 forms an intermingled multispecies biofilm with the 
pyocyanin-resistant and -sensitive strains. P. aeruginosa PAO1, 

PYOredPYOox

PYOredPYOox

pyruvate

anaerobic

aerobic

pO2
1/2O2H2O

A

S1

P1
R1
S1

∆phzM
R1

B

C

Figure 4 | Hypothetical model of the role of pyocyanin in anaerobic 
survival in biofilm and construction of the multilayered structure of the 
multispecies biofilm. (A) Pyocyanin is predicted to act as an electron 
acceptor for the anaerobic cells and shuttle electrons between anaerobic and 
aerobic niches. Pyocyanin stimulates excretion of pyruvate. The secreted 
pyruvate is expected to be utilized for the anaerobic pyruvate fermentation. 
PYOred and PYOox indicate the reduced- and oxidized-forms of pyocyanin, 
respectively. pO2 indicates partial oxygen pressure. (B,C) FISH images of 
three-species biofilms in vertical sections. A pyocyanin-overproducing P. 
aeruginosa strains P1 (P1) and its pyocyanin-non-producing derivative (∆phzM) 
appear blue with a Cy3-labeled probe, A pyocyanin-resistant Raoultella strain 
(R1) and a pyocyanin-sensitive Brevibacillus strain (S1) appear green and red 
with the FITC- and Cy5-labeled probes, respectively. Strain P1 forms a 
multilayered biofilm with strains R1 and S1 (B). An intermingled biofilm is 
formed when strain ∆phzM is used (C). Small arrows indicate the bottom of 
biofilms. White bars indicate 50 μm.
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