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Introduction

Brain development is a tightly regulated programmed process, 
which includes cellular events like proliferation, migration, 
differentiation, and synapse formation.1 Prenatal exposure 
to adverse environmental conditions like toxic chemicals, 
viral infections, and even maternal stress during pregnancy 
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Abstract

Background: Exposure to adverse environmental conditions such as toxic chemicals, viral infections, and even stress 
during pregnancy or early life may disrupt the development of normal brain and its functioning leading to incidence of 
neurodevelopmental disorders at later stages of life. Recently, we reported that poly (I:C) exposure altered synaptic plasticity 
protein level and impaired memory through activation of microglia cells.
Purpose: As epigenetic modifications are involved in memory formation, we have studied methylation of DNA and 
acetylation of histone at promoters of synaptic plasticity genes in the brain of rats exposed to poly (I:C) during early life.
Methods: One dose of poly (I:C) (5 mg/kg bw) was intraperitoneally injected to rat pups on postnatal seventh day. A set 
of pups exposed to vehicle was included as control. In order to assess methylation of DNA and acetylation of histone 
at synaptic plasticity gene promoter, we performed qPCR after methylated DNA immunoprecipitation and chromatin 
immunoprecipitation.
Results: Poly (I:C) exposure reduced the level of 5-methylcytosine (5mC) at synaptic plasticity gene (bdnf, arc, and egr1) 
promoters in the frontal cortex (FC) and hippocampus of 3-week rats, although increased it later in both regions of 12-week 
rats as compared to respective controls. On contrary, poly (I:C) exposure enhanced acetylation of histone H3K9 (H3K9Ac) 
at promoters of these genes in both regions of 3-week rats but decreased in 12-week rats.
Conclusion: Poly (I:C) exposure altered 5mC and H3K9Ac at synaptic plasticity gene promoters resulting in memory 
impairment of rats at later life.
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Abbreviation

AD, Alzheimer’s disease; ARC, activity-regulated cytoskeleton-associated protein; BDNF, brain derived neurotrophic 
factor; ChIP, chromatin immunoprecipitation; DNMTs, DNA methyltransferases; EGR1, early growth response 1; FC, 
frontal cortex; HATs, histone acetyl transferases; HDACs, histone deacetylases; HP, hippocampus 5-mC 5-methyl cytosine; 
MeDIP, methylated DNA immunoprecipitation; NARP, neuro activity regulated pentaxin; PND, postnatal day; Poly (I:C), 
polyinosinic-polycytidylic acid; qPCR, quantitative polymerase chain reaction
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negatively affects brain development and its function 
leading to neurodevelopmental disorders such as autism 
and schizophrenia in late life.2 Our previous study showed 
impairment of learning and memory through activation of 
microglia and alteration in the level of expression of synaptic 
plasticity related proteins (BDNF, Arc, EGR1) in the frontal 
cortex (FC) and hippocampus (HP) of rats exposed to poly 
(I:C).3 Highly activated microglia produce inflammatory 
cytokines and induce neuronal apoptosis.4 In addition, poly 
(I:C) exposure triggers the apoptosis signaling leading 
to degeneration of neurons and subsequently deficits in 
cognitive function including memory.5 On the other hand, 
it is reported that viral infection alters 5mC and histone 
acetylation, which in turn affects gene expression leading to 
neurodevelopmental disorders.6–9 Singh and Thakur10 have 
also shown that variation in epigenetic modifications changes 
the synaptic plasticity gene expression in cerebral cortex as 
well as HP of aged mice.

Methylation of DNA and acetylation of histone 
play a major role in regulation of chromatin remodeling, 
gene expression, and memory formation.11–13 They have 
also important functions in normal aging and associated 
neurodegenerative diseases.14 For DNA methylation, DNA 
methyltransferases (DNMTs) transfer methyl groups to fifth 
carbon of cytosine at CpG sites. In case of histone acetylation, 
histone transferases (HATs) transfer acetyl groups to histone 
tails and histone deacetylases (HDACs) remove them.15 
These epigenetic modification machineries are sensitive to 
environmental stimulus.16 Earlier reports have shown that poly 
(I:C) alters methylation of DNA and acetylation of histones in 
brain as well as immune cells.17, 18

These evidences advocate that poly (I:C) exposure 
during early life might alter the expression of synaptic 
genes through modulation of epigenetic modifications and 
lead to memory deficits. This has prompted us to analyze 
methylation of DNA and acetylation of histone at synaptic 
plasticity gene promoters in the FC as well as HP of 3-, 6-, 
and 12-week rats.

Methods

Animals and Poly (I:C) Injection

Wistar rats were maintained in animal colony at School of 
Studies in Neuroscience, Jiwaji University, Gwalior. Poly 
(I:C) was administered to rat pups on postnatal day (PND) 
seven as described previously.3 All the experiments were 
performed according to the instructions of Committee for 
the Purpose of Control and Supervision of Experiments 
on Animals (CPCSEA), and approval of the Institutional 
Animal Ethical Committee, Jiwaji University, Gwalior.

The schematic timeline for drug administration and other 
molecular experiments is presented in Figure 1.

Figure 1. Timeline of the Experiments: Exposure to Poly (I:C) Was 
Given on PND7 and Methylation of DNA as well as Acetylation of 
Histone Were Analyzed in the Brain of 3-, 6-, and 12-week Rats

Source: Author’s own.

Analysis of Epigenetic Modifications

Following poly (I:C) administration, rats were sacrificed at 
different age of 3-, 6-, and 12-week and FC and HP were 
isolated and used for the analysis of epigenetic modifications.

Methylated DNA Immunoprecipitation (MeDIP)

The levels of 5mC at bdnf, arc, and egr1 promoters were 
analyzed by MeDIP. Initially, we isolated DNA from FC 
and HP of control and poly (I:C) exposed rats by the phenol-
chloroform-isoamyl alcohol (PCI) method. Then DNA was 
fragmented (300–1,000bp) by sonication and quantified using 
a spectrophotometer. A small fraction (20%) of fragmented 
DNA was used as input DNA control. Thereafter 4 μg 
fragmented DNA was diluted in 1×  immunoprecipitation 
medium and incubated overnight with 1 μg of 5mC antibody 
(A-1014; Epigentek, USA) for immunoprecipitation on ice 
with shaking. Then, 50 μl protein A-bead was mixed and 
incubated on ice with shaking for 2 h. Further, the precipitated 
complex bound with beads was setteled down by centrifugation 
at 3,500 ×g at 4°C for 10 min. After careful removal of 
supernatant, the pellet was washed with 1× TE buffer atleast 
three times followed by centrifugation. Finally, 200 μl elution 
buffer (100 mM NaHCO3 and 1% SDS) was added to the 
precipitated complex, DNA was precipitated, purified, and 
further dissolved in equal 20 μl TE buffer for each experimental 
group. Thereafter, qPCR was performed using eluted and input 
DNA (for normalization) as template and promoter specific 
primers to amplify specific promoter regions, 134 nucleotides 
of bdnf (F-5¢-TGATCATCACTCACGACCACG-3¢, R-5¢-
CAGCCTCTCTGAGCCAGTTACG-3¢),19 91 nucleotides 
of arc (F-5¢-GGGTGGCTCTGAAGAATATTGG-3¢, R-5¢-
CACCGAGCCCTGTTTGAACT-3¢),20 and 120 nucleotides 
of egr1 (F-5¢-ACCACCCAACATCAGCTCTC-3¢, R-5¢-
GTGGGTGAGTGAGGAAAGGA-3¢).21

Chromatin Immunoprecipitation (ChIP)

ChIP was performed to analyze H3K9 acetylation at histone 
bound to gene promoter sequence. Briefly, the FC and HP 
tissues were removed from the brain of experimental and 
control rats. Then tissues were chopped into small pieces 
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in ice cold 1 × PBS and crosslinked with 1% formaldehyde 
at 25°C for 15 min. Thereafter, crosslinked tissues were 
homogenized in lysis buffer (5 mM KOH pH 8.0, 85 mM 
KCl, 0.5% NP-40 with 1 mM protease inhibitors), kept 
at 4°C for 5 min, and spun at 1,000 × g at 4°C for 5 min. 
After decanting supernatant, the pellet was dissolved in 
nuclear lysis buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA 
pH 8.0, 1% SDS with 1 mM protease inhibitors) followed by 
incubation at 4°C for 20 min and centrifugation at 12,000 × g 
for 15 min to settle the debris. The chromatin complex 
present in supernatant was stored in a fresh tube and protein 
was estimated by the Bradford method.22 Furthermore, we 
diluted 200 μg chromatin in buffer containing 100 mM NaCl, 
20 mM Tris-Cl pH 8.0, 2 mM EDTA, pH 8.0, 1% Triton 
X-100 with 1 mM protease inhibitors. The diluted chromatin 
complex was incubated with protein A-sepharose beads 
for 2 h for preclearing step to remove non-specific binding 
with beads and spun at 3,500 × g for 10 min. The precleared 
supernatant was transferred to a fresh tube and divided into 
input (20%) and immunoprecipitation fraction (80%). The 
immunoprecipitation fraction was incubated with H3K9Ac 
antibody (1 μg) overnight on ice. Then, protein A bead (50 
μl) was added to it and kept for further incubation for 2 h 
on ice followed by centrifugation at 3,500 ×g for 10 min 
at 4°C. The supernatant was removed carefully, and pellet 
was washed sequentially with different solutions (low salt, 
high salt, LiCl, and TE buffer) followed by centrifugation. 
Thereafter, the precipitated complex was eluted with buffer 
(100 mM NaHCO3 and 1% SDS), mixed with 200 mM NaCl 
and incubated at 65°C for 4 h to reverse the cross-linking 
of protein-DNA complex. Then DNA was isolated from the 

precipitated and input fraction by the PCI method. Finally, 
these eluted and input DNA served as template for PCR 
amplification of gene promoter region using specific primers 
as described above.

Statistical Analysis

The data obtained from MeDIP and ChIP qPCR assay were 
statistically analyzed by SPSS 16.0 (Statistical Products and 
Service Solutions, IBM Corporation, Armonk, NY, USA) 
to check the significant mean difference between control 
and experimental groups. The p < .05 was considered as 
statistically significant. Histogram was plotted with mean 
± SEM values to display the difference between poly (I:C) 
exposed experimental and control rats.

Results

Effect on DNA Methylation

Alteration in 5mC level at gene promoter region tightly 
regulates its expression. To check this, we performed MeDIP-
PCR of promoter sequence of bdnf, arc, and egr1 genes. As 
compared to vehicle control, a significant decrease was noted 
in 5mC level at the promoters of these genes in FC and HP 
regions of poly (I:C) exposed 3- and 6-week rats; except the 
arc promoter of 6-week rats which showed no difference in 
methylation level. However, in poly (I:C) exposed 12-week 
rats, 5mC level was increased in both regions as compared to 
control (Figure 2).

Figure 2. Analysis of Methylation Level of DNA by MeDIP-PCR at BDNF, Arc, and EGR1 Promoters in FC and HP of Postnatal 3-, 6-, and 
12-week Rats. Fold Change in DNA Methylation Level of Experimental Group as Compared to Control is Shown as Mean ± SEM in the 
Histogram. “*” Indicates Significance in Difference (p < .05) between Poly (I:C) Exposed and Control Animals

Source: Author’s own.
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Effect on Histone Acetylation

We have also analyzed histone H3K9Ac status at the promoter 
of these genes. The exposure to poly (I:C) significantly 
increased the H3K9Ac level at bdnf, arc, and egr1 promoter 
in both regions of 3-week rats. However, in 6-week, H3K9Ac 
level was increased at bdnf promoter in both regions but 
increased at arc promoter in FC and decreased in HP. 
Similarly, H3K9Ac at promoter of egr1 decreased in FC and 
increased in HP of poly (I:C) exposed 6-week rats. Further, 
it decreased at the promoter of these genes in both regions of 
poly (I:C) exposed 12-week rats (Figure 3).

Discussion

In the current investigation, we have analyzed epigenetic 
regulation of differentially expressed synaptic plasticity 
genes during postnatal exposure of poly (I:C) to developing 
rats. Poly (I:C) has been reported to cause cognitive deficits 
and alterations in epigenetic modifications leading to 
neurological disorders.6, 8, 9 Therefore, it was likely that poly 
(I:C) affects the epigenetic regulation of synaptic plasticity 
genes and consequently impairs memory. In epigenetic 

machinery, DNA methylation is involved in the development 
of neural system, cognitive functions, neurodevelopmental 
disorders and neurodegenerative diseases.23–25 Alteration in 
5mC level is one of the causal factors for aging and related 
neurodegenerative diseases like AD.26

We have found differential methylation pattern at the 
promoter of bdnf, arc, and egr1 genes in FC as well as HP of 
poly (I:C) exposed rats. It was initially increased in both brain 
regions of 3- and 6-week but later decreased in 12-week rats. In 
our previous publication, we reported that poly (I:C) injection 
activated and enhanced TNF-α positive microglia cells after 12 
h of exposure in hippocampus (HP) and it persisted in 3- and 
12-week rats.3 Interestingly, TNF-α positive cells were less in 
number in 12-week rats as compared to early age (12 h, 3-week). 
Moreover, Zhao et al27 have shown that the treatment of TNF-α 
decreases methylation level at IL-32 promoter and upregulates 
its expression in cell lines. This decreased methylation continues 
upto 30 days after the withdrawal of treatment, but thereafter 
it increases leading to decrease in the expression of IL-32 
expression. Thus, TNF-α level might be playing a crucial role 
in decreasing DNA methylation initially in 3- and 6-week when 
the TNF-α level is high but increasing methylation in 12-week 
rats when the TNF-α level is relatively low.

Figure 3. Analysis of Histone H3K9 Acetylation Level by ChIP-qPCR at BDNF, Arc, and EGR1 Promoters in FC and HP of Postnatal 3-, 6-, 
and 12-week rats. Fold Change in Acetylation Level of Experimental Group as Compared to Control is Shown as Mean ± SEM in Histogram. 
“*” Indicates Significance in Difference (p < .05) between Poly (I:C) Exposed and Control Animals

Source: Author’s own.
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Methylation pattern also corroborates with the 
expression pattern of these genes.3 Similarly, alterations in 
DNA methylation and histone acetylation at bdnf, arc, egr1, 
homer1, and narp promoters influence their expression 
in the brain of aged and scopolamine-induced amnesic 
mice.10 DNA methylation recruits the suppressor complex at 
promoter and prevents the interaction of transcription factors, 
thus reducing gene transcription. DNA methylation and 
demethylation events are important for synaptic plasticity and 
memory consolidation.27 The inhibition of DNMT enzyme 
altered the level of DNA methylation and promoted the 
expression of synaptic plasticity reelin and bdnf genes in adult 
brain.28 Hypermethylation of bdnf promoter resulted in its 
downregulation in schizophrenic patients.29 In addition, Penner 
et al30 have shown that alterations in arc expression and its 
promoter methylation are associated with impairment in spatial 
memory. Our results suggest that differential methylation 
status at promoter affects bdnf, arc, and egr1 expression in 
poly (I:C) induced infection. The balanced expression of 
BDNF is critical for synaptic plasticity, synaptogenesis, 
and formation of memory.31 Arc is an important activity 
dependent cytoskeleton associated protein, which helps in 
actin polymerization, synaptogenesis, long term potentiation, 
dendritic arborization, and memory consolidation.32 EGR1 is 
a member of immediate early gene and transcription factor, 
which regulates expression of different synaptic plasticity 
genes.33 Any imbalance in the expression of these genes impairs 
their associated functions leading to abnormal behavior and 
cognitive functions including memory.3 Moreover, poly (I:C) 
exposure to pregnant females reduces dendritic complexity 
and spine density leading to cognitive impairment.34

Methylated DNA recruits HDAC2 repressor complex, 
which removes acetyl group and regulates H3K9Ac level.35 
Histone acetylation is crucial for memory acquisition and 
consolidation. Therefore, we have analyzed H3K9 acetylation 
level and found that in the promoter of bdnf, arc, and egr1 
genes, H3K9 acetylation increased in the beginning at 3-week 
and later decreased at 12-week in FC and HP of poly (I:C) 
exposed rats. Acetylation level positively correlates with 
the expression pattern of these genes.3 Poly (I:C) also alters 
histone acetylation by enhancing HDAC level.17 Moreover, 
Fischer et al36 have demonstrated increase in the acetylation 
of H3K9 and H3K14 with enrichment of environmental 
factors and recovery of memory in neurodegenerative disease 
model. H3 and H4 acetylation also decreases at egr1, c-fos, 
and bdnf promoter in AD.37–39

Conclusion

Our findings show that the influence of poly (I:C) exposure 
during early life also persists in later stages. The poly (I:C) 
exposure alters methylation of DNA and acetylation of histones 
at synaptic plasticity gene promoters and subsequently affects 
gene expression in FC and HP regions of rats even at later 
ages leading to impaired memory (Figure 4).

Figure 4. Graphical Representation of Work: Exposure to Poly 
(I:C) Enhanced Methylation of DNA and Reduced Acetylation of 
Histones with Increasing Age Leading to Changes in Synaptic Plas-
ticity Gene Expression and Thereby Impairment of Memory.

Source: Author’s own.
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