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Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-

like T cells capable of recognizing bacterial and fungal ligands derived from vitamin

B biosynthesis. Under different stimulation conditions, MAIT cells can display

different immune effector phenotypes, exerting immune regulation and anti-/

protumor responses. Based on basic biological characteristics, including the

enrichment of mucosal tissue, the secretion of mucosal repair protective factors

(interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora,

MAIT cells may play an important role in the immune regulation effect of mucosal

lesions or inflammation. At the same time, activated MAIT cells secrete granzyme

B, perforin, interferon g, and other toxic cytokines, which can mediate anti-tumor

effects. In addition, since a variety of hematological malignancies express the

targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially

attractive target for cell therapy or immunotherapy for hematological

malignancies. In this review, we will provide an overview of MAIT research

related to blood system diseases and discuss the possible immunomodulatory

or anti-tumor roles that unique biological characteristics or effector phenotypes

may play in hematological diseases.

KEYWORDS

mucosal-associated invariant T cells, transplantation immunity, hematologicalmalignancies,
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MAIT cell biological characteristics

Mucosal-associated invariant T (MAIT) cells are a group of

unconventional T cells that are immunophenotyped as CD3

+Va7.2+CD161hi cells, and CD8+CD161hi cells account for

more than 90% of MAIT cells (1–4). MAIT cells are tissue

specific and enriched in mucosal tissues such as the lung and gut

but are also present in other tissues, including the skin and liver

(5–9). In humans, MAIT cells make up 1–10% of T lymphocytes

in the blood, up to 10% of intestinal T cells, and up to 50% of all

liver T cells (10). In human peripheral blood (PB), most MAIT

cells express CD8 receptor (approximately 80% of the total

MAIT), and a small portion express CD4 (less than 5% of the

total MAIT) (10). Unlike traditional T cells, MAIT cells are not

restricted by major histocompatibility complex (MHC) but

recognize the MHC-related protein MR1. MAIT cells express a

semi-invariant T cell receptor (TCR)-a chain (Va7.2-Ja33/20/
12 in humans) and a limited TCR-b chain reservoir, mainly from

the TRBV20 and TRBV6 gene families (7, 11). They recognize

riboflavin derivatives (5-OP-RU) synthesized by bacteria and

yeast, and these metabolites bind to MR1 molecules (12, 13).

MAIT cells can also be activated in the independent TCR

pathway by proinflammatory cytokines such as interleukin

(IL)-12/IL-18 (14–16). Upon activation, MAIT cells can

respond rapidly to produce a series of cytokines, including

interferon-g (IFN-g), tumor necrosis factor a (TNF-a), and
IL-17 (17–19). The manner in which MAIT cells are activated

results in distinct transcriptional programs. TCR-dependent

activation results in an increased expression of retinoic acid-

related orphan receptor gt (RORgt) (encoded by RORC) (19, 20),
which is a unique property of the capacity to secrete molecules to

mediate tissue repair (21). In TCR-independent activation, an

elevated expression of T-bet (encoded by TBX21) has been

shown, again consistent with mouse data showing a T-bet-

associated IFN-g bias (19, 20). In addition to cytokine

production, the expression of granzyme B and perforin has

been demonstrated to increase in activated MAIT cells,

thereby enhancing their cytotoxic capacity (22). These

characteristics make MAIT cells have only anti-bacterial and

immunomodulatory activities but may also affect the occurrence

and development of tumors.
The immune regulation of
MAIT cells in hematopoietic stem
cell transplantation

Currently, MAIT cells are not well studied in the hematological

system. Due to the unique biological characteristics and multiple

immune roles, blood-related studies of MAIT cells have focused

mainly on immune regulation in the allogeneic hematopoietic stem

cell transplantation (allo-HSCT) setting and anti-/protumors in
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hematological malignancies. Allo-HSCT is an effective, and even the

only, treatment for hematological malignancies such as leukemia.

Severe graft-versus-host disease (GVHD) and relapse after

transplantation are the main reasons leading to transplantation

failure and affecting the survival of patients (23–27). One of the

main factors in the induction of GVHD is the overactivation of

certain T cel l subsets from donors , but excessive

immunosuppression leads to an increased risk of infection and

relapse (23–25). At present, the prevention and the treatment of

acute GVHD involve mainly inhibiting the activation of T cells or

upregulating the proportion of certain cell subsets with

immunomodulatory effects, such as regulatory T (Treg) cells (28,

29) and myeloid-derived suppressor cells (MDSCs) (30). Since anti-

GVHD and anti-tumor treatments are often contradictory in

clinical practice, around allo-HSCT, the main hotspots of current

basic and clinical translational medicine have focused on how to

induce appropriate immune tolerance after HSCT to reduce the

incidence of GVHD while preserving or even enhancing graft-

versus-leukemia (GVL) effects. Most of the previous related studies

had not been able to well separate the similar alloimmune reactivity

behind the anti-GVHD and GVL effects, while MAIT cells produce

a variety of cytokines after being activated by different stimulatory

pathways of cytokines or TCR signals and participate in immune

regulation and anti-tumor immunity at the same time, which may

provide a new intervention strategy for the clinical prevention and

treatment of GVHD and leukemia relapse.
Reconstitution of MAIT cells
after transplantation

MAIT cells reconstituted slowly after HSCT. MAIT absolute

cell counts in blood dropped to a nadir on the day of https://www.

sciencedirect.com/topics/medicine-and-dentistry/peripheral-blood-

stem-celll transplantation (PBSCT), followed by early and rapid

recovery to a plateau from day 30 to day 100 after https://www.

sciencedirect.com/topics/medicine-and-dentistry/hematopoietic-

cell (31), and remained lower than theMAIT cells of healthy donors

for at least 1 year after HSCT (14, 31). MAIT cell reconstitution

correlated significantly with age (32, 33) and cell source (32, 34–37).

Since the umbilical cord blood (UCB) contains much lower

frequencies of MAIT cells compared with adult graft sources (35),

compared with PBSCT recipients, the recovery of MAIT cells in

recipients infused with UCB grafts was highly impaired within 1

year after HSCT (31, 32, 34), and normal values after UCB

transplant were reached at approximately 5 years in children (34)

and approximately 10 years in adults (32). Regarding the effect of

conditioning regimens on reconstitution, Bhattacharyya A et al.

found no differences in early or late post-transplant MAIT cell

reconstitution in patients receiving myeloablative (MA) or

nonmyeloablative conditioning (31). In contrast, Solders M et al.

showed that patients without anti-thymocyte globulin as well as

patients conditioned with MA conditioning rather than reduced
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intensity conditioning had significantly higher MAIT cell

frequencies (38). Notably, the type of transplantation under

different transplantation settings affected the reconstitution of

MAIT cells after transplantation. Under the “Beijing Protocol”

transplantation settings in our institute (14), the number of

MAIT cells in haploidentical HSCT patients was significantly

lower than the number of MAIT cells in sibling-identical HSCT

patients within 180 days after transplantation, and the difference in

reconstitution between the two groups gradually decreased at 180

days post-transplant (14). In the transplantation setting of

Bhattacharyya A et al. (31), patients who received PBSC

transplant with post-HSCT cyclophosphamide (Cy) had poor

MAIT cell recovery compared with the recipients of PBSC grafts

without post-HSCT Cy. Other factors in previous studies, such as

total body irradiation (31), glucocorticoids and calcineurin

inhibitors (32), HLA match/mismatch, and indication for

transplantation (acute leukemia compared to other diagnoses),

were not found to affect the reconstitution of MAIT cells after

HSCT. Additionally, the rapid reconstitution of MAIT cells after

transplantation was related to the increase in the abundance of

intestinal flora (such as Blautia and Bifidobacterium) (14, 31, 32,

39–41), which may be due to the destruction of the intestinal

mucosal barrier by pretransplant pretreatment with cytotoxic drugs,

resulting in the increased permeability of the intestinal epithelium

that allows intestinal bacterial antigens to contact and activate (by

the MR1/TCR-dependent pathway) MAIT cells from grafts, which

may also be the reason for the rapid proliferation of MAIT cells

within 30 days post-transplant (14).

Taken together, MAIT cell reconstitution depends on factors

such as age, cell source, conditioning regimens, transplant types,

gut microbiota, and immunosuppression. It should be noted that,

in the transplantation settings of the above-mentioned studies, the

transplant grafts included bone marrow stem cells, PBSCs, or

UCB, and the conditioning regimens were not uniform, which

may lead to differences in the study results. Currently, no studies

have focused on the effect of post-transplant infection (bacteria

and viruses, such as cytomegalovirus and Epstein–Barr virus) on

MAIT cell reconstitution. Furthermore, proinflammatory signals

induced by immunosuppressive therapy (4, 11, 36), along with an

altered gut microbiota composition caused by conditioning

therapy, as well as altered dietary intake and antibiotic use (36,

42) may further influence MAIT cell reconstitution and function

after allo-HSCT.
Effect of MAIT cells on graft-versus-host
disease

The anti-GVHD effect of MAIT cells has been well established

in several studies (Table 1). Kawaguchi K et al. demonstrated that

MAIT cell count on day 60 after allo-HSCT was the only

independent risk factor for grades I–IV and II–IV acute GVHD

(33). Other studies have shown that the decreased proportion of
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peripheral CD161hiCD8+ T and MAIT cells may be associated

with acute and chronic GVHD (8, 43). A possible explanation

could be that, under the action of chemokines, CD161hiCD8+ T

and MAIT cells were recruited to inflammatory cells or lesions.

Among CD8+ T cells, the tissue homing properties of subsets

expressing CD161 have been well defined (44, 45). CD161hiCD8+

MAIT cells are highly enriched in mucosal tissues and

significantly upregulate chemokine receptors such as CXCR6

and CCR6 (17), and CD161 and CCR6 alone favor T cell

migration and tissue homing (44, 46). In the intestinal mucosa

of acute GVHD patients, the absolute number of T helper (Th) 17

cells of CD161, RORgt, and CCR6 was significantly higher (43).

Furthermore, CD8+ T cells expressing intermediate and high

levels of CD161 secreted high levels of IL-22, a cytokine involved

in tissue repair and epithelial defense (44). Another recent study

showed that high MAIT cell counts in infused grafts were

associated with a lower incidence of gut acute GVHD after allo-

HSCT and that MAIT cell counts in infused grafts could affect the

abundance and composition of gut microbiota early after

transplantation (14). In vitro studies have shown that MAIT

cells can transform into MAIT17 subsets or secrete increased

IL-17 upon stimulation with TCR-specific (riboflavin metabolite

5-OP-RU or E. coli) or nonspecific signals (CD3/CD28) (14, 20,

47, 48). IL-17 has been shown to play an important role in

maintaining the integrity of the intestinal mucosa (14, 26, 49–

51). RNA-seq technology analysis also confirmed that, under TCR

stimulation, upregulated IL-17F expression and a large number of

genes associated with tissue repair characteristics were observed,

including Furin, TNF, CSF1, and CCL3 and other genes as well as

various growth factors (21, 52). In an in vitro wound-healing

assay, MR1 blockade abrogated the effect, confirming the TCR-

dependent tissue repair potential of MAIT cells (21, 44–48) and

demonstrating that TCR-dependent activation was essential for

the expression of tissue repair-associated molecules by

MAIT cells.

Studies have shown that the flora associated with the

occurrence of gut acute GVHD includes Enterococcus,

Streptococcus, Flavobacteriales, Lactobacillus, and Firmicutes

(14). Notably, Enterococcus, Streptococcus, and Lactobacillus

were impaired in riboflavin biosynthesis. Bacteroidetes,

Proteobacteria, Actinobacteria, and Firmicutes have recently

been shown to activate MAIT cells in decreasing order (53–

55). A recent study by Andrlová H et al. also showed that a

higher abundance of Bacteroidetes in the early post-transplant

period was associated with a higher proportion of MAIT cells

and favorable transplantation outcomes, and specific bacterial

taxa and their riboflavin synthesis pathway genes or key enzymes

supported MAIT cell reconstitution (56). The reason for this

result might be that, on the one hand, these gut microbiota with

nonriboflavin metabolic pathways cannot effectively activate

intestinal MAIT cells, especially the MAIT17 subsets, so that

the intestinal protective cytokines or barriers against

inflammation are reduced, leading to the occurrence of gut
frontiersin.org
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acute GVHD (14). On the other hand, a non-efficient or low-

efficiency riboflavin biosynthetic pathway allows these bacteria

to escape MAIT cell-mediated host detection and enhance their

pathogenicity (14, 55).

Of note is that most studies have focused on donor-derived

MAIT cells affecting GVHD development and progression by

affecting immune reconstitution after transplantation or by

interacting with gut microbiota. However, it was shown for the

first time that, in MR1-/- and IL-17A-/- mouse transplant models,

MAIT cells from the recipient but not the donor after bone marrow

(BM) transplantation produced a large amount of IL-17A to

promote gastrointestinal integrity, modulate microbial

communities, and inhibit alloantigen presentation and effector T

cell expansion, inhibiting the occurrence of GVHD (51). However,

for human allo-HSCT, whether donor-derived MAIT cells or

recipient-derived MAIT cells affect the occurrence of GVHD or

whether both donor-derived and recipient-derived MAIT cells play

different anti-GVHD leading roles at different reconstruction stages

after HSCT remains to be further elucidated.

Furthermore, activated MAIT cells can inhibit the

proliferation of CD4+ T cells (14, 31). The possible reason for

this result is that, under specific activation conditions, MAIT

cells can express higher levels of inhibitory molecules such as

PD-1, CTLA-4, and TIM-3 (50, 57, 58). The engagement of these

molecules with their respective ligands results in the inhibition

of T cell responses (59). Another possible explanation is that

MAIT cells express immune regulation/suppression-related

genes, such as DUSP2, SOCS3, and ZFP36, and express
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RUNX3. PRDM1 defines the ontogeny and activation of

conventional T cell lineages (47, 50), which determines the

secretion of inhibitory cytokines, such as IL-10 and IL-4, by

regulating cytokine signaling and ultimately inhibiting the

proliferation of effector T cells. Of course, more research data

are needed to support these findings. In the MR1-/- mouse

model, recipient MAIT cells were found to have the ability to

inhibit alloantigen presentation by donor dendritic cells (DCs)

and the subsequent expansion of effector T cells following

transplantation, culminating in the attenuation of GVHD (51).

These data suggest that MAIT cells suppress effector T cells by

downregulating the function of antigen-presenting cells.

In short, MAIT cells are rapidly activated and proliferate

under stimulation of the intestinal flora (MR1/TCR-dependent

pathway) and cytokines (non-TCR-dependent pathway).

Activated MAIT cells, in turn, can inhibit the occurrence of

gut acute GVHD by exerting immunosuppressive effects,

expressing intestinal mucosal protective cytokines, and

regulating the intestinal flora (14). Nevertheless, there is still a

lack of research on whether MAIT cells can have a stable GVL

effect in the transplantation setting. In different clinical

backgrounds, the distribution of MAIT cell subsets with

different phenotypes or expressing different transcription

factors in homeostatic or pathological states, their activation

states to different antigenic stimuli, and their immune functions

may be different. In the process of allo-HSCT, how different

MAIT cell subsets play a role in immune regulation or anti-

leukemia remains to be further clarified.
TABLE 1 Summary of research in graft-versus-host disease.

GVHD types Definition of
MAIT cells

MAIT or MAIT subsets
Frequencies

MAIT cell cytokines or
effector phenotypes

Flora composition References

Acute GVHD
Chronic GVHD

↓CD161hiCD8+ and CD161+CD4
+ in periphery

↓IFN-g, ↓IL-17 (8, 43)

Acute GVHD ↓CD8+CD161hi in graft PB (8)

Acute GVHD CD45+CD3+CD161+
+hiVa7.2+
CD3+CD8+CD161+++
+hiVa7.2+

↓MAIT cells in the early post-HCT
period

Higher abundance of Blautia
spp. and Bifidobacterium
longum associated with higher
MAIT cell counts in blood

(31)

Acute GVHD CD161hiTCRVa7.2
+CD3+

↓MAIT cells (0.48/ml) in periphery
on day 60 post-HSCT

(33)

Gut acute GVHD CD3+CD161hi Va7.2+ ↓MAIT cells in grafts and in the
periphery of early post-HCT
period
↑CD161hiCD8+ cells in the lesion
sites of gut aGVHD
↑Rorgt+MAIT (MAIT17) cells,
↑CD4-CD8-MAIT cells

↑CD69, ↑CXCR3, ↑CXCR4,
↑Rorgt, ↑T-bet in periphery

Gut aGVHD-associated flora:
Enterococcus, Streptococcus,
Flavobacteriales,
Lactobacillus, Firmicutes

(14)

Chronic GVHD CD3+CD161hi Va7.2+ ↓MAIT cells in periphery No change: granzyme B, IFN-g,
and IL-17
↑Rorgt in CD8+CD161+ T cells

The riboflavin pathway of
microbiomes correlated with
MAIT cell reconstitution

(32)

Acute GVHD CD3+CD161hi Va7.2+ MAIT cell frequency did not
correlate with GVHD status
following HSCT
↑CD8+MAIT cells frequency

(38)
fr
+, Positive; +++, Strong positive or high expression; ↑, Upregulated expression or secretion; ↓, Downregulated expression or secretion.
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Effects of granulocyte colony-stimulating
factor mobilization on MAIT cells before
transplantation

Granulocyte-colony stimulating factor (G-CSF) has been

widely used to mobilize bone marrow hematopoietic stem/

progenitor cells for transplantation in the treatment of

hematological malignancies. In vivo, G-CSF can affect the

differentiation and activation of specific lymphocyte subsets

and induce the preferential mobilization of naive T cells and

immune tolerance (25, 30, 60–63). G-CSF mobilization has been

demonstrated to reduce GVHD with preservation of the GVL

effect (25, 64–66). A growing body of studies confirmed that G-

CSF could attenuate the reactivity of T and natural killer (NK)

cells by inducing Th2 cell polarization (62, 67) and promoting

the generation of Treg cells (64, 68), tolerogenic DCs (25, 64),

and possibly MDSCs (30). There are limited reports on the effect

of G-CSF on MAIT cells. The proportion and number of MAIT

cells in donor grafts did not appear to be affected by G-CSF

mobilization (69). Moreover, a greater fraction of IL-17-secreted

CD8+CD161hi was found in adult blood following G-CSF

mobilization (35). MAIT cells (CD3+CD161+Va7.2TCR+)
were the only CD8+ IL-17A-secreting T cell subset following

G-CSF mobilization, and the proportions of RORgt-expressing
or coexpressing IFN-g/IL-17A associated with chronic GVHD in

MAIT cells were further enhanced with G-CSF mobilization

(69). These results also suggested that G-CSF mobilization did

not affect or even strengthen the regulation of TCR signaling in

MAIT cells.

Overall, MAIT cells are a class of cells with proinflammatory,

anti-tumor and immunomodulatory effects, and the number and

function of each subset after G-CSF mobilization have important

implications for the prognosis of transplantation. However, the

effects of G-CSF mobilization on the differentiation of MAIT cells

and their subsets, the distribution of surface receptors or effector

phenotypes, and the exertion of different effector functions (anti-

GVHD and GVL effects) remain to be further elucidated.

MAIT cells and
hematological malignancies

MAIT cells have been detected in a variety of human tumor

types, such as colorectal (70, 71), cervical (72), lung (73, 74), liver

(75), and kidney cancers (76). Cancer has an effect on MAIT cell

frequency, phenotype, and function, whereas the effect of MAIT

cells on cancer may vary greatly from cancer to cancer (77).

Collectively, no conclusion has been drawn on whether MAIT

cells play an anti-tumor or a tumor-promoting role in different

tumors or microenvironments. The potential role of MAIT cells

in hematological malignancies has also not been well described.

MAIT cells have unique effector phenotypes (78), which not only

facilitates the best identification of MAIT cells and all
Frontiers in Immunology 05
conventional nonMAIT cells (such as conventional CD8+ T

cells) but also confers unique multiple immune roles to MAIT

cells in various pathological conditions.
Potential role of MR1 molecular
mediation in hematological malignancies

Major histocompatibility complex class 1-related gene

protein (MR1) is a monomorphic antigen-presenting molecule

(Table 2). The default extracellular expression of MR1 is very

low in the absence of its ligands and is upregulated under

inflammatory condition activation (4, 79, 80). The primary

role of MR1 is to present the conserved ligands of microbial

metabolites to MAIT cells (most effective ligand 5-OP-RU and

5-OE-RU) (69). MR1 molecules were found on several immune

cell types, such as monocytes and B cells (17, 21, 81).

Furthermore, MAIT cells were activated by B cells infected

with various bacterial strains but not by uninfected cells (81).

Accordingly, MAIT cells may be involved in the occurrence and

development of malignant hematological tumors through MR1

molecules on monocytes or B cell-related tumor cells.

Interestingly, the expression of MR1 molecules was found in

multiple myeloma (MM) cells and leukemia cell lines such as

THP-1 and K562. MAIT cells have a certain killing function on

these tumor cells in vitro (79, 86). Crowther et al. demonstrated

that a human T cell clone potentially recognizes a specific cancer

or associated metabolite, restricted to MR1, and mediates the

lysis of different types of cancer cells, including leukemic cell

lineages; as such, the human T cell clone mediated in vivo

leukemia regression and conferred longer survival in mice (99,

100). These results suggested that MAIT cells may identify and

kill MR1-expressing malignant tumor cells in MR1-dependent

methods and that MR1 may become an attractive target for

future treatment. In contrast, a recent study in MR1-/- mice

found that MAIT cells promoted tumorigenesis, growth, and

metastasis through melanoma tumor MR1 (13). Thus, whether

the MR1 pathway of MAIT cells mediates protumor or anti-

tumor effects is still inconclusive, and the role of MR1 in

malignant hematological tumors still needs more research to

be confirmed.
Potential role of CD161-LLT1 mediation
in hematological malignancies

The natural cytotoxicity receptor CD161 (NK1.1 in mice) is

generally expressed in NK cells and 24% of T cells including both

gd and ab TCR-expressing subsets, natural killer T cells (NKT),

MAIT cells, monocytes, and DCs (44, 82, 101). The single

CLEC2D gene encoding LLT1 is identified as a ligand of

CD161 (82, 101). Restricted to hematopoietic cells, LLT1 is

not expressed on the surface of resting PBMCs but can be
frontiersin.org
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TABLE 2 Major effector phenotypes of MAIT cells.

Phenotypes Distribution in MAIT cells Ligands/substrates Ligand distribution Functions References

nthesized by bacteria Presents microbial metabolites to MAIT cells that can
be used to recognize and activate MAIT

(4, 79–81)

smacytoid dendritic cell,
cells, T cells

L

a) Expression of CD161 is associated with good
prognosis in most cancers
b) Engagement on NK cells trigger inhibition
c) LLT1/CD161 interaction modulates immune
responses and other unspecified effects

(44, 82–85)

a) Resistance to certain chemotherapy/cytotoxic
drugs
b) Protection from endogenous metabolites or
xenobiotics that may be secreted by gut bacteria

(17, 43, 58,
86–89)

Initiate tumor cell apoptosis (20, 90)

testine, lung, and skin a) Recruit blood MAIT cells to sites of inflammation
b) Associated with chronic GVHD

(43, 91)

a) Tissue repair
b) Recruit NK cells, macrophages, neutrophils,
eosinophils, DCs, and conventional T cells

(43, 58, 88)

a) An immune-inhibitory receptor expressed in
activated T cells
b) Involved in the regulation of T cell functions

(92–96)

Optimal activation and maintenance of RORgt
expression

(97)

a) Regulating MAIT cell development
b) CCR7 is selectively required for the differentiation
of Rort+MAIT17 subset
c) Effector memory-like CCR7- CD62Llow

(57, 78, 91)

Associated with MAIT cell development and effector
memory phenotype

(57, 78, 91)

a) IL-7 enhances MAIT cell responses to bacteria
and promotes cytotoxicity
b) Enhanced production of IL-17A by MAIT cells

(57, 91, 98)

a) IL-12 and IL-18 potentiate MR1-dependent
bacterial MAIT cell activation
b) IL-12 is particularly important for IFN-g
production

(57, 91, 98)
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CD161 (encoded
by KLRB1)

Mature MAIT cells, downregulated
expression of activated MAIT cells

LLT1 (encoded by CLEC2D) Mature dendritic cell, pla
macrophages, B cells, NK
Tumor cell included NH

MDR-1 (encoded
by ABCB1)

CD8+CD161hi or IL-18Rahi CD161hi

CD4-CD161 ++va7.2+
A variety of different substrates, including
cyclosporin A and verapamil

FasL MAIT cells Fas Various tumor cells

CCR6 MAIT17 cells CCL20 The liver, colon, small in

CCL3, CCL4,
CCL5

RORgt+MAIT (MAIT17) cells

PD-1 Activated MAIT cells PD-1L Tumor cells

ICOS RORgt+MAIT (MAIT17) cells

CCR7, CD62L CD4+MAIT cells
Immature MAIT cells

CD27, CD45RO,
CD44

Effector memory MAIT cells

IL-7R (CD127) RORgt+MAIT cells

IL-12R, IL-18R CD8+MAIT cells
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transiently expressed on activated B cells, dendritic cells, T cells,

and NK cells (44, 82, 83). Some tumors of hematopoietic origin

are also detected by LLT1 expression (75), which is highly

expressed by germinal center (GC) B cells and is maintained

in the group of non-Hodgkin’s lymphomas that derive from GC

B cells (82, 83). These include Burkitt lymphomas, follicular

lymphomas, and GC-derived diffuse large B cell lymphomas (82,

83). In addition, Freeman G et al. reported LLT1 on nodular

lymphocyte-predominant Hodgkin lymphomas, and LLT1

triggering may play a key role in GC reactions, promoting B

cell activation and the downregulation of CXCR4 (84).

Significantly, the interaction of LLT1 with the CD161 receptor

is described as inhibitory in NK cells that inhibits their

cytotoxicity and cytokine secretion (44, 83). The blocking of

LLT1-CD161 restored the function of NK cells (83). In addition,

CD161 receptor engagement with the ligand LLT1 was not

sufficient to trigger IFN-g production among T cells unless

simultaneously engaged with CD3 (101). LLT1 interaction

with CD161 did not modulate degranulation in CD8 T cells

but partially inhibited TNF-a production (85). In short, the

current findings strongly suggest that LLT1-CD161 can

modulate NK and T cell responses. Nevertheless, no studies

have explored the functional roles triggered by CD161-LLT1

between MAIT cells and hematological tumors. In the future,

additional studies will be required to better understand the true

consequences of this ligand/receptor interaction (44, 101). The

blocking or enhancing of the interaction of LLT1/CD161 with

anti-LLT1 monoclonal antibodies to enhance antitumor NK and

T cell (including MAIT cells) activity may become a potential

therapeutic approach.
Potential role of other MAIT
unique effect phenotypes in
hematological malignancies

The cassette-multi-drug efflux protein 1 (MDR1), another

high-expression molecule of MAIT cells encoded by ABCB1, is

the prototypical drug efflux pump that has been described to

mediate multi-drug resistance in various malignant cells (87,

102). MDR-1 has extensive specificity for various substrates,

including those that also inhibit transport, such as cyclosporin

A and verapamil (87). This is beneficial for MAIT cells to

become the optimal survival cel l subpopulation in

chemotherapy. Interestingly, MAIT cells can also express the

FasL/sFasL death ligands. Both TCR and cytokine-activated

MAIT cells can rapidly upregulate the FASLG (FasL) gene

expression (20). It has been reported that the antigen-specific

cytotoxicity of iNKT cells in vivo almost entirely depends on

the interaction between CD95 (Fas) and CD178 (FasL), and

this mechanism can be effectively used for anti-tumor reaction

(90). Therefore, in addition to the cytotoxic effects such as

perforin/granzyme and IFN-g, whether MAIT cells can also
Frontiers in Immunology 07
exert anti-tumor effects through the Fas/FasL pathway remains

to be further elucidated. With the high expression of IL-7R, IL-

12R, IL-18R, and other receptors (Table 2), cytokines can

directly stimulate MAIT cells to produce IFN-g and release

granzyme B and perforin (57, 91, 97, 98). In principle, these

specific phenotypes or targets are beneficial for MAIT cells to

play a potential anti-tumor effect in hematologic malignancies,

which may facilitate the use of MAIT as a candidate subset for

immunotherapy in hematological malignancies.
Related research on MAIT cells in clinical
hematological malignancies

To date, the involvement of MAIT cells in hematological

malignancies, especially leukemia, remains largely unexplored.

MM is a hematological malignancy characterized by the

uncontrolled growth of plasma cells from the BM (99). In

patients with newly diagnosed or untreated MM, the frequency

of MAIT cells was significantly reduced, especially the CD8+ and

CD8-CD4- subsets (86, 92). The MAIT1 subset in newly

diagnosed or untreated MM patients was dysfunctional, with

reduced IFN-g (and TNF-a) production, but the ability to

produce IFN-g appeared to be restored in samples from

relapsed/refractory MM patients (86, 92, 99). The exact role

MAIT cells play in MM remains unclear, but the authors did

demonstrate that MAIT cells were capable of killing myeloma cell

lines, suggesting the potential for harnessing MAIT cells as an

immunotherapy (77, 86). A recent prospective study including

216 cases of acute myeloid leukemia (AML) showed that the

number of MAIT cells in PB from newly diagnosed AML was

significantly reduced, and the degree of reduction was associated

with a high-risk cytogenetic karyotype and IDH1/2 mutation,

suggesting that the loss of MAIT cell number or function may be

associated with AML disease progression (103). Another study by

Wallace ME et al. observed deficiencies in MAIT cells in patients

with chronic lymphocytic leukemia (CLL) (104), but the authors

did not indicate a causal relationship between MAIT cell

deficiency and the pathogenesis of CLL or the possible

mechanisms involved. CLL is the malignancy of mature B cells;

in the context of CLL, B cells can act as antigen-presenting cells in

MAIT responses to intestinal microbes, and bacterial infection is

associated with increased MR1 expression on B cells (81, 104).

While it is far from certain whether MAIT cells prove to be

important in CLL, the relationship between MAIT cells and CLL

and the mechanism of action deserve further investigation.

Moreover, a rare case of peripheral T cell lymphoma caused by

MAIT cells has been described, but the effector function or

mechanism of MAIT cells has not been further explored (105).

In vitro assays confirmed that MAIT cells isolated from PB from

healthy individuals not only had lymphokine-activated killing

activity but also exhibited direct cytotoxicity in the K562 cell

line via the degranulation of granzyme B and perforin (106).
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In short, most of the above-mentioned studies (Table 3) have

observed the effects of blood diseases on the frequency and

function of MAIT cells, but whether MAIT cells affect the

occurrence and development of blood diseases, especially

malignant tumors, and the mechanism of the effects have not

been well described. The role of specific targets or effector

phenotypes of MAIT cells in hematological malignancies

deserves further investigation (Figure 1).
MAIT cells in chemotherapy
and immunotherapy

Effect of MDR-1 expression on
chemotherapy in MAIT cells

The high expression of ATP-binding MDR1 is a striking

feature of MAIT cells (17, 58). Anthracyclines act as one of the

major substrates of the resistance transporter ABCB1 (also

known as MDR1), which also explains the significantly higher

resistance of MAIT cells to anthracycline (daunorubicin)
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cytotoxic drugs compared to other CD8+ T cell subsets (17,

87). In AML patients, the high ABCB1-mediated drug efflux

capacity of the IL-18Rahi CD161hi T cell subset conferred

resistance to anthracycline chemotherapy (88). Paradoxically,

Comont T et al. observed that MAIT cells were highly sensitive

to AML chemotherapy (including azacytidine, idarubicin, etc.)

and were depleted from the circulation during the induction

treatment (103). Novak et al. explored MAIT cells in PB from

patients with hematological malignancies who received a course

of MA conditioning (e.g., with a combination of carmustin,

etoposide, cytarabine, and melphalan) before autologous CD34

stem cell transplantation (89) and found that a high proportion

of MAIT cells survive myeloablative chemotherapy and

maintain their capacity to fight against infections, probably on

mucosal surfaces (89). Theoretically, the high expression of

MDR1 in MAIT cells can indeed confer certain resistance to

certain chemotherapeutic drugs in MAIT cells, but the current

studies are limited, and the conflicting conclusions prompt the

need for stronger data to further support this hypothesis.

Furthermore, in the chemotherapy of hematological

malignancies, it is also worthwhile to continue to explore the

specific environment or stimulation conditions to increase the
TABLE 3 Summary of research in hematological malignancies.

Disease types Method of MAIT
detection

MAIT cell
frequencies

MAIT cell cytokines
or effector
phenotypes

MAIT subset
frequencies

References

MM MR1–5-OP-RU tetramers+
TRAV1-2+

↓ in periphery ↓IFN-g, ↓CD27 ↓CD8+, ↑CD4, ↑DN (86)

MM CD3+ CD161+Va7.2 ↓in periphery and bone marrow ↓IFN-g, ↓TNFa ↓CD8+, ↓DN, unchanged CD4+ (92)

AML CD3+CD8+CD161hiVa7.2 ↓ in periphery (103)

CLL ↓ (104)
fr
↑, Upregulated expression or secretion; ↓, Downregulated expression or secretion.
FIGURE 1

Different activation pathways of MAIT cells and main effector functions of activated MAIT cells.
ontiersin.org

https://doi.org/10.3389/fimmu.2022.931764
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao and Zhao 10.3389/fimmu.2022.931764
expression of MDR1 in MAIT cells to enhance the drug

resistance of MAIT cells while maintaining their anti-tumor

effector functions.
MAIT cells and immunotherapy

MAIT cells express many targets of immune checkpoint

inhibitors, highlighting the potential importance of these cells in

immune checkpoint therapy. PD-1 is a well-known target of

immune checkpoint inhibition in cancer, as tumor cells are able

to evade the immune system through PD-1-PDL1/2 signaling

(92). MAIT cells express PD-1 in both blood and peripheral sites

(93, 94), and enhanced PD-1 expression has been shown on CD4

+ and CD8+ T cells in some cancer patients and other disease

settings (58, 95). PD-1 levels were increased in MAIT cells in the

BM and PB of patients compared with healthy controls, and in

vitro/in vivo PD-1 blockade experiments demonstrated the

successful reactivation of MAIT cells and a significant

reduction in mouse tumor burden (92). The impact of MAIT

cells in the MM microenvironment as well as the improvement

of their effector functions through immune checkpoint blockade

represents a relevant and attractive field for immune monitoring

and immunotherapy in MM. A recent study showed that, in

melanoma patients treated with anti-PD-1 therapy, patients with

higher MAIT cell counts had a higher response rate to treatment,

and anti-PD-1 therapy increased the expression of cytotoxic

effect-related genes in tumor-infiltrating MAIT cells (96),

suggesting that some treatments may have an anti-tumor effect

by promoting the immune activation and killing function of

MAIT cells. In addition, Bifidobacterium longum was

particularly related to higher MAIT cell counts in the blood

and recovery of MAIT cells after transplantation (31).

Interestingly, in studies investigating the efficacy of anti-PD-L1

therapy, Bifidobacterium was significantly associated with anti-

tumor effects and was most abundant in patients who responded

to anti-PD-1 therapy (37), also providing the possibility for

future microbiota transplantation by increasing the frequency

and activation of MAIT cells or enhancing the efficacy of

immune checkpoint inhibitors.

MR1 is also an attractive target for future therapy. The singlet

receptor MR1 is highly conserved among individuals and binds

predominantly to MAIT cells, eliminating the need to design new

TCRs for each patient with different cancer types or HLA alleles and

natural tropism for specific tissues, which can easily target mucosal

tissues such as the liver and gut. Furthermore, nonMAIT, MR1-

restricted T cells have recently been shown to recognize and kill

several tumor cells in an MR1-dependent manner (58, 100).

However, it is currently unclear whether this tumor-derived

compound also contains MAIT cell antigens (58, 100). Regulation

of MR1 expression is currently not well described in healthy tissues

or tumor cells. Since MAIT cells are highly competent cytotoxic

cells with distinct tissue propensities, redirecting these functions to
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other antigens may provide new therapeutic approaches for

difficult-to-treat hematological malignancies.

In addition to therapies using MAIT cells to directly target

tumors through their endogenous TCRs, MAIT cells may be an

ideal host for chimeric antigen receptor (CAR)-T cell therapies

(58, 107). The treatment of hematological malignancies by

autologous T cells expressing CAR is a breakthrough in the

field of cancer immunotherapy. Since they are not selected by

classical MHC/peptide complexes and express semi-invariant T

cell receptors, MAIT cells do not mediate allogeneic activity,

prompting their use as a new source of universal effector cells for

allogeneic CAR-T cell therapy without inactivating its

endogenous TCR (108). In the latest study, researchers

targeted tumor-associated macrophages by mesothelin-

targeting CAR (MCAR)-engineered MAIT (MCAR-MAIT)

cells and found that the targeting and killing of tumor-

associated macrophages by MCAR-MAIT cells may be the

reason for their persistent tumor-killing ability and activation

(109), supporting the human cancer therapeutic potential of

CAR-MAIT cells. In addition, another study reported the

viability of CD19-CAR MAIT cells (108), demonstrating their

anti-tumor efficacy in vitro and their ability to engraft without

mediating https://www.sciencedirect.com/topics/medicine-and-

den t i s t r y / g ra f t -ve r su s -hos t -d i s ea s e in prec l in i ca l

immunodeficient mouse models, thus having the potential to

provide a suitable alternative to current autologous CAR-T cells

to treat patients regardless of HLA disparity. Collectively, the

immunotherapy potential of MAIT cells is still theoretically

feasible, and more robust data or studies are needed to

establish the feasibility and reliability of MAIT cells for clinical

cell therapy or immunotherapy methods.
Conclusions and prospects

Currently, the limited research on MAIT cells in hematological

diseases has focused on two areas: malignant tumors and

transplantation immunity. First, in terms of hematological

malignancies, the current studies are inconclusive about what role

MAIT cells play in different tumors. In this regard, future studies

need to confirm, on the one hand, the functional effects of MAIT

cells or subsets on different hematological tumors and the potential

specific mechanisms of these effects. On the other hand, as an

attractive target of MAIT cells, MR1 needs to be better explored for

the mechanisms of hematological disease-associated antigens and

antigen/MR1 complexes presented in MR1 to successfully target

MAIT cells to tumors. Additionally, noteworthy is the fact that

MAIT cells may be ideal hosts for CAR-T cell therapy and may

provide new and effective treatments for hematological

malignancies. Second, for the field of transplantation immunity,

the anti-GVHD effect of MAIT cells has been well described.

However, MAIT cells are also heterogeneous, with different cell

subsets possibly having different functions, and there may be many
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MAIT cell subsets that have not yet been discovered or fully

elucidated. Therefore, future studies will provide stronger

evidence for the regulatory effect of MAIT cells on GVHD.

Moreover, it is necessary to clarify the heterogeneity of MAIT

cells and the distribution and function of each subset in vivo under

different activation conditions during transplantation and further

confirm the role of specific subsets of MAIT cells in anti-GVHD

immune regulation and anti-leukemia to ensure that only the

optimal cells are transferred. These findings will provide a new

intervention strategy for the clinical prevention and treatment of

GVHD and leukemia relapse and further improve the efficacy

of transplantation.
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