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Objective: The aim of this study was to identify a transcriptomic signature that could be used to classify subjects with autism 
spectrum disorder (ASD) compared to controls on the basis of blood gene expression profiles. The gene expression profiles 
could ultimately be used as diagnostic biomarkers for ASD.
Methods: We used the published microarray data (GSE26415) from the Gene Expression Omnibus database, which included 
21 young adults with ASD and 21 age- and sex-matched unaffected controls. Nineteen differentially expressed probes were 
identified from a training dataset (n=26, 13 ASD cases and 13 controls) using the limma package in R language (adjusted p 
value ＜0.05) and were further analyzed in a test dataset (n=16, 8 ASD cases and 8 controls) using machine learning algorithms.
Results: Hierarchical cluster analysis showed that subjects with ASD were relatively well-discriminated from controls. Based 
on the support vector machine and K-nearest neighbors analysis, validation of 19-DE probes with a test dataset resulted in 
an overall class prediction accuracy of 93.8% as well as a sensitivity and specificity of 100% and 87.5%, respectively.
Conclusion: The results of our exploratory study suggest that the gene expression profiles identified from the peripheral blood 
samples of young adults with ASD can be used to identify a biological signature for ASD. Further study using a larger cohort 
and more homogeneous datasets is required to improve the diagnostic accuracy.
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INTRODUCTION

Autism spectrum disorders (ASDs) are devastating 
neurodevelopmental disorders characterized by deficits in 
social communication and interaction across multiple 
contexts as well as restricted, repetitive patterns of inter-
ests and behavior. The Centers for Disease Control re-
cently presented that the prevalence of ASD has risen to 
approximately 1 in 68, and most children are not diag-
nosed with ASD until after 4 years of age in the United 
States.1) Because early intensive behavioral and devel-

opmental interventions for toddlers and children with au-
tism could improve outcomes,2) there is a scientific need 
for reliable diagnostic ASD biomarkers that are expressed 
early in life. Such markers could have a significant impact 
on diagnosis and treatment.

Although the complex etiologies of ASD are poorly un-
derstood, the high heritability of ASD is supported by high 
concordance rates (from 36% to 95%) in monozygotic 
twins and higher recurrence risks of 11% and 19% with 
single-sibling involvement.3-5) Rapid advances in clinical 
genetic testing technology have increased the diagnostic 
yield from about 10% a few years ago to about 30%.6) 
However, because many of these genetic variants show in-
complete penetrance and variable phenotypic ex-
pression,7) the use of gene expression signature bio-
markers may be informative and provide the best model 
for identifying ASD cases.

In particular, four studies have investigated blood-de-
rived gene expression signatures to differentiate between 
ASD individuals (toddlers and children) and unaffected 
controls.8-11) These studies focused on individuals with a 
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Table 1. Demographic and clinical characteristics of study subjects

Characteristic ASD (n=21) Control (n=21)

Demographic

Gender, male/female 17/4 17/4

Age (yr) 26.7 (5.5) 27.0 (5.5)

Clinical

AQ 30.2 (5.1) NA

WAIS

VIQ 96.2 (19.9) NA

PIQ 87.5 (21.6) NA

FIQ  91.9 (21.6) NA

Values are presented as number only or mean (standard deviation). 

ASD, autism spectrum disorder; AQ, autism spectrum quotient; 

WAIS, Wechsler Adult Intelligence Scale; IQ, intelligence quotients; 

VIQ, verbal IQ; PIQ, performance IQ; FIQ, full IQ; NA, not applied.

mean age of 2.2 to 9.6 years who were at risk for ASD, and 
there were relatively high predictive accuracies (between 
68% and 91%). To date, no study has demonstrated diag-
nostic prediction using blood-derived gene expression 
signatures in adult subjects with ASD. Accordingly, 
whether the gene expression profiles of adult individuals 
offer information about the ASD risk remains a critical 
question.

The aim of this study is to apply a transcriptomic ap-
proach to identify a gene expression signature with prom-
ising performance in the diagnostic prediction of young 
adults with ASD. Here, we used a published ASD micro-
array dataset to test the hypothesis. These methods pro-
vide researchers with the opportunity to test hypotheses 
without performing time-consuming, labor-intensive 
bench work.

METHODS

Acquisition of the Microarray Data
A publicly available microarray dataset (GSE26415) 

was downloaded from the Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) database,12) which 
was deposited by Kuwano et al.13) The original data in-
cluded 21 samples of peripheral leukocytes obtained from 
young adults with ASD and age- and sex-matched con-
trols as well as from healthy women with children with 
ASD and matched controls. The pre-existing clinical diag-
noses of ASD were made by experienced child psychia-
trist and developmental pediatrician according to the 
Diagnostic and Statistical Manual of Mental Disorders, 
4th edition, text revision (DSM-IV-TR). In order to cor-
roborate the ASD diagnosis, the Japanese version of the 
Autism Spectrum Quotient was completed.13) The plat-
form information was GPL6480 (Agilent-014850 Whole 
Human Genome Microarray 4x44K G4112F). In this 
study, we utilized 42 microarrays from subjects with ASD 
(n=21) and their matched controls (n=21) for further 
analyses. The demographic and clinical characteristics of 
the study subjects are summarized in Table 1.

Data Preprocessing and Selection of Differentially 
Expressed Genes

The raw data in .CEL format were primarily processed 
using R language (http://www.r-project.org/)14) “limma” 
package.15) The datasets were imported in R using the 
“read.maimages” function; the “normexp” function was 
used for background correction. The adjusted data were 
transformed with a logarithm for normalization using the 

quantile method (Supplementary Fig. 1). Filtering was 
further achieved by building a criterion in which the 95th 
percentile of the negative probe on each array was set as a 
standard point of brightness. The control and low ex-
pression probes were filtered out when the probes at 
one-third of the total arrays were 10% less bright than the 
standard point. The “avereps” function was used to aver-
age the replicate spots on each array. Differentially ex-
pressed (DE) probes were identified using the moderated 
t-test from the limma package. p values were adjusted for 
multiple testing with the Bonferroni correction, and 
probes were called significant when the adjusted p value 
was ＜0.05.

Development of a Prediction Model Using a Machine 
Learning Algorithm

We applied machine learning to develop a prediction 
model that used DE probes extracted from the training set, 
differentiating between individuals with ASD and controls 
in the test set. Our strategy included two main types of ma-
chine learning, unsupervised and supervised learning.

For unsupervised learning, we adopted hierarchical 
cluster analysis using complete linkage and the Euclidean 
distance. Cluster analysis and visualization were per-
formed using the “heatmap.2” function in the “gplots” 
package16) in R.

For supervised learning, we used three different ma-
chine learning algorithms, such as the support vector ma-
chine (SVM),17) K-nearest neighbors (KNN)18) and linear 
discriminant analysis (LDA).19) We performed prediction 
analysis in the subsequent sequential steps. Using the 
“set.seed” function in R, we randomly divided our data 
(n=42) into a training dataset (13 ASD and 13 control sub-
jects) and test dataset (8 ASD and 8 control subjects). 
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Table 2. Nineteen probes significantly dysregulated* in the ASD training sample compared with the unaffected control’s training sample

Probe ID
Gene 

symbol
Gene name Location logFC p value

Adjusted 

p value†

Evidence for association with ASD‡

Type
Number 

of reports

A_32_P9963 HSF2 Heat shock transcription factor 2 6q22.31 −0.5288 3.99E-08 0.0007 Deletion-duplication of 6q22.31 20

A_24_P391104 RFX1 Regulatory factor X, 1

 (influences HLA class II expression)

19p13.1 0.5379 1.16E-07 0.0021 Deletion of 19p13.13-p13.11 2

A_23_P214037 NPM1 Nucleophosmin 

(nucleolar phosphoproein B23, numatrin)

5q35.1 −0.5139 4.34E-07 0.0079

A_32_P184330 ＜NA＞ 0.5664 4.39E-07 0.0080

A_24_P832113 NPM1 Nucleophosmin 

(nucleolar phosphoproein B23, numatrin)

5q35.1 −0.4808 4.79E-07 0.0088

A_23_P119683 MIER2 Mesoderm induction early response 1, 

family member 2

19p13.3 0.3391 5.41E-07 0.0099

A_23_P162807 MRPS31 Mitochondrial ribosomal protein S31 13q14.11 −0.4422 1.13E-06 0.0206 Deletion-duplication of 13q14.11 15

A_23_P88439 TC2N Tandem C2 domains, nuclear 14q32.12 −0.4056 1.25E-06 0.0228 Deletion of 14q32.11-q32.13 1

A_32_P188674 NPM1 Nucleophosmin 

(nucleolar phosphoproein B23, numatrin)

5q35.1 −0.4742 1.30E-06 0.0237

A_23_P399501 PKM Pyruvate kinase, muscle 15q22 0.4023 1.32E-06 0.0242

A_32_P46765 C12orf29 Chromosome 12 open reading frame 29 12q21.32 −0.4320 1.38E-06 0.0252 Deletion of 12q21.31-q21.33 1

A_24_P927883 JADE2 Jade family PHD finger 2 5q31.1 −0.3695 1.52E-06 0.0278

A_23_P131676 ACKR3 Atypical chemokine receptor 3 2q37.3 −0.4413 1.66E-06 0.0303 Deletion of 2q37.1-q37.3 3

A_23_P84154 ARHGAP15 Rho GTPase activating protein 15 2q22.2-q22.3 −0.3958 1.69E-06 0.0309 Rare single gene variant 6

A_23_P250462 ATP6AP1 ATPase, H+ transporting, 

lysosomal accessory protein 1

Xq28 0.3399 2.25E-06 0.0412 Deletion-duplication of Xq27.1-q28 1

A_23_P322593 TAPT1-AS1 TAPT1 antisense RNA 1 4p15.32 −0.3650 2.28E-06 0.0417 Deletion of 4p16.3-p15.32 2

A_32_P173058 TMEM41B Transmembrane protein 41B 11p15.4 −0.3388 2.40E-06 0.0438 Deletion-duplication of 11p15.4 28

A_23_P117424 DCAF11 DDB1 and CUL4 associated factor 11 14q11.2 0.3174 2.54E-06 0.0464 Duplication of 14q11.2-q21.1 1

A_32_P90685 ＜NA＞ −0.4853 2.63E-06 0.0481

ASD, autism spectrum disorder; ID, intellectual disability; NA, not applied; logFC, log2 of fold change.

*Adjusted p values ＜0.05; 
†

Bonferroni correction. 
‡The Simons Foundation Autism Research Initiative (SFARI) Gene 2.0 database (available at http://gene.sfari.org).

Fig. 1. Heat-map overview of the two-way hierarchical clustering 

analysis of 19 differentially-expressed probes. Each row represents 

the relative levels of expression for a single probe. The red or 

green color indicates relatively high or low expression, respec-

tively. In the sample clustering dendrogram, red indicates autism 

spectrum disorder samples while blue indicates control samples.

Each algorithm was trained on the training dataset of 26 
randomly selected samples, which were labeled with DE 
probes. Eight ASD and 8 control subjects in the test data-
set were validated. All supervised machine learning anal-
yses were performed using the “MLinterfaces” pack-
ages20) in R language. 

Supplementary Figure 2 briefly describes the study 
design. The protocol of this study was reviewed and ap-
proved by the institutional review board of Hanyang 
University Hospital (HYUH IRB-2015-05-008).

RESULTS

Altered Gene Expression Profiling between the ASD and 
Control Groups

In comparing microarray data for the subjects with 
ASD (n=13) with those of unaffected controls (n=13) in 
the training dataset, a total of 19 DE probes were identified 
(adjusted p value ＜0.05), including 6 up-regulated probes 
and 13 down-regulated probes (Supplementary Fig. 3). 
Among the 19 probes, 15 were annotated as gene symbols 
using the Bioconductor “hgug4112a.db” package.21) Ten 
of these genes (or loci) had previously reported associa-
tions with ASD (Table 2).
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Table 3. Prediction performances of the 19-probe set on the test (validation) set, according to machine learning algorithms

　 Accuracy (%) Sensitivity (%) Specificity (%) Positive predictive value (%) Negative predictive value (%)

SVM 93.8 100.0 87.5 88.9 100.0 

KNN 93.8 100.0 87.5 88.9 100.0 

LDA 68.8 62.5 75.0 71.4 66.7 

SVM, support vector machine; KNN, K-nearest neighbor; LDA, linear discriminant analysis.

Unsupervised Machine Learning
Using the 19-probe expression signature, a hierarchical 

cluster analysis of all samples (n=42) showed that ASDs 
were relatively well discriminated from controls (with the 
sorting of three ASD cases into the control group), sug-
gesting that these probes could be helpful for differ-
entiating between ASDs and controls. Detailed results 
from the hierarchical cluster analysis are presented in 
Figure 1.

Supervised Machine Learning 
For the supervised machine learning algorithms, we 

simply built a classifier using the 19-probe expression sig-
nature and assessed its predictive performance. With this 
19-probe prediction model, the test dataset was used to 
validate the prediction of ASD. This validation test re-
vealed that our prediction model successfully dis-
tinguished between the individuals with ASD and 
controls. Both SVM and KNN analysis accurately identi-
fied 8 individuals with ASD and 8 controls with the ex-
ception of classifying one control as ASD, resulting in a 
predictive accuracy of 93.8% (sensitivity of 100% and 
specificity of 87.5%). However, in the LDA analysis, the 
diagnostic prediction of ASD vs. control samples was 
68.8% accurate (Table 3).

DISCUSSION

Our analyses were designed to validate a potential bio-
logical signature using peripheral blood microarray data 
obtained from young Asian adults with ASD in combina-
tion with machine learning algorithms. In this exploratory 
study using previously published microarray data,13) we 
identified a blood-based gene expression signature that re-
liably identified young adults with ASD.

These results are consistent with the findings of four 
previous studies that reported on gene expression sig-
natures with high diagnostic accuracy for toddlers and 
children with ASD.8-11) The results of this and four pre-
vious studies suggest that gene expression profiles from 
the peripheral blood samples contain a biological sig-
nature that could be used to predict the ASD risk in both 

children and young adults. According to several studies of 
healthy adults, the expression of most genes within in-
dividuals remains temporally stable, and only 1% to 2% of 
genes display significant changes over time periods of at 
least one month.22,23) In addition, previous studies ob-
served that the cognitive, behavioral, and emotional 
symptoms of individuals with ASD generally persist over 
time.24,25) Therefore, the gene expression patterns under-
lying these long-standing phenotypes may be constant 
over time in the transition children to young adults.

Gene expression microarrays primarily measure mes-
senger RNA for thousands of identified genes.26) The mi-
croarrays specifically evaluate the sequence of DNA that 
is transcribed to RNA in the genome at a given time. 
Prediction models using multivariate gene expression 
have been widely adopted for screening, diagnosis, and 
prognosis.27,28) Several previous transcriptome-wide stud-
ies of gene expression in ASD subjects have used post 
mortem brain tissue29-31) or peripheral blood samples.8-11,13) 
Among them, the gene expression profiles using periph-
eral blood have shown that RNA expression is disrupted 
across hundreds of genes in individuals with ASD. 
Blood-based analyses of gene expression profiles are en-
couraging because blood samples are easily obtainable 
from living individuals and are likely to contain ASD-rel-
evant signatures.

Although the connection between blood and brain tran-
scriptomic profiles is not well known, growing evidence 
suggests that measurements performed in tissues that are 
not primarily involved in the disease process may uncover 
disease signatures.10) Sullivan et al.32) have established a 
shared gene expression profile between whole blood and 
brain tissues suggesting that the cautious and thoughtful 
use of peripheral gene expression may be a useful surro-
gate for gene expression in the brain. Further research will 
be required to determine whether the dysregulated sig-
natures in peripheral blood are actual indicators of the 
brain pathophysiology in ASD. Our results could also pro-
vide further evidence of the emerging consensus that pe-
ripheral blood is a potential source of biological signatures 
that are responsible for dysregulation of the brain and oth-
er unreachable tissues.33)
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The gene list in our study partially overlaps with pre-
viously reported candidate genes and loci associations for 
ASD (Table 2). These various transcriptomic changes 
would be representative of the genomic alteration in the 
ASD. Blood-derived gene expression studies of subjects 
with ASD repeatedly demonstrate dysregulation of im-
mune/inflammation genes.34) Regulatory factor X1 
(RFX1; transcription factor regulating a wide variety of 
genes involved in immunity)35) expression was sig-
nificantly increased in the ASD group in our study. 
Substantial percentages of patients with ASD show pe-
ripheral markers of mitochondrial energy metabolism 
dysfunction.36) We found the mitochondrial ribosomal 
protein S31 (MRPS31) expression was significantly re-
duced in the ASD group. In particular, we identified a 
probe (A_23_P399501, pyruvate kinase muscle isozyme 
[PKM]) that has the best ability for detecting whether a 
sample was collected from a patient with ASD 
(Supplementary Fig. 4). The PKM expression level was 
significantly higher in ASD subjects than in controls. 
Pyruvate kinase is an enzyme involved in glycolysis. Its 
primary function is to catalyze the transfer of a phosphate 
group from phosphoenolpyruvate to adenosine diphos-
phate as the last step of glycolysis, generating one mole-
cule of pyruvate and one molecule of adenosine 
triphosphate.37) A previous study also demonstrated that 
the plasma pyruvate levels were higher in children with 
autism than in controls.38) These results suggested that the 
PKM expression level in peripheral blood may serve as a 
biomarker to distinguish ASD from controls.

Our study has several limitations, mostly stemming 
from small sample size and lack of phenotypic in-
formation of the original data. In particular, most of ASD 
subjects in this study exhibited normal intelligence quo-
tients (IQ; mean full scale IQ, 91.9), this probably does not 
represent the broader ASD population. Unfortunately, it is 
not well understood about the connection between the pe-
ripheral blood and the brain transcriptomic profiles and 
the influence of age factor for gene expression in subjects 
with ASD. The results of our study should be cautiously 
interpreted. If further analysis is performed on a more ho-
mogeneous dataset and validated in an independent, large 
cohort of cases and controls, the accuracy of the results 
should be higher. These strategies for class prediction 
analyses will help identify robust biomarkers for both the 
diagnosis of ASD and individualized treatment options 
for patients and their families.39)

In conclusion, this study reveals a blood-based gene ex-
pression signature that has promising accuracy in dis-

tinguishing between young adults with ASD and age- and 
sex- matched unaffected controls. The ability of the 19 DE 
probes to correctly predict ASD samples compares favor-
ably with the results of four previous studies on ASD diag-
nosis in toddlers and children. This transcriptomics ap-
proach may shed light on an important aspect of clinical 
biomarker discovery, offering high predictive accuracy 
for detecting ASD.

We thank Dr. Yuki Kuwano for generously depositing 
the microarray data series (GSE26415) online.
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