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Abstract 

RNA secondary str uct ures play essential roles in the formation of the tertiary str uct ure and function of a transcript. Recent genome-wide studies 
highlight significant potential for RNA str uct ures in the mammalian genome. Ho w e v er, a major challenge is assigning functional roles to these 
str uct ured RNAs. In this study, we conduct a guilt-b y -association analy sis of clusters of computationally predicted conserved RNA str uct ure 
(CRSs) in human untranslated regions (UTRs) to associate them with gene functions. We filtered a broad pool of ∼50 0 0 0 0 human CRSs for 
UTR o v erlap, resulting in 4734 and 24 754 CRSs from the 5 ′ and 3 ′ UTR of protein-coding genes, respectively. We separately clustered these 
CR Ss f or both sets using RNAscClust, obtaining 793 and 2403 clusters, each containing an a v erage of fiv e CR Ss per cluster. We identified 
o v errepresented binding sites for 60 and 43 RNA-binding proteins co-localizing with the clustered CRSs. Furthermore, 104 and 441 clusters from 

the 5 ′ and 3 ′ UTRs, respectiv ely, sho w ed enrichment for various Gene Ontologies, including biological processes such as ‘signal transduction’, 
‘nerv ous sy stem de v elopment’, molecular functions lik e ‘transferase activity’ and the cellular components such as ‘synapse’ among others. Our 
study shows that significant functional insights can be gained by clustering RNA str uct ures based on their str uct ural characteristics. 
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NA secondary structures are integral to the maturation, reg-
lation and function of all transcripts including mRNA. Nu-
erous regulatory structure elements are located in the 5 

′ and
 

′ UTRs of mRNAs ( 1 ). Some of the well known examples
nclude: the iron response elements (IRE) involved in main-
aining the cellular iron content ( 2 ), the gamma interferon in-
ibitor of translation (GAIT) element that is involved in lim-
ting the cellular immune response ( 3 ), Histone 3 

′ UTR stem-
oop required for cell cycle regulation of histone gene expres-
ion ( 4 ), and the internal ribosome entry sites (IRES) for the
ranslation initiation in cap-independent manner ( 5 ). A typi-
al feature of many such functionally important structural el-
ments is that they are evolutionarily conserved, wherein the
ourse of evolution brings the compensatory mutations in the
rimary sequences that still support the base-pairs preserving
he underlying functional RNA structure. 

To date, different computational methods have been ap-
lied for genome-wide prediction of evolutionary conserved
econdary structure (CRS) on sequence-based multiple align-
ents, for examples RNAz ( 6 ) and EvoFold ( 7 ). Although

hese approaches are efficient for the genome-wide screens,
heir design on using pre-aligned sequences as input with pre-
eceived: December 19, 2023. Revised: June 26, 2024. Editorial Decision: July 11
The Author(s) 2024. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commerc
riginal work is properly cited. For commercial re-use, please contact reprints@o
ermissions can be obtained through our RightsLink service via the Permissions l
ournals.permissions@oup.com. 
defined fixed window sizes makes them sensitive to both mis-
alignments and structure predicted on incomplete sequence
depending on the chosen window size. Given that, an RNA
structure can be more conserved than its primary sequence it
becomes desirable to simultaneously predict an alignment and
a CRS of the RNA sequences. The first such approach to si-
multaneous sequence and secondary structure alignment was
proposed by David Sankoff ( 8 ). 

The Sankoff algorithm has been implemented in programs
like FOLDALIGN ( 9 ) and LocARNA ( 10 ). A more optimal strat-
egy, but also more computationally expensive, for the genome-
wide prediction of CRSs is to use the multiple genome-wide
alignments as an indication of similarity . Subsequently , re-
align in both sequence and structure simultaneously ( 11 ,12 ).
One way to do this, is to build a structural alignment itera-
tively by building a revised model every time a sequence was
matched to the previous model. This is realized in the expec-
tation maximization (EM)-based approach in CMfinder ( 13 ).
CMfinder is not constrained by the initial multiple sequence
or genome alignment or by predefined window sizes, instead it
uses the initial alignment to infer the putatively orthologous
sequences and perform the local structural alignment while
discarding apparently irrelevant ones. However, CMfinder has
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Figure 1. Ov ervie w of the CR S clustering w ork o w. We implemented the 
f ollo wing main tools: PETfold (3,6); RNAlib - ViennaRNA package (4,6); 
RNAscClust (5); LocaRNA (6). 

 

 

its own caveats as well by providing mainly shorter motifs
( 14 ). 

Here, we focus on the previous CMfinder screen in multiple
genomes of the 17 vertebrates that was subsequently extended
to the 100-species tree by aligning to the original models. This
resulted in a vast compendium in ∼500 000 CRS regions (ge-
nomic regions of overlapping CRSs) collectively correspond-
ing to ∼2% of the human input sequence taken from the
MULTIZ alignments ( 14 ). That study revealed enrichment lo-
cation of CRSs and range annotations, including UTRs, tran-
scriptional regulatory regions, intron and RNA-binding pro-
tein (RBP) binding sites. However, it has not been studied if
some of the CRS located in genes with same biotypes also
make up the same structural motif. Here, we address precisely
this challenge. 

To our knowledge, only a few studies have made attempts to
report the clusters of evolutionary conserved RNA structure
families using the genome-wide structure prediction sets. Most
of them implemented EvoFold or RNAz based prediction of
conserved RNA structures, followed by the classication of the
structures considering their genomic location or distribution
across different gene biotypes ( 7 ,12 ), or by performing hier-
archical clustering based on the all-vs-all pairwise distances
using the pairwise alignment tool LocaRNA ( 10 ). The limit-
ing factors for these studies are that they are either depen-
dent upon the initial sequence alignments, prefixed window
sizes, or the hierarchical clustering does not have efficient run-
time performance for clustering the genome-wide scale of pre-
dicted structures. To overcome the limitations of the run-time
performance, a heuristic pairwise sequence alignment algo-
rithm called DotAligner ( 15 ) was introduced that requires
the pre-computed RNA dot plots to perform the alignments.
Using this tool one could perform the clustering of large set
of single sequences, but not the evolutionary conserved struc-
tures, as it leverages the diversity of suboptimal structures
from a partition function of RNA alignments to identify an
optimal sequence-structure alignment of two RNAs. 

The alternative approaches to these methods include the
use of CMFinder ( 13 ) for motif discovery of RNA structures
among the set of unaligned sequences, it has been previously
applied across the orthologous sequences of bacterial homolo-
gous genes ( 16 ,17 ). Another method called NoFold ( 18 ) clus-
ters single query sequences based on constructing a distance
function to compare against the empirical models to map
RNA sequences to a structural feature space. GraphClust
( 19 ,20 ), is another alignment-free approach that decomposes
RNA structures into graph-encoded features to identify the
common structure motifs, however the pipeline works on sin-
gle sequences and clusters paralogs. Extending over single
sequence clustering, the EvoFam comparative method intro-
duced the clustering of the EvoFold ( 7 ) predictions, however
the EvoFold predictions were itself based on sequence align-
ments with limited degree of sequence variation. 

In this contribution, we use our CMFinder screen and fo-
cus specifically on the CRSs in the UTRs of the protein-coding
genes and perform their clustering using a RNAscClust ( 21 ),
an extension of GraphClust that utilizes the evolutionary
signatures of RNA structures as an additional classification
feature for clustering. The advantage of using RNAscClust
over the other clustering methods is that it makes it possible to
also search for the paralog CRSs including those that have less
sequentially conserved structured RNAs and may not be cap-
tured in the initial structural alignments. Here, we present the
clusters of CRSs obtained from RNAscClust , and associate 
the clustered CRSs with common structural features to their 
potential functional roles based on the functional enrichment 
analysis by taking advantage of the host gene associated Gene 
Ontology (GO) terms into account. Additionally, we present 
the results from the cluster specific enrichment for the bind- 
ing sites for RNA-binding proteins (RBPs). We also propose a 
prefiltering step for the input set of CRSs from a genome-wide 
screen, as well as an iterative post-cluster processing step (Fig- 
ure 1 ) to obtain better clusters from the RNAscClust . 

Materials and methods 

Workflow 

To identify recurring and functionally significant structural el- 
ements in the UTRs of protein-coding genes, we employed 

our CMfinder based predicted catalog of 773 850 CRS align- 
ments. These alignments cover 515 506 CRS regions in the 
human MULTIZ alignments of 16 vertebrates relative to the 
human genome (accessible at http://hgdownload.cse.ucsc.edu/ 
goldenPath/ hg18/ multiz17way/ ). To generate this extensive 
catalog of CRS, Seemann et al. ( 14 ) extended the predictions 
to the 100 species from the multiple alignments of 99 verte- 
brate genomes with human ( http://hgdownload.soe.ucsc.edu/ 
goldenPath/ hg38/ multiz100way/ ) by mapping human hg38 

coordinates to orthologous regions in each of the other 99 

vertebrate genomes first by using liftOver ( 22 ) and sub- 
sequently searching these sequences (including the original 17 

species) for hits using CRS covariance models with CMsearch 
( 23 ). For the purpose of clustering, the 100-species CRS align- 
ments were again reduced to those sequences derived from the 
species present in the hg18 17-species alignment. This reduc- 
tion was implemented to include a diverse set of genomes with 

phylogenetic variation in the clustering process, while still uti- 
lizing the most up-to-date genome assemblies. To illustrate,
within the 100-species alignment, there are 12 primate se- 
quences that are expected to be highly similar to each other. As 
a result, these sequences contribute minimal co-variation in- 
formation to the RNAscClust based clustering process. The 
resultant alignment encompassed various species, including 
human, mouse, and zebrafish. The workflow (Figure 1 ) uti- 
lized for the clustering of CRS is outlined below. 

Selection of CRSs overlapping 5 

′ and 3 

′ UTRs 
We specifically chose CRSs that exhibited a minimum over- 
lap of at least 50% of their length with the annotated UTRs 
obtained from GENCODE v33 ( 24 ) in the human genome.
In most cases, the CRSs were considerably shorter than the 
corresponding UTRs and were completely contained within 

the UTR regions. The shortest CRSs we selected had to en- 
compass at least 40 nucleotides (nt) of human sequence in 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/
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he alignment, ensuring they were long enough to form sta-
le hairpin structures. To extract UTR annotations from the
TF format annotation file and calculate the overlap between

he CRSs and UTRs, we utilized in-house scripts that imple-
ented functions from the R packages GenomicFeatures

nd data.table 

RSs filter based on FDR and G+C content 
e further applied a filter to the CRSs, requiring them to have

 G+C content ranging from 25% to 65%. This range has
een identified as optimal in our original screen for achieving
 mean false discovery rate (FDR) of < 20% ( 14 ). The result-
ng set of CRSs, referred to as Input-set1, was used as input for
lustering using the RNAscClust pipeline. As a first-hand ap-
roach, the CRSs in Input-set1 were used as is in their current
rientation, and no reverse complement of CRSs was applied.
his pipeline internally utilizes PETfold ( 25 ), which consid-
rs evolutionary and thermodynamic information to predict
onsensus secondary structures. The identified conserved base
airs from the alignments are then used as constraints for pre-
icting the secondary structure of the human sequence using
NAfold ( 26 ), enabling the projection of conserved base pairs
nto the sequence. 

ETfold structure prediction (outside RNAscClust pipeline) 
e used the CRS alignments filtered based on the FDR and
+C content directly as the input to the PETfold based con-

ensus secondary structure prediction. For this, we employed
he default value of -p 0.90 for the PETfold reliability cut-
ff, but allowed relaxed -g 0.50 cutoff for the maximum
ercent of gaps in alignment column. The predicted consensus
tructure is next adjusted according to the human sequences
y removing the columns with all gaps using an in-house R
cript, and stockholm format alignment files containing the
djusted consensus structures were generated to be used as
nput for RNAscClust . Doing this outside the RNAscClust
ipeline gives us an opportunity to compare the overlapping
onsensus structures in the CRS region, and select the non-
edundant representative CRSs from each CRS region. 

election of representative CRSs 
or the selection of representative CRSs with sufficiently dis-
imilar structure from each CRS region, we first sorted the
RSs in descending order of total base-pairs (bp) and then by
scending order of their lengths. Next, we selected the CRS
op in the order and compared its structural similarity with
ach of the CRS down in the order iteratively. To determine if
he two CRSs in comparison are structurally similar to each
ther, we calculated a similarity score ( S A 

and S B as shown in
he below expression). For example, given CRSs A (top in the
rder) and B (next in order) from the same CRS region, their
imilarity scores are calculated as 

S A 

= 

# Identical bp 

# bp in A 

, S B = 

# Identical bp 

# bp in B 

here, ‘# Identical bp’ refers to the count of identical base
airs present in the CRSs, while ‘# bp’ represent the total base
airs in A and B. If both S A 

and S B are sufficiently low it in-
icates that the CRSs are sufficiently dissimilar. Here we em-
loy a cut-off of 40% for adding CRS B to the selection list.
n the subsequent iterations, CRS A and B are compared to
RS C and so on, continuing until the last CRS in the CRS

egion is reached. If any CRS has a higher similarity score, it
is discarded, ensuring that the selected CRSs accurately repre-
sent the CRS region without redundancy. This method is im-
plemented using a Python script that utilizes functions from
RNAlib-2.4.18 ( 26 ) to determine identical base pairs. The
chosen CRSs serve as input (Input-set2) for RNAscClust , uti-
lizing the -structure-is-given option to prevent recom-
putation of the consensus structure and constraint folding of
the sequences (as discussed in section, ‘CRSs filter based on
FDR and G+C content’). Again, we did not consider the re-
verse complementary version of the CRSs. Note that a CRS re-
gion often consist of multiple individual CRSs on both strands.
Obtaining the reverse complements require careful consider-
ation of e.g. wobble pairs and full scale statistical analysis,
which is beyond the scope of this work. The percentage of
sequence identity, GC content fraction and the number of se-
quences in the Input-set1 and Input-set2 CRSs can be seen in
Supplementary Figure S1 . 

CRS clustering based on RNAscClust 
We installed and configured RNAscClust 1.1.1 , includ-
ing all the necessary software dependencies (please refer to
Supplementary Table S3 ), on a local system. In order to run
RNAscClust on a computing cluster, we made specific mod-
ifications to certain pipeline scripts, adapting them to work
with the Slurm Workload Manager, which was originally de-
signed for the Sun Grid Engine queuing system. The default
parameter settings were used for all the required tools. For
the GraphClust module as well, we maintained the default
parameter values, but we increased the number of iterative
clustering rounds to 45. This adjustment aimed to assign as
many input CRSs as possible to clusters. The minimum clus-
ter size parameter was set to 3 (configuration file containing
these settings is available in Supplementary File 10 ,11 ). Clus-
tering was carried out separately after both step 2 and step 4
of the workflow described in the study (Figure 1 ). The param-
eter settings remained consistent in both cases, with the only
difference being that in the latter, the input alignments were
limited to the selected representative CRSs. These alignments
were in Stockholm file format that included pre-computed
PETfold predicted consensus structures, which were used for
constraint folding within the RNAscClust pipeline. The com-
mands used for executing the RNAscClust pipeline is shown
in Supplementary Note . 

Post-cluster processing 
After running RNAscClust , we obtained clusters of paralog
sequences that had been globally aligned using LocARNA ( 10 ).
To analyze these clusters further, we utilized PETfold to pre-
dict secondary structures based on the LocARNA alignments.
We collected cluster-specific statistics, such as the number of
sequences in the alignment, the fraction of each sequence that
was paired or contained gaps, and the median sequence length
per cluster. This information was gathered using a custom
Python script we developed in-house. To measure the spread
of sequences within each cluster, we plotted the standard devi-
ation of the sequence length. In order to eliminate any outlier
sequences that were either too long or too short compared to
the median sequence length, we referred to the distribution of
standard deviation of the length of CRS sequences per cluster
(Figure 3 C, D), followed by manual inspection of the outlier
clusters. Based on this observation we set a threshold for the
range of sequence length (median ± 10 nt). Sequences with
lengths outside of this range were removed from the cluster.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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The remaining CRSs (Clustered RNA sequences) were then
subjected to another round of alignment using LocARNA , fol-
lowed by secondary structure prediction using PETfold . We
once again collected statistics on the aligned sequences, focus-
ing on the fraction of the sequence that was paired or con-
tained gaps. For this, we again referred to the distribution of
fraction of paired nucleotides and the fraction of ungapped
sequence per cluster (Figure 3 A, B), followed by the man-
ual inspection of the outlier clusters. Based on the observa-
tion made we set a threshold on the fraction of unpaired nu-
cleotides to at least 50%. We selected these thresholds as it
will exclude only the outlier CRS in the cluster while retain-
ing the large fraction of the data. We repeated the process of
realigning the CRSs and predicting consensus structures af-
ter excluding sequences with more than 50% unpaired nu-
cleotides in the alignment. Finally, considering the distribution
of the fraction of paired nucleotide in the consensus structure
( Supplementary Figure S4 ), we selected only those clusters that
contained at least 20% paired nucleotides and a minimum of
three CRSs, ensuring the presence of RNA structure for fur-
ther functional enrichment analysis. 

Recovery of known structure families from Rfam 

and EvoFam 

In order to determine whether we could identify the known
Rfam structure families within the clusters of CRSs derived
from UTRs, we obtained the Rfam 14.4 data, which pro-
vides genomic coordinates and family annotations for the
structure elements. This data was downloaded from the
Rfam ftp site: https:// ftp.ebi.ac.uk/ pub/ databases/ Rfam/ 14.4/
genome _ browser _ hub/homo _ sapiens/ ( Supplementary Note ).
To establish a connection between the human genomic coor-
dinates of the structure elements and our input set of CRSs
for clustering, we made an intersection, requiring that at
least 50% of the Rfam structures overlap the CRSs. Fur-
thermore, we filtered the families based on their evidence
record in the Rfam database, with a focus on those that
were recognized as specific 5 

′ and 3 

′ UTR structure elements
( Supplementary Tables S1 and S2 ). If multiple structure ele-
ments from the same Rfam family overlapped with multiple
CRSs, we anticipated that these Rfam families would be de-
tected within our clustered set of CRSs. 

For EvoFam annotations, we sourced them from the
following location: http:// moma.ki.au.dk/ prj/ mammals/
all _ UTR _ with _ paralog _ 30012010 _ thresh1.0/. Initially, the
genomic coordinates for EvoFam families were based on the
hg19 build. To align them with our CRSs, we converted the
coordinates to hg38 using liftOver ( 27 ). Subsequently,
we intersected these updated coordinates with our CRSs,
considering them overlapping if at least 50% of the Evo-
Fam structures coincided with the CRS. Similar to Rfam, if
multiple structure elements from the same EvoFam family
overlapped with multiple CRSs, we expected them to be
detected in our clustered set of CRSs. 

Gene Ontology (GO) and Pathway 

overrepresentation analysis 

In order to classify the clusters based on their functional char-
acteristics, we conducted a functional enrichment analysis uti-
lizing the GO and Pathway annotations of protein-coding
genes that host the CRSs in their UTR region. We obtained
the GO annotations from the GO Consortium ( 25 ) through
ensembl (Ensembl v106) biomaRt web services ( 28 ). To eval-
uate the cluster-specific overrepresentation of GO terms, we 
compared the proportion of genes in a CRS cluster of inter- 
est that were annotated with a specific GO term (foreground),
to the proportion of all other protein-coding genes that con- 
tained CRSs assigned to at least one cluster and were anno- 
tated with the corresponding GO term (background). Explic- 
itly, we constructed a 2 × 2 contingency table for this analysis.
The table included the number of genes in the CRS cluster of 
interest that were annotated with a specific GO term of inter- 
est in row 1 and column 1 (foreground). Row 2, column 1 rep- 
resented the total count of genes annotated with the same GO 

term and were assigned to at least one cluster (background).
Column 2, row 1 represented the total count of genes within 

the foreground cluster of interest that had at least one GO 

annotation, excluding the GO term of interest. Finally, Col- 
umn 2, row 2 represented the total count of all genes that be- 
longed to at least one CRS cluster and had a GO annotation,
excluding the GO term of interest. Only clusters with three 
or more distinct genes were included in this analysis. We ap- 
plied one-sided Fisher’s exact test to compute the P -values. To 

account for multiple comparisons within each cluster, the P - 
values were adjusted ( P adj ) using the Benjamini and Hochberg 
(BH) method, implemented in an in-house R script. Addition- 
ally, we computed the Fold Change (FC) difference by dividing 
the foreground proportion by the background proportion. A 

GO term was considered overrepresented in a cluster if there 
were at least 3 genes annotated with that term, and if the P adj 
was < 0.05 and the FC was > 1.5. 

For pathway enrichment analysis, we downloaded pathway 
annotation data from the Reactome (v80) ( 29 ) and KEGG 

(v102.0) ( 30 ,31 ) pathway databases using biomaRt ( 32 ) and 

their respective data download links ( https://reactome.org/ 
download-data ; https:// rest.kegg.jp/ link/ hsa/ pathway ). We as- 
sessed the overrepresentation of pathways in each cluster us- 
ing the one-sided Fisher’s exact test once again. Explicitly, we 
again constructed a 2 × 2 contingency table for this analy- 
sis. Where the table included the number of genes in the CRS 
cluster of interest that were annotated with a specific path- 
way of interest in row 1 and column 1 (foreground). Row 2,
column 1 represented the total count of genes annotated with 

the same pathway and were assigned to at least one cluster 
(background). Column 2, row 1 represented the total count 
of genes within the foreground cluster of interest that had at 
least one pathway annotation, excluding the pathway of in- 
terest. Finally, Column 2, row 2 represented the total count 
of all genes that belonged to at least one CRS cluster and had 

a pathway annotation, excluding the pathway of interest. A 

pathway was considered overrepresented in a cluster if there 
were at least 3 genes annotated with that pathway, and if the 
P adj was < 0.05 and the FC was > 1.5. 

RBP binding site coverage enrichment and 

overrepresentation analysis 

RNA structures are well known to interact with proteins 
( 33 ), to investigate if our set of clustered CRSs are the 
binding sites for specific RBPs, we acquired the data on 

RBP binding sites from the ENCODE project phase III,
which offers a comprehensive map of human RBPs’ bind- 
ing and functional characteristics ( 34 ). This dataset incorpo- 
rates information from various assays, including the enhanced 

CLIP (eCLIP) assay, which examines the in vivo binding 
activity of 150 RBPs. We focused on the peaks that were 
consistently identified in both biological replicates for our 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://ftp.ebi.ac.uk/pub/databases/Rfam/14.4/genome_browser_hub/homo_sapiens/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
http://moma.ki.au.dk/prj/mammals/all_UTR_with_paralog_30012010_thresh1.0/
https://reactome.org/download-data
https://rest.kegg.jp/link/hsa/pathway
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nalysis. To retrieve the eCLIP RBP binding site data from
NCODE, we utilized a custom R script that leverages func-

ions from the ENCODExplorer package and performed a
atch download using the eCLIP experiment accession IDs.
he downloaded data were in BED6+4 format, also known
s the ENCODE narrowPeak bed format, which includes the
dentified peaks of signal enrichment based on pooled and nor-
alized data (link for more information: http://genome.ucsc.

du/ FAQ/ FAQformat.html#format12 ). 
To determine the overlap between the RBP binding sites

nd our set of CRSs, we employed the bedtools software
 35 ). We required that the entire binding site to overlap with
he CRSs. Next, we conducted a nucleotide-level coverage en-
ichment analysis in three different sets: (i) all CRSs, (ii) CRSs
verlapping UTRs and (iii) the clustered CRSs from UTRs.
or each set, we compared the proportion of nucleotides cov-
red by RBP binding sites with the proportion of nucleotides
overed by RBP binding sites in the UTRs. To make these com-
arisons, we employed the two-proportion one-sided Z-Test
hat returns the value of Pearson’s chi-squared test statistic
nd a P -value which is useful to infer whether the coverage of
BP binding sites were significantly higher in these three sets

ompared to entire UTRs. 
Furthermore, we examined the cluster-specific overrepre-

entation of RBP binding sites by assessing comparison be-
ween the proportions of CRSs within a cluster that co-localize
ith the binding site of a given RBP (foreground), and all
RSs in our input set used for clustering that co-localize with

he binding site of that RBP (background). Explicitly, we con-
tructed a 2 × 2 contingency table for this analysis. The table
ncluded the number of CRSs in the CRS cluster of interest
hat co-localize with the binding site of a RBP of interest in
ow 1 and column 1 (foreground). Row 2, column 1 repre-
ented the total count of CRSs in the input set that co-localize
ith the binding site of that RBP. Column 2, row 1 repre-

ented the total count of CRSs in the foreground cluster of
nterest that co-localize with the binding site of at least one
BP, excluding the binding site of the RBP of interest. Finally,
olumn 2, row 2 represented the total count of all CRSs in

he input set that co-localize with the binding site of at least
ne RBP, excluding the binding site of a RBP of interest. We
pplied one-sided Fisher’s exact test to compute the P -values.
o account for multiple comparisons within each cluster we
djusted the P -values using the BH method. The FC value was
omputed by dividing the foreground proportion by the back-
round proportion. The statistical tests were performed using
n in-house R script. 

esults 

re-processing the input CRSs 

o extract CRSs for the clustering, we first selected CRSs over-
apping human UTRs with relatively relaxed FDR threshold
 < 20%), to retain a large pool of CRSs for clustering. Subse-
uently, we excluded clusters with average FDR > 15%. This
pproach enabled us to include instances with a low FDR,
hich could contribute to an overall cluster. In total, we ac-
uired 6285 and 35 573 CRSs (Input-set1) from the 5 

′ and
 

′ UTRs, respectively. The difference in the total number of
RSs in the 5 

′ and 3 

′ UTRs is primarily attributed to two fac-
ors: (i) the discrepancy in their lengths, as the 5 

′ UTRs are
enerally shorter than the 3 

′ UTRs ( 36 ) and (ii) the variation
in G+C content between the 5 

′ and 3 

′ UTR sequences, with
the 5 

′ UTRs having a higher G+C content ( 1 ), resulting in a
higher FDR in CRSs from the 5 

′ UTR. 
The set of CRSs we have chosen may consist of multiple in-

stances that overlap with each other by at least 1 nucleotide.
These overlapping instances are referred to as CRS regions
(genomic regions of overlapping CRSs) ( 14 ). In fact, the afore-
mentioned selected set of CRSs corresponds to a total of 4061
CRS regions in the 5 

′ UTRs and 20 667 CRS regions in the
3 

′ UTRs. If there is large overlap among multiple CRSs, it
indicates the presence of multiple potential foldings within
that region, as predicted by CMfinder (demonstrated in Fig-
ure 2 A, B). The overlapping CRSs can extend both upstream
and downstream of the overlapping region. To prevent clus-
tering of CRSs originating from the same CRS region, which
can occur because the shared structure element also contribute
as the immediate neighboring subgraphs in the RNAscClust
pipeline, a pre-filtering step is performed on the input set of
CRSs. This pre-filtering ensures that each CRS element within
a region is unique, as explained in the ‘Selection of CRSs over-
lapping 5 

′ and 3 

′ UTRs’ section of the methods. Following the
filtering process for the overlapping CRSs, a total of 4734 and
24 754 representative CRSs were obtained from the 5 

′ and 3 

′

UTR, respectively, that were used as the Input-set2 (Table 1 ).
Note that we obtain more CRSs than regions in the 5 

′ and 3 

′

UTRs respectively. This is due to the filtering scheme which
allow for structurally dissimilar CRSs within the same region.

Clustering CRSs located in human 5 

′ and 3 

′ UTRs 

respectively 

Using RNAscClust we clustered separately the CRSs from
the 5 

′ and 3 

′ UTRs in Input-set1 and Input-set2, respectively
such that the clusters contained a minimum of 3 CRSs (see
Materials and methods, ‘CRS clustering based on RNAsc-
Clust ’ for details). For the 5 

′ UTR, we obtained 1200 and
975 clusters, and for the 3 

′ UTR, we obtained 3604 and 2994
clusters, respectively, using Input-set1 and Input-set2. Since
Input-set2 contained non-redundant structure elements, we
anticipated that clustering would group more similar structure
elements from different genomic loci compared to Input-set1.
Indeed, by using the filtered set of CRSs (Input-set2), we found
twice as many unique CRS-containing clusters, with 523 and
1491 from the 5 

′ and 3 

′ UTRs respectively, compared to Input-
set1 where we found 372 and 532 clusters from the 5 

′ and 3 

′

UTRs respectively (Table 1 ). Hence, we focus on the clustering
results from Input-set2 in rest of the manuscript. 

Quality of the clusters 

To assess the quality of the clusters, we analyzed the align-
ment length, fraction of ungapped sequences, and fraction
of paired nucleotides. The distribution of clustered CRS se-
quences based on paired and ungapped nucleotides and align-
ment block length is depicted in Figure 3 (A, B). Most of
the clustered paralog CRS sequence alignment lengths ranged
from 50 to 100 columns, comprising around 70% of the to-
tal. Around 15% of the CRS sequences belonged to the align-
ment block length of 30–50 columns, which was shorter than
the average input CRS sequence length ( ∼82–84nt) due to
RNAscClust decomposing the CRS into substructures dur-
ing clustering ( 21 ). The remaining ∼15% belonged to clusters
with an alignment block > 100 columns, resulting from the
inclusion of gaps in the clustered sequence alignment relative

http://genome.ucsc.edu/FAQ/FAQformat.html#format12
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A

B

Figure 2. CRS region in UTRs with multiple overlapping CRSs. ( A ) An example of CRS region with multiple overlapping CRSs. A UCSC browser graphic 
showing 3 ′ UTR region in the RASD1 gene locus (top). The CRS track (available from https:// rth.dk/ resources/ rnannotator/ crs/ vert/ v2.1/ ) shows four 
CR Ss that o v erlap each other, representing a CRS region. ( B ) The overlapping CRSs in this region largely share the common str uct ure elements. We see, 
the CRS M1725894 overlap completely with M1725895 and share the common secondary str uct ure highlighted with blue outline. Similarly, the CRSs 
M1725895 and M1725899 share the green outlined str uct ure element, and the CRSs M1725899 and M1725896 has the common str uct ure element 
highlighted in red. Here, M1725895 and M1725896 alone are the representative CRSs for the region with non-redundant str uct ure information. 

A B

C D

Figure 3. Quality of clustered CRSs from ( A ) 5 ′ UTRs and ( B ) 3 ′ UTRs. The x-axis represents the fraction of the ungapped clustered CRS sequence that is 
assigned to at least one cluster. The y-axis represent the fraction of paired nucleotide in the clustered CRS sequence. Each dot in the scatter plot 
represent a CRS. The color of the dots represent the length of the clustered CRS aignment block. The pie chart shows the fraction of CRSs that belong 
to an alignment of certain length range. The table shows the number of clusters and the total CRSs that belong to these clusters. In panel ( C ) and ( D ), 
we see the distribution of the standard deviation of the length of the CRS sequence per cluster from the 5 ′ and 3 ′ UTR respectively. 

https://rth.dk/resources/rnannotator/crs/vert/v2.1/
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Table 1. Summary of the CRS clustering Input-set1: Total CRSs after fil- 
tering for the FDR and G+C content (Materials and methods); input-set2: 
It is subset of Input-set1, and contains only the selected representative 
set of CR Ss; UCR S: unique CR S region; SCI: str uct ure conserv ation inde x 

5 ′ UTR 3 ′ UTR 

Input-set1 Input-set2 Input-set1 Input-set2 

Total CRSs 6285 4734 35 573 24 754 
Avg. CRS length 
(in nt) 

83.48 82.57 85.50 84.37 

CRSs assigned to a 
cluster 

6164 4635 24 109 17 776 

Total Clusters 1200 975 3604 2994 
Avg. CRSs in cluster 5.22 4.76 6.72 5.73 
Avg. genes in cluster 4.59 4.73 5.31 5.67 
Clusters with UCRS 372 523 532 1491 
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o the consensus structure of the CRSs in the cluster, which
s possible when uneven CRS sequence lengths are clustered
ogether by RNAscClust . 

The standard deviation (SD) of the CRS sequence length
er cluster (Figure 3 C, D) shows that there are at least ∼10%
5 

′ UTR: 110; 3 

′ UTR: 318) of the total clusters that had the
D > 10. We manually inspected the clusters with higher SD
 > 10) in sequence length, and found in many of the cases there
ere the inclusion of either a longer sequence or a minor-

ty of smaller sequences in the cluster. This affects the over-
ll alignment and the consensus structure due to the insertion
f many gaps or missing / incompatible base pairs. Although,
he RNAscClust is benchmarked using the Rfam-ome data
o achieve a high recall and precision scores for identifying
imilar structures (initial candidate clusters) based on the dot
roducts of sparse feature vectors induced in the pipeline ( 21 ),
here is always a small chance for wrongly assigning a se-
uences to a cluster during the iterative clustering step that in-
okes GraphClust methodology which could yield the clus-
ers with higher SD in the sequence length. 

ost processing of the clusters 

o enhance the quality of clusters, we adopted an iterative ap-
roach. In a first step, we eliminated outlier CRSs within each
luster by applying a length filter. Specifically, we removed se-
uences that deviated from the median length of CRSs within
he cluster by either being 10 nucleotides longer or shorter (re-
er to the Methods section, ‘Post-cluster processing’ for more
nformation). Following this filtering step, we removed 691
RSs from the 5 

′ UTR clusters and 2320 CRSs from the 3 

′

TR clusters. Next, we focused on clusters that contained a
inimum of three CRSs. These clusters were realigned, and

onsensus structures were predicted. By performing this step,
e improved the consistency of the sequences and quality of

he clustered CRS alignment, resulting in a higher fraction of
ngapped sequences (Figure 4 A, B) 
In the second step, we removed clustered CRSs that had
ore than 50% unpaired nucleotides (refer Methods, ‘Post-

luster processing’) compared to the consensus structure. This
esulted in only 46 and 205 CRSs being removed from the 5 

′

nd 3 

′ UTR clusters, respectively. We then selected only those
lusters left with at least 3 CRSs, realigned them, and predicted
he consensus structure again. In total, 57 and 287 CRSs were
emoved from the 5 

′ and 3 

′ UTR clusters, respectively, because

he cluster size was < 3. 
In total, combining the first and second steps and disregard-
ing clusters with < 3 CRSs, we only removed 794 of 4647
and 2812 of 16 972 clustered CRSs from the 5 

′ and 3 

′ UTR
clusters, respectively. In the subsequent step, we further se-
lected the clusters by filtering them for at least 20% paired
nucleotides in the consensus structure, ensuring the presence
of RNA structure. We removed 61 clusters corresponding to
298 CRSs from the 5 

′ UTRs and 252 clusters corresponding
to 1469 CRSs from the 3 

′ UTRs, respectively. 
The resulting 3522 and 12 570 CRSs corresponding to 793

and 2403 clusters from 5 

′ and 3 

′ UTR were of high qual-
ity, with a average median FDR of approximately 13% (Fig-
ure 4 ; Supplementary File 1 ). Most of the CRSs with higher
FDR were eliminated during the post-cluster processing steps,
indicating that the retained CRSs were of high quality. The
distribution of the FDRs of the CRSs for the top 20 clus-
ters ordered based on the median FDR values per cluster
is shown in Supplementary Figure S2 . In total 59 of 793
(7%) clusters in 5 

′ UTR and 355 of 2403 (15%) clusters in
3 

′ UTR contained > 50% of CRSs with < 10% FDR. Ad-
ditionally, 489 of 793 (62%) clusters in 5 

′ UTR UTR and
1582 of 2403 (66%) clusters in 3 

′ UTR exhibited statistically
significant covariation ( R-scape v0.3.2 E -values < 0.05; see
Supplementary File 1 , Sheets 3–4; Supplementary Data, Sup-
plementary Note, Supplementary Figure S3 ). In line with the
purpose of RNAscClust to cluster the paralog genes, we ob-
tained 12 clusters in the 5 

′ UTRs and 41 clusters in the 3 

′

UTRs (with sequence identity ranging from 25% to 75% and
GC content ranging from 25% to 65%) that comprise 24
and 102 paralogous genes, respectively. These findings pro-
vide additional support for our clustering process we intro-
duce, and the functionality of the RNAscClust pipeline (see
Supplementary File 1 , Sheets 5–6). 

We further analyzed dimethyl sulfate (DMS) signals, which
react with unpaired adenine and cytosine residues, from DMS-
seq experiments conducted on human K562 cells ( 51 ). The
strand-specific DMS-seq experiments included denatured, in
vivo and in vitro samples, with the denatured sample serv-
ing as an ‘unstructured’ control. First, we intersected all po-
sitions with DMS signal scores with gene annotations from
GENCODE v33. We found that over 99% of the positions in-
tersected on the same strand as the annotations, while about
11% of the DMS signals are mapped to the opposite strand of
gene annotations. These numbers are as expected as DMS-seq
experiments probe the structure of transcribed RNA. Next, we
intersected the UTR-specific Rfam families with the DMS sig-
nals. Out of 258 Rfam annotations spanning to 42 Rfam fam-
ilies ( Supplementary File 2 , Sheets 5, 6), 51 instances (20%)
overlapped with positions with DMS signals, which repre-
sented 21 (50%) of the Rfam families ( Supplementary File 6 ,
Sheets 1–3). All overlapping DMS signals were from the same
strand as the Rfam annotations, and none overlapped with the
opposite strand. We found that the DMS signals for positions
overlapping with Rfam were significantly lower (Wilcoxon
signed-rank test, P adj < 0.05) compared to UTRs with no Rfam
overlap in general, but also among the paired compared to the
unpaired nucleotides ( Supplementary Figure S5 ), confirming
the structured nature of the Rfam instances. 

Since we did not include the reverse complementary ver-
sions of the CRSs in our clustering analysis, we may have
missed clustering CRSs on the reverse complementary strand
of those currently used in our input set, which might still be
supported by DMS signals. Therefore, we intersected the clus-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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A B

Figure 4. Quality of clustered CRSs after post-cluster processing from ( A ) 5 ′ UTRs and ( B ) 3 ′ UTRs. The x-axis represents the fraction of the ungapped 
CRS sequence (UGS) that is clustered in a cluster. The y-axis represent the fraction of paired nucleotide in the CRS (PNT). Each dot in the scatter plot 
represent a CRS that is clustered in a cluster. The color of the dots represent the length of the clustered CRS alignment block. The pie chart shows the 
fraction of CRSs that belong to an alignment of certain length range. The dotted grey lines shows the 50% thresold on the fraction of ungapped 
sequence and paired nucleotide. The first two rows in the tables show the total clusters and the CRSs that were selected for the realignment after the 
remo v al of CRSs based on the their length threshold. The CRSs falling in the range: PNT < 50; UGS > 50 were removed from the cluster and the 
remaining CRSs were realigned. A cluster is chosen for downstream analysis, if it contained at least 3 selected CRS and has at least 20% of paired 
nucleotides in the alignment. 

A B

C

Figure 5. Histone 3 ′ UTR stem–loop Rfam motif identified by RNAscClust. ( A ) Consensus secondary str uct ure based on the sequence-str uct ure 
alignment of the clustered CRS paralog sequences from human genome. The stem–loop str uct ure is characteristic for the histone 3 ′ UTR stem-loop 
motif (Rfam https:// rfam.xfam.org/ family/ RF0 0 032 ). ( B ) and ( C ) UCSC browser graphic showing two CRSs (M1300789, M2304799) from the cluster 
#1650 that o v erlap with the Histone3 Rfam motif highlighted in the blue shaded region. 

 

 

 

 

 

 

 

 

 

 

tered CRSs with the DMS signal scores on both the same
strand and the opposite strand of the predicted CRSs. We
found that 516 (15%) of 3522 clustered CRSs in the 5 

′ UTR
and 3735 (30%) of 12 570 clustered CRSs in the 3 

′ UTR over-
lap with DMS signals. In terms of clusters, at least one CRS
overlaps with a DMS signal in 379 (48%) of 793 clusters in
the 5 

′ UTR and 1869 (78%) of 2403 clusters in the 3 

′ UTR
( Supplementary File 6 ). We show that paired nucleotides in
the clustered CRSs have significantly lower DMS signal scores
(Wilcoxon signed-rank test, P adj < 0.05) compared to un-
paired nucleotides and the rest of the UTR without Rfam or 
CRS overlap ( Supplementary Figure S5 ), in both in vivo and 

in vitro DMS-seq experiments. As anticipated, this signal was 
far less prominent in the control denatured DMS-seq exper- 
iment. This corresponded to 503 and 3674 CRSs represent- 
ing 370 and 1859 clusters in the 5 

′ and 3 

′ UTRs, respectively 
( Supplementary File 6 ). Of these, slightly more than 50% of 
CRSs, 255 in the 5 

′ UTR and 1975 in the 3 

′ UTR, overlapped 

the DMS signals on the same strand. We also compared the 
mean DMS signal scores from in vitro and in vivo experiments 

https://rfam.xfam.org/family/RF00032
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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or the paired and unpaired nucleotides in the consensus struc-
ure per cluster, focusing on signals that overlap on the same
trand as the clustered CRS. In terms of fold change (mean
MS score for unpaired / mean DMS score for paired posi-

ions), we found that 87 CRSs from 84 clusters (22% of 379
lusters) in the 5 

′ UTR and 702 CRSs from 590 clusters (32%
f 1869 clusters) in the 3 

′ UTR exhibited a 1.5-fold lower
MS signal at paired positions compared to unpaired posi-

ions ( Supplementary File 7 ). 
In total, 7.3% (32 516 of 447 502) of all paired positions

n the clustered CRSs, corresponding to the overall consensus
tructures from the 5 

′ and 3 

′ UTRs, overlapped with the DMS
ignals. We evaluated the precision and recall of the predicted
ase pairs in the consensus structure by examining the DMS
ignals that overlap with the base pairs projected onto the
lustered CRSs on the same strand. We defined True Positives
TP) as base pairs that overlapped with low DMS signal scores
 < 0.4, < 0.3 and < 0.2), false negatives (FN) were identified
s low DMS signal scores overlapping with unpaired bases,
nd false positives (FP) as high DMS signal scores overlap-
ing with paired bases ( > 0.6, > 0.7 and > 0.8). We found that
he overall precision for the predicted base pairs ranged from
.76 to 0.84, and the recall ranged from 0.47 to 0.50 across
ifferent thresholds of the DMS signal score in the DMS-seq
n vivo and in vitro experiments ( Supplementary File 8 ; Sheet
). We also evaluated the precision and recall values for the
redicted pairs per cluster, considering the mean paired and
npaired positions of the clustered CRSs corresponding to
he consensus structure. The mean precision and recall for
he predicted base pairs across clusters from the 5 

′ and 3 

′

TRs ranged between 0.77 to 0.80 and 0.49 to 0.50, respec-
ively. The complete list of clusters with estimated precision
nd recall using different thresholds of DMS is provided in
upplementary File 9 . In conclusion, the probing data sup-
orts the structured nature of our CRS clusters. 

ecovery of known regulatory RNA elements from 

fam and EvoFam 

o assess whether the clusters captured known structure fam-
lies, we compared the genomic coordinates of clustered CRSs
ith the annotated regions from Rfam ( 37 ) and EvoFam

 38 ) databases. In total, we identify 26 Rfam (v14.4) fam-
lies in the 5 

′ UTRs and 19 families in the 3 

′ UTRs that
xhibit evidence of being UTR-specific regulatory elements
please refer to the methods section for the definition and
upplementary Tables S1 and S2 ). None of these 26 Rfam
amilies from the 5 

′ UTR overlap with at least two CRSs from
ifferent genomic loci. Hence we did not expect any of these
o be recovered in the clusters. Similarly, we identify 19 fam-
lies in the 3 

′ UTRs. Among the 19 families in the 3 

′ UTRs,
nly two Rfam families namely Histone3 and Selenocysteine
nsertion sequence (SECIS) 1 stem-loops, overlap with at least
wo CRSs from different genomic loci. We successfully iden-
ify the Histone3 Rfam family in cluster #1650 containing 7
RSs, with 4 of them overlapping distinct histone genes. Two
f these clustered CRSs from different genomic loci exhibit
omplete overlap with the Rfam Histone 3 

′ UTR stem-loop
NA structure motifs, covering them 100% (Figure 5 ). Based
n our GO enrichment analysis, we also find that this clus-
er is significantly associated with the GO term ‘nucleosome
ssembly’, which further links it to the Histone3 RNA motif. 
In the case of the SECIS 1 Rfam family, which only has 8
motifs identified in the human genome (see Supplementary 
File 2 , Sheet 5), we observed three instances where these mo-
tifs overlapped with distinct CRSs, with 100% coverage by ei-
ther of them. Upon closer examination, we noticed that these
CRSs covered different lengths of human sequences in their
alignments: 179nt (M1416351), 63nt (M2009617) and 51nt
(M2061896), respectively (see Supplementary File 2 , Sheet 1).
Further investigation revealed that these CRSs had different
secondary structures, showing no local similarity. While the
CRSs M1416351 and M2009617 fully cover the Rfam SECIS
1 motif, the CRS M2061896 covers the SECIS 1 motif by only
71%, and notably, is located on the opposite strand as the an-
notated motif. Given this difference in strand orientation, we
didn’t expect this CRS to cluster with others overlapping the
SECIS 1 motif. This is because the CRS predicted by CMfinder
on the reverse complementary strand may not share any sim-
ilarity with the Rfam annotation. 

Of the four CRSs (M2304799, M1300789, M1012301,
M1012291) spanning the 3 

′ UTR of histone genes in cluster
#1650 (see Supplementary File 1 ), the CRSs M1012301 and
M1012291 are located on the same strand as the annotated hi-
stone Rfam motifs whereas CRSs M1300789 and M2304799
are located on the opposite strand ( Supplementary File 2 ,
Sheet 1). The former CRSs consist of a short hairpin with the
loop sequences ‘UUUA’ and ‘UUUC’, and the latter CRSs also
exhibited a short hairpin but with the reverse complementary
loop sequence ‘GAAA’ in both cases. Despite being on the
opposite strand, the CRSs M1300789 and M2304799 have
almost the identical secondary structure as Histone3. Conse-
quently, we were able to cluster these CRSs in one cluster using
RNAscClust and identify the Rfam annotations on the oppo-
site strand. In contrast, SECIS 1 forms a longer stem with two
interior loops. As a result, the reverse complementary struc-
ture does not correspond to the colocalized CRS predicted
on the opposite strand. The complete list of Rfam families
overlapping with the CRSs in 5 

′ and 3 

′ UTR is provided in
Supplementary File 2 , which also include the total annotated
instances for each Rfam family in Sheets 5 and 6. 

In our analysis of EvoFam families, we identified three in-
stances overlapping with the 5 

′ UTR, one of which inter-
sected with at least two CRSs from different genomic lo-
cations. We successfully recovered this EvoFam family (see
Supplementary File 2 , Sheet 4) in the clusters, exhibiting com-
plete overlap between its hits and the clustered CRSs, achiev-
ing 100% coverage. Similarly, we detected 13 EvoFam families
overlapping with the 3 

′ UTR, seven of which intersected with
at least two CRSs from distinct genomic loci. Among these,
we managed to retrieve two families within the clusters, with
their hits completely overlapping (100% coverage) with the
clustered CRSs (see Supplementary File 2 , Sheet 3). Notably,
this includes cluster #1650 containing histone genes. 

Upon further investigation of the remaining five EvoFam
families not retrieved in the clusters, we observed that CRSs
exhibited greater length compared to the EvoFam motifs, with
approximately 30% of CRS length overlapping 100% of the
EvoFam motifs. Furthermore, many of these CRSs were situ-
ated on the opposite strand relative to the EvoFam motifs (see
Supplementary File 2 , Sheet 3). Given the longer CRSs, which
are also reverse complementary to the EvoFam motifs on the
opposite strand, it is unlikely that the reverse complementary
structure necessarily corresponds to the EvoFam motif. Con-
sequently, we do not anticipate these CRSs to cluster together.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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A B

Figure 6. Clusters o v errepresenting GO terms. T he top 10 o v errepresented (adjusted P -value < 0.05) GO terms from all three GO classes (y-axis), among 
the clusters (x-axis) from ( A ) 5 ′ UTR and ( B ) 3 ′ UTR are shown. The redundant GO terms were excluded. 

A B

Figure 7. Clusters o v er-representing Pathw a y s. T he top 15 o v errepresented (adjusted P -v alue < 0.05) pathw a y s (y -axis) among the clusters (x-axis) from 

( A ) 5 ′ UTR and ( B ) 3 ′ UTR are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overrepresented GO categories and Pathways in 

clusters 

To categorize the clusters according to their functional at-
tributes, we performed a functional enrichment analysis by
utilizing the GO and Pathway annotations associated with
protein-coding genes that harbor the CRSs within their UTR
regions. Our hypothesis was that if CRSs within clusters share
common functionally significant structural elements, their cor-
responding host genes would also exhibit shared functional
attributes. 

To test this hypothesis, we first performed a GO overrepre-
sentation analysis on each cluster, employing the GO annota-
tion provided by the GO Consortium ( 25 ) (refer to the Meth-
ods section, ‘GO and Pathway overrepresentation analysis’ for
more information). As a result, we identified 104 of the 793
(13%) clusters in 5 

′ UTR and 441 of 2403 (18%) clusters in 3 

′

UTR that demonstrated statistically significant overrepresen- 
tation of at least one GO term ( P adj < 0.05; at least three genes 
in the cluster with the annotation; FC enrichment > 1.5). In 

Figure 6 , we present the top 10 GO terms across the three do- 
mains: ‘biological processes’, ‘molecular functions’, and ‘cellu- 
lar components’. These terms have been ranked based on the 
number of clusters in which they are overrepresented, after 
eliminating any redundant terms that essentially are subsets 
of higher-level GO terms in the ontology hierarchy. 

Several notable GO terms that were overrepresented in the 
clusters were uncovered. In the domain of biological pro- 
cesses, terms such as ‘regulation of transcription by RNA 

polymerase II’, ‘cell differentiation’, ‘nervous system devel- 
opment’ and ‘signal transduction’ stood out. Under molecu- 
lar functions, terms like ‘DNA binding’, ‘nucleotide binding’,
‘identical protein binding’, ‘metal ion binding’, ‘transferase ac- 
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Figure 8. Enrichment of CRSs for RBP binding sites. The enrichment for 150 RBP binding sites of the clustered CRSs (foreground set of CRSs, labeled 
on top) located in UTRs is shown. It has been computed by comparing it against a background defined as the fraction of nucleotides (nt) co v ered b y each 
RBP in the total RBP co v ered UTR region (nt). The comparison was done using the two-sample Z-test for proportions, and the P -values were adjusted 
for multiple testing using the BH method. 
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ivity’ and ‘kinase activity’ were prominent. In case of cellular
omponents, significant terms included ‘nucleus’, ‘cytoplasm’,
plasma membrane’, ‘extracellular region’, ‘synapse’, ‘cell pro-
ection’ and ‘cell junction’, among others. The complete list of
verrepresented GO terms and associated genes for each clus-
er are available in Supplementary File 3 . Many of these GO
erms are directly related to neuron development, which aligns
ith our previous study highlighting structured elements with

nriched expression in mouse brains ( 39 ). 
Our analysis further highlight certain functional activities

hat are associated with either 5 

′ UTRs or the 3 

′ UTRs based
n the GO terms within the clusters of CRSs. Clusters con-
aining 3 

′ UTR CRSs demonstrate the overrepresentation of
ollowing GO terms related to biological processes—‘mRNA
rocessing’, ‘RNA splicing’, ‘protein phosphorylation’, ‘pro-
ein transport’, ‘regulation of gene expression’ and ‘RNA
plicing’. These terms highlight the crucial roles played by
 

′ UTRs in processes such as alternative splicing, mRNA
stability , translation efficiency , and localization that are well
known ( 40 ). Additionally, molecular functions within these
clusters exhibit GO terms such as ‘protein kinase binding’,
‘phospho-protein phosphatase activity’, ‘ubiquitin protein lig-
ase activity’ and ‘enzyme binding’. The cellular components
of these clusters are characterized by GO terms like ‘protein-
containing complex’, ‘apical plasma membrane’, ‘postsynaptic
membrane’ and ‘neuronal cell body’. 

In contrast, clusters associated with 5 

′ UTR CRSs show the
following overrepresented GO terms. The biological processes
within these clusters include terms like ‘G protein-coupled
receptor signaling pathway’, ‘skeletal system development’,
‘blood vessel development’ and ‘collagen fibril organization’.
Molecular functions in these clusters involve GO terms such as
‘receptor antagonist activity’, ‘SMAD binding’ and ‘extracel-
lular matrix structural constituent conferring tensile strength’.
Moreover, the cellular components in these clusters are char-
acterized by GO terms such as ‘mitochondrial matrix’ and

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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‘collagen trimer’ ( Supplementary File 3 ; Figure 6 ). Of par-
ticular significance is the presence of SMAD (Suppressor of
Mothers against Decapentaplegic) binding in relation to 5 

′

UTRs. SMAD protein family are part of the TGF- β signaling
pathway and negatively regulate the growth of epithelial cells.
There are known SMAD proteins that are reported to bind to
5 

′ UTR and regulate the expression of genes ( 41 ). Overall,
these findings emphasize the distinct functional roles played
by 3 

′ UTRs and 5 

′ UTRs, as evidenced by the overrepresenta-
tion of GO terms associated with various biological processes,
molecular functions, and cellular components. 

Subsequently, we conducted a Pathway overrepresentation
analysis on each cluster by leveraging the annotations pro-
vided by the Kegg and Reactome pathway databases. As a re-
sult, we identified 15 of the 793 (2%) clusters 5 

′ UTR and 87
of the 2403 (4%) clusters in 3 

′ UTR that demonstrated statis-
tically significant overrepresentation of at least one pathway
( P adj < 0.05; at least 3 genes in the cluster with the annotation;
FC > 1.5). 

The clusters comprising CRSs from both 5 

′ and 3 

′

UTRs demonstrate prominent overrepresented pathways, in-
cluding ‘Signal Transduction’, ‘Gene expression (Transcrip-
tion)’, ‘Metabolism of proteins’, ‘Immune System’ and ‘Post-
translational protein modification’, among others. Here we
show the top 15 pathways in Figure 7 that were selected based
on their frequency of overrepresentation within the clusters. 

Furthermore, there are distinct pathways uniquely overrep-
resented in clusters containing either 3 

′ UTR or 5 

′ UTR CRSs.
For clusters with 3 

′ UTR CRSs, these pathways include ‘Gene
Silencing by RNA’, ‘Membrane Trafficking’ and ‘Nervous sys-
tem development’. On the other hand, clusters with 5 

′ UTR
CRSs exhibit unique overrepresented pathways such as ‘Col-
lagen biosynthesis and modifying enzymes’, ‘Collagen degra-
dation’, ‘Extracellular matrix organization’ and ‘Binding and
Uptake of Ligands by Scavenger Receptors’. 

The overrepresented pathways within the clusters directly
align with the overrepresented GO terms we observed pre-
viously (Figure 6 ). For a comprehensive list of overrepre-
sented pathways in clusters containing either 5 

′ or 3 

′ UTR
CRSs, along with the associated gene lists, please refer to
Supplementary File 4 . Overall, our findings provide valuable
insights into the functional implications of the clusters, war-
ranting further investigation and validation. 

Enrichment of clustered CRSs for the binding sites 

of RNA-binding proteins 

RNA structures are well known to interact with proteins ( 42 ),
to investigate if our set of clustered CRSs are the binding sites
for specific RBPs, we gathered a comprehensive catalog of
150 RBPs and their binding sites from the ENCODE project
phase III ( 43 ). We then investigated if these RBPs were dis-
proportionately present in the clusters located in the 5 

′ and
3 

′ UTRs. Our approach involved comparing the extent of nu-
cleotide coverage by each RBP binding site within our clus-
tered CRSs against the background, which included all CRSs
in the UTR regions used for clustering. Our findings revealed
that out of the 150 RBPs, the binding sites for 60 and 43
RBPs showed significant overrepresentation ( P adj < 0.05) in
terms of coverage across the CRS clusters from the 5 

′ and 3 

′

UTRs, respectively. Among these, 6 RBP (DKC1, HNRNPC,
HNRNPK, KHDRBS1, NIP7, U2AF1) binding sites showed
common enrichment for coverage among the CRSs or clus-
tered CRSs from both the 5 

′ and 3 

′ UTRs with respect to 

the UTR. (Figure 8 ; Supplementary File 5 ). The top 15 RBPs 
with overrepresented binding sites, based on the proportion 

of CRSs within a cluster co-localizing with the binding sites 
( P adj < 0.05; FC > 1.5, and with at least two binding sites; 
see methods), in 5 

′ and 3 

′ UTRs respectively, are shown in 

Figure 9 . These RBPs are ordered by the number of clusters in 

which they are overrepresented. The complete list of overrep- 
resented RBPs across the 5 

′ and 3 

′ UTR CRS clusters can be 
found in Supplementary File 5 (Sheets 3-4) 

We observed a particular overrepresentation of binding 
sites for DDX3X (DEAD-Box Helicase 3 X-Linked) (Fig- 
ure 8 ), a human RNA helicase implicated in many important 
cellular processes and PRPF8 (Pre-mRNA-processing-splicing 
factor 8) protein which is one of the largest and most highly 
conserved nuclear proteins occupying a central position in the 
catalytic core of the spliceosome in the clusters from the 5 

′ 

UTR. These RBPs have previously been associated with selec- 
tive modulation of translation rates based on the 5 

′ UTR struc- 
tures ( 44 ). Additionally, PUM (Pumilio) proteins are known 

to bind the Pumilio recognition / response element (PRE) typ- 
ically found in the 3 

′ UTR of target mRNAs ( 45 ). Notably,
we discovered an overrepresentation of PUM2 binding sites 
colocalizing with 6 clusters from the 3 

′ UTR (Figure 8 ,9 ; 
Supplementary File 5 , Sheet 3). 

Furthermore, one of the clusters from the 3 

′ UTR (clus- 
ter #12 ) exhibited an overrepresentation of binding sites for 
DKC1 (Dyskerin pseudouridine synthase 1) protein (Figure 8 ; 
Supplementary Files 1,5 ). DKC1 is known for its involve- 
ment in telomerase stabilization, maintenance, and recogni- 
tion of snoRNAs with H / ACA-box motifs ( 46 ) (RefSeq, Jan- 
uary 2014). The sequences within this cluster, as well as clus- 
ter #2697 where at least one CRS of seven colocalizes with 

a DKC1 binding site, displayed consensus secondary struc- 
tures indicative of snoRNAs (Figure 10 ). Upon closer ex- 
amination, we found that three out of four sequences from 

cluster #12 and at least one sequence from cluster #2697 
overlapped with snoRNA annotations in GENCODE within 

the same region of the 3 

′ UTRs. Furthermore, these over- 
lapping regions were also annotated as snoRNAs with con- 
served H / ACA-box motifs in Rfam. However, the remaining 
one sequence from cluster #12 and 7 sequences from clus- 
ter #2697 currently lack associations with any snoRNA an- 
notations. This indicates that our set of clusters can serve 
as a valuable reference for identifying new RNA structure 
motifs. 

Discussion 

Here, we studied CRSs colocalized with UTRs to explore the 
function of the corresponding coding genes in the clustering 
to assign potential regulatory roles for the clustered CRSs. Al- 
though the number of known Rfam families in this CRS-UTR 

overlap is limited, and it would be desirable to extend the anal- 
ysis over CRS-Rfam, this would require a different strategy 
and is therefore beyond the scope in this study. We adopted a 
methodology that involved clustering CRSs based on shared 

structural features, specifically focusing on conserved base 
pairs. Next, we utilized the clustered CRSs and their asso- 
ciated host genes to explore potential overrepresentation of 
specific biological pathways and gene ontology terms. We 
further analyzed the coverage of RBP sites within the clus- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae089#supplementary-data
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A B

Figure 9. Clusters o v errepresenting RBPs. The top 11 and 15 RBPs, respectively, (y-axes) with their binding sites overrepresented (adjusted P -value 
< 0.05) among the clusters (x-axes) from ( A ) 5 ′ UTR and ( B ) 3 ′ UTR are shown. 

A

B

Figure 10. Example of Clusters The CRS cluster alignment and the consensus str uct ure are shown for ( A ) cluster #12 , where the CRS M2543650 and 
M1251899 o v erlap with the SNORA56 (RF0 0417), M20 09856 o v erlaps SNORA77 (RF00599) and ( B ) cluster #2697 , where the CR S M1538378 o v erlap 
with SNORA18 (RF00425). All the o v erlapping snoRNAs belong to H / ACA box class. 

t  

c
 

C  

g  

t  

a  

t  

o  

w  

o  

w  

t  

o  

g  

e  

m  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ers, which provided valuable insights into their functional
haracteristics. 

To accomplish our objectives, we employed the RNAsc-
lust pipeline to cluster CRSs from the UTRs in the human
enome. We demonstrated the sensitivity of RNAscClust to
he input set of CRSs used for clustering. To enhance the over-
ll clustering performance of RNAscClust , we introduced
wo simple approaches, one at the pre-clustering stage and the
ther at the post-clustering stage. At the pre-clustering step,
e implemented a method to select a representative subset
f CRSs for clustering, thereby removing overlapping CRSs
ith common structures that would otherwise be assigned

o the same cluster. We show that without this prefilter the
verall effectiveness of finding clusters of CRSs from different
enomic regions is reduced. At the post-clustering stage, we
mployed an iterative processing approach. Initially, we re-
oved outlier sequences from the obtained clusters based on
a sequence length threshold. We then realigned and predicted
consensus structures. Subsequently, we eliminated sequences
from the clusters with > 50% unpaired nucleotides. This was
followed by realignment of the remaining CRSs in the cluster
and the prediction of consensus structures. Overall, we only
removed approximately 14% of the CRSs assigned to a clus-
ter, resulting in clusters with enhanced alignment quality and
consensus structures. We also utilized structure probing data
generated from DMS-seq experiments conducted on human
K562 cells. Our analysis showed that 4703 (30%) of the 16
092 CRS clusters in our list overlapped with DMS-seq signals.
Base pairs in the clustered individual CRSs corresponding to
the consensus structure exhibited significantly lower DMS sig-
nal scores compared to unpaired nucleotides and the rest of
the UTR without CRS overlap. This finding supports the struc-
tured nature of the majority of our CRS clusters. It should be
noted that individual CRSs in the cluster may have additional
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base pairs not present in the consensus structure that could
be supported by DMS signal scores. Despite this, we still ob-
served a statistically significant difference between the paired
and unpaired positions according to the consensus. Addition-
ally, since we used DMS-seq data from a single cell line, incor-
porating data from more samples and other cell lines could
potentially provide better DMS-seq coverage. 

By functionally classifying the clusters by GO terms of the
host gene, we were able to recover known RNA structure fam-
ilies and discover potential biological processes and molecular
functions associated with the grouped set of CRSs. Addition-
ally, we found clusters where some CRSs could be linked to
established Rfam functional structures, indicating that the re-
maining CRSs within those clusters may hold promise as novel
motifs. These motifs could be further investigated using var-
ious structure probing technologies ( 47 ), along with experi-
mental and functional validation, to gain insights into RNA
structure-function relationships. 

As CMfinder predictions might also suggest a conserved
RNA structure on the reverse complementary strand, the clus-
tering search space can be increased by adding the reverse-
complemented versions of CRSs to the input. The structures
of CRSs and their reverse complement may be different why
their inclusion will broaden the coverage of important struc-
tured regulatory elements. Additionally, to expand the cluster-
ing of CRSs to the next stage, one could leverage the cmbuild
and cmcalibrate programs from the Infernal toolsuite
to build and calibrate covariance models (CMs) using the ob-
tained cluster of CRSs. Subsequently, the cmpress and cm-
scan programs from Infernal could be used to scan the
entire genome and identify genomic loci with secondary struc-
tures strongly resembling the clusters of CRSs. Moreover, the
methodology outlined in this study can be extended to clus-
ter CRSs derived from various non-coding RNAs, including
long non-coding RNAs (lncRNAs) known for their tendency
to possess intricate secondary and tertiary structures. These
structural features in the lncRNA gene biotype frequently play
a vital role in determining their functionality. In many cases,
it is the conservation of these structures, rather than the con-
servation of the primary sequence, that governs their func-
tional significance. An additional interesting area for investi-
gation involves the exploration of G-quadruplex structures.
These structures consist of G-quartets connected by loop nu-
cleotides within Guanine (G)-rich sequences in nucleic acids.
G-quadruplexes are recognized for their pivotal regulatory
roles in various biological processes, including, but not limited
to, DNA replication, transcription, and translation ( 48 ). Since
the guanine in G-quadruplexes interacts with two other gua-
nines, they are not described by the RNA secondary structures
that we are clustering here. However, examining the intersec-
tion between known G-quadruplex structures ( 49 ,50 ) and our
list of CRS and clusters presented in this study could aid in the
identification and categorization of evolutionarily conserved
G-quadruplex motifs. 

Conclusion 

In this study, we present a comprehensive catalog consisting
of 793 clusters from the 5 

′ UTR and 2403 clusters from the
3 

′ UTR, representing the largest collection of CRS clusters re-
ported for these regions in the human genome. Additionally,
we perform functional characterization of these clusters by
examining the overrepresentation of RBP sites and conduct-
ing functional enrichment analysis using GO and pathway 
annotations. 

Our findings reveal clusters in the 5 

′ and 3 

′ UTRs that ex- 
hibit significant enrichment of binding sites for specific groups 
of RBPs. These clusters serve as valuable references for dis- 
covering novel RNA structure motifs that have not yet been 

annotated and warrant further exploration through various 
structure probing technologies. 
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