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Abstract: Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely 

related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic 

carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient 

ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-

1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the 

impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abun-

dant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 

suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, 

IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target 

of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 

is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ 

(PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), 

crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of 

PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and 

∆6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. 

Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) 

promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of 

the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. 

Free palmitate functions as a “danger signal,” stimulating toll-like receptor-2-mediated inflam-

masome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated 

keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and 

comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote 

the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to 

increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total 

calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, 

and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-

derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting 

nutrition therapy of acne vulgaris.
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Introduction
Based on accumulating indirect translational and in vitro evidence, this review presents 

an update of the dietary impact on acne metabolomics, follicular inflammation, and 

comedogenesis. The first part links Western diet to disturbed sebaceous lipogenesis 

promoted by systemic aberrations of endocrine signaling. To understand the role of nutri-

genomics in the pathogenesis of acne, two central players will be highlighted: the role 
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of the metabolic transcription factor forkhead box O1A 

(FoxO1),1–4 and the nutrient-sensitive kinase mechanistic 

target of rapamycin complex 1 (mTORC1).5–8 The second part 

explains the molecular link between disturbed sebofollicular 

metabolomics and inflammation. The reader will understand 

that Western diet is the major factor overstimulating sebum 

production, Propionibacterium acnes overgrowth, and biofilm 

formation. Biofilm-transformed P. acnes produce abundant 

exogenous lipase, a virulence factor that increases local 

levels of free palmitic acid, a recently recognized danger 

signal activating the NLRP3 inflammasome. Abundance of 

sebum-derived free palmitate together with P. acnes-derived 

danger-associated molecular patterns (DAMPs) stimulates 

innate immunity, inflammasome activation, and interleukin-1β 

(IL-1β)-signaling. IL-1β finally orchestrates follicular and 

perifollicular inflammation with Th17 cell differentiation and 

IL-17-mediated local keratinocyte hyperproliferation.

IGF-1: central player of acne
Most textbooks of dermatology still define acne as an 

androgen-dependent skin disease. There is no doubt that 

androgen excess promotes acne and seborrhea, whereas acne 

does not develop under conditions of androgen receptor (AR) 

loss of function leading to androgen insensitivity.9 These facts 

clearly point to the involvement of AR-dependent signaling 

in the pathogenesis of acne. Yet there is still an unsolved 

contradiction: it is well established that androgen serum levels 

increase during puberty and stay at high levels for decades, 

whereas acne physiologically fades spontaneously after 

puberty. After the climax of puberty, serum levels of insulin-

like growth factor 1 (IGF-1), the major growth hormone of 

puberty, decrease continuously.10 Deplewski and Rosenfield11 

pointed out that not serum androgens but serum IGF-1 levels 

correlate with the clinical manifestation of acne. Evidence will 

be presented that not androgens but IGF-1 plays the primary 

role in acne pathogenesis. IGF-1 signaling is the central 

endocrine pathway of puberty and sexual maturation, and is 

the converging point of nutrient signaling in acne.

Which facts do prove this change of paradigms? There 

is a human experiment of nature supporting the primary 

role of IGF-1 signaling in acne pathogenesis, the Laron 

syndrome. Short-statured individuals with Laron syndrome 

exhibit a congenital IGF-1 deficiency due to growth hor-

mone receptor (GHR) mutations.12 Notably, Laron patients, 

who are not treated with recombinant IGF-1, never develop 

acne or other common diseases of Western civilization.13,14 

However, high-dose IGF-1 administration induces acne 

and hyperandrogenism in these GHR-deficient patients.15 

The occurrence of hyperandrogenism in IGF-1-treated Laron 

patients already implies that IGF-1 enhances AR-dependent 

signal transduction.

IGF-1 inhibits FoxO1 signaling at 
multiple regulatory layers
IGF-1 promotes cell growth and cell proliferation by activat-

ing the IGF-1 receptor (IGF1R), resulting in upregulation of 

the phosphoinositol-3-kinase (PI3K)–protein kinase B (AKT) 

signaling cascade.16 Pioneering autoradiographic studies 

of Plewig et al17 showed that acne is a hyperproliferative 

disease of the sebaceous follicle. In acne, increased cell 

proliferation has been demonstrated in keratinocytes of the 

acroinfundibulum and ductus seboglandularis, and sebocytes 

of the sebaceous gland.17 Thus, the question arose as to how 

IGF-1 increases local proliferation of acroinfundibular kera-

tinocytes, epithelial cells of the ductus seboglandularis, and 

sebocytes. To understand the stimulatory effects of IGF-1 on 

sebofollicular androgen signaling, it is of critical importance 

to become familiar with the major regulatory mechanisms 

that enhance AR transcriptional activity.18,19

The AR is a nuclear transcription factor that stimulates the 

expression of genes that promote androgen-dependent growth 

and proliferation.18,19 AR activation requires two major stimuli: 

1) binding of its hormone ligand (androgen), and 2) derepression 

of its inhibitory nuclear coregulator FoxO1. Ligand-mediated 

activation of AR depends on androgen binding affinity. Highest 

AR binding affinity exhibits dihydrotestosterone (DHT), which 

is ten times higher compared with testosterone. IGF-1 is a potent 

inducer of gonadal testosterone and adrenal dehydroepiandros-

terone (DHEA) synthesis and promotes the intracutaneous 

conversion of testosterone to DHT by enhancing 5α-reductase 

activity.20,21 Thus, IGF-1 increases the total amount of gonadal 

and adrenal androgen synthesis,22–25 and enhances androgen 

bioactivity by increasing the cutaneous availability of DHT,21 

the most powerful physiological androgen. Conversely, the 

androgens induce IGF-1 in the hair follicle.26 Thus, IGF-1 

stimulates AR signal transduction by upregulating the amount 

and affinity of AR-activating ligands.

Most dermatologists are not aware of the second most 

important IGF-1-dependent mechanism that increases 

AR signaling that involves the metabolic transcription 

factor FoxO1. In the nucleus, FoxO1 functions as an AR 

cosuppressor.18,19,27,28 Nuclear FoxO1 levels are negatively 

regulated by insulin and IGF-1.29 Both sister hormones 

activate the PI3K–AKT pathway.20,29 Activated AKT 

phosphorylates FoxO1 in the nucleus, which is the criti-

cal step promoting its translocation into the cytoplasm.29 
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FoxO1 suppresses AR transactivation by binding to the 

transcription activation unit 5 (TAU5) located in the AR 

N-terminal domain (NTD).30 The TAU5 motif is most 

important for androgen-independent activation of the AR,31 

is controlled by insulin/IGF-1-mediated activation of AKT, 

and is thus connected to the nutrient status.

Taken together, AR activation requires two different 

IGF-1-dependent pathways: 1) enhanced ligand potentiation 

and ligand binding to the AR ligand binding domain and 

2) activation of AR transactivation by the nuclear extrusion of 

the AR suppressor FoxO1 from the NTD. Notably, the NTD 

contains a polyglutamine-enriched region encoded by CAG 

trinucleotide repeats.32 Expansion of these CAG repeats in 

the AR reduces AR activation, whereas AR polymorphisms 

featuring shorter CAG repeats are associated with androge-

netic alopecia, hirsutism, and acne.32 Individuals featuring 

AR polymorphisms with shorter CAG repeats in comparison 

with individuals with normal CAG repeat length apparently 

exhibit easier AR hyperactivation by insulin/IGF-1 signaling. 

These insights also explain increased AR signaling in states of 

hyperinsulinemia and insulin resistance and conditions with 

increased IGF-1 serum levels such as puberty and nutrient 

signaling of Western diet.33 Individuals with shorter CAG 

repeats may thus exhibit stronger acneigenic reactions by 

dietary exposure to a high glycemic load diet and milk con-

sumption, which both enhance insulin/IGF-1 signaling.20,29 

My hypothesis of aberrant IGF-1/FoxO1 signaling in the 

pathogenesis of acne has recently been confirmed experimen-

tally in SZ95 sebocyte cultures.34,35 Prolonged IGF-1 exposure 

of SZ95 sebocytes induced nuclear translocation of FoxO1 

into sebocyte’s cytoplasm.35 Thus, the transcriptional coor-

dinator of metabolism FoxO1 links insulin/IGF-1 signaling 

to transcriptional activation of AR-dependent target genes. 

Notably, the highest nuclear FoxO1 activity is observed 

during starvation, whereas nutrient excess leads to reduced 

nuclear levels of FoxO1.3,36,37

Serum levels of DHEA, the major adrenal androgen that 

increases during adrenarche, correlate with the onset of acne 

vulgaris.38 Notably, DHEA induces ERK1/2-mediated phos-

phorylation and translocation of FoxO1.39 Thus, increased 

adrenal DHEA signaling, which begins prior to puberty, already 

suppresses FoxO1 activity, increasing AR transactivation. 

DHEA-induced inactivation of FoxO1 may also explain neo-

natal hyperseborrhea and acne due to excessive fetal DHEA 

production, a physiological mechanism ensuring the generation 

of the vernix caseosa, which is important for birth.40

Nuclear FoxO1, which is upregulated by isotretinoin treat-

ment,41 controls endocrine signaling of the hypothalamus,42,43 

pituitary,44 liver,45 adrenal,46 and sebaceous gland.34,35,47 FoxO1 

was recently reported to be an inhibitor of follicle stimulating 

hormone and luteinizing hormone production.48–50 Notably, 

luteinizing hormone/human chorionic gonadotropin triggers 

androgen synthesis in theca-interstitial cells of the ovary by 

activating mTORC1 signaling.51 Insulin and IGF-1 act as neg-

ative regulators of FoxO1 activity and enhance gonadotropin 

expression.52 Increased insulin/IGF-1 signaling of Western 

diet thus promotes the synthesis of pituitary gonadotropins, 

which are pivotal stimuli for gonadal steroidogenesis.

FoxO1 is a negative regulator of GHR,45 which plays the 

key role in hepatic IGF-1 synthesis.12 Thus, insulin signaling 

via repression of hepatic FoxO1 stimulates hepatic IGF-1 

synthesis, demonstrating an interactive hepatic network of 

metabolic and growth factor signaling. Inactivation of hepatic 

FoxO1 by insulin signaling is required to adapt nutrient 

homeostasis and endocrine growth regulation.45 Notably, 

isotretinoin, the most powerful antiacne drug, reduced 

serum concentrations of gonadotropins, adrenocorticotro-

pic hormone, and IGF-1.53–55 This can be well explained by 

isotretinoin-mediated upregulation of nuclear FoxO1 activity 

at various regulatory levels of the somatotropic axis.41

Acne correlates with increased sebum production. GH, insu-

lin, and IGF-1 increase sebaceous gland growth, differentiation, 

and sebaceous lipogenesis.11,56 Vora et al57 observed a linear cor-

relation between serum IGF-1 concentrations and facial sebum 

excretion rates of male acne patients. Remarkably, increased 

serum IGF-1 levels have been measured in women with post-

adolescent acne.58,59 Recently, an association between IGF-1 

gene polymorphism and acne has been reported.60 Patients who 

observed an aggravation of their acne by food intake exhibited 

higher IGF-1 serum levels (mean =543.9 ng/mL) compared 

with those who observed no acne aggravation by food intake 

(mean IGF-1 =391.3 ng/mL).61

IGF-1 plays a pivotal role in sebaceous lipogenesis.62,63 

Downstream of IGF-1/PI3K/AKT signaling respond four 

key lipogenic transcription factors: the AR,18,19,27,28 peroxi-

some proliferator-activated receptor-γ (PPARγ),64–67 liver X 

receptor-α (LXRα),68,69 and sterol response element bind-

ing protein-1c (SREBP-1c),62,63,70 which are all negatively 

regulated by FoxO1 (Figure 1).18,19,27,28,71–77 IGF-1 stimulated 

SREBP-1 expression and induced lipogenesis in SEB-1 sebo-

cytes via activation of the PI3K/AKT pathway.63 Mirdamadi 

et al35 confirmed that IGF-1 suppresses nuclear FoxO1 

in SZ95 sebocytes associated with increased lipogenesis. 

Under conditions of nutrient excess and high-insulin/IGF-1 

signaling, downregulated nuclear FoxO1 thus derepresses all 

master transcription factors of sebaceous lipogenesis such 
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as AR, PPARγ, LXRα, and SREBP-1c. In fact, Kwon et al78 

observed decreased SREBP-1 expression in facial acne skin 

after 4 weeks of a low glycemic load diet. Notably, acne-free 

Kitavan islanders,79 who are still exposed to a paleolithic 

diet (less-hyperglycemic carbohydrates, no milk and dairy 

products, but plenty of fish intake), exhibit low basal insulin 

serum levels that are only half of those of Europeans living 

under conditions of Western neolithic diet.80 Incubation of 

epithelial cells with IGF-1-deficient serum of Laron patients 

exhibited increased nuclear FoxO1 activity and decreased 

expression of TOR.14 Notably, excessive meat intake is 

another characteristic feature of Western diet. Recent epi-

demiological evidence underlines that low protein intake 

is associated with a major reduction in serum IGF-1 in the 

middle-aged population.81

FoxO1 interacts with TGFβ- and 
β-catenin signaling
McNairn et al82 demonstrated that transforming growth 

factor-β (TGFβ) signaling is necessary and sufficient for 

maintaining sebocytes in an undifferentiated state. TGFβ 

receptor type 2 (TGFR2)–SMAD2 signaling decreased the 

expression of genes required for sebaceous lipogenesis and 

sebocyte differentiation such as ∆6-desaturase and PPARγ, 

thereby decreasing sebaceous lipid accumulation. A recent 

genome-wide association study identif ied three novel 

susceptibility loci of the TGFβ pathway for severe acne 

vulgaris, namely, transforming growth factor β2 (TGFB2), 

Ovo, Drosophila, homologue-like 1 (OVOL1), and follistatin 

(FST).83 The authors noted a significant reduction in TGFB2 

and OVOL1 transcript levels in lesional compared with non-

lesional skin of acne patients.83

Canonical TGFβ signaling starts after binding of TGFβ to 

TGFR2, which recruits and activates TGFR1. TGFR1 phos-

phorylates the receptor-bound transcription factors SMAD2 

and SMAD3, which later associate with SMAD4. The acti-

vated SMAD2/3/4 complex translocates into the nucleus and 

executes its transcriptional functions.84 Importantly, activated 

SMAD proteins associate with FoxO1, FoxO3, and FoxO4. 

In human keratinocytes, FoxO–SMAD synexpression plays 

Refined carbohydrates Milk and dairy products Saturated fats

PalmitateBCAAsInsulin + IGF-1Insulin
miR21

AR

Sebum TG synthesis � C16:0 � C18:1 �Monounsaturated FAs

TG lipase TG lipase

Disturbed keratinocyte
ca2+ gradient

IL-1β

IL-1αTH17 IL-17IL-17

Inflammation Comedogenesis

TLR2 activation

NLRP3 activation

P. acnes growth
biofilm and QS

FoxO1 � mTORC1 �

SREBP1c

Free C16:0 Free C18:1

∆6D SCD
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Figure 1 Acne vulgaris: a Western diet-induced sebofollicular inflammasomopathy.
Abbreviations: IGF-1, insulin-like growth factor 1; BCAAs, branched-chain amino acids; miR21, microRNA-21; FoxO1, forkhead box class O1; mTORC1, mechanistic 
target of rapamycin complex 1; AR, androgen receptor; PPARγ, peroxisome proliferator-activated receptor-γ; LXRα, liver X receptor-α; SReBP1c, sterol response element 
binding protein 1c; ∆6D, ∆6-desaturase; SCD, stearoyl-CoA desaturase; TG, triglyceride; P. acnes, Propionibacterium acnes; QS, quorum sensing; C16:0, palmitic acid; C18:1, 
oleic acid; TLR2, toll-like receptor 2; NLRP3, Nod-like receptor family, pyrin domain containing 3 inflammasome; IL-1β, interleukin-1β; Th17, Th17 T-cell; IL-17, interleukin-
17, IL-1α, interleukin-1α.
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a crucial role in the induction of the cyclin-dependent 

kinase inhibitors p15 and p21.85,86 Genes that require FoxO–

SMAD synexpression in response to TGFβ coordinate cell 

cycle control via p15 and p21 and adaptive cell signaling 

responses such as OVOL1.85–87 Increased expression of p21 

has been detected in sebocytes treated with isotretinoin,88 

the most potent antiacne drug that obviously functions as 

a FoxO1 inducer.41,89 Thus, it is conceivable that isotretin-

oin enhances SMAD–FoxO1-mediated expression of p21. 

Western diet with exaggerated insulin/IGF-1 signaling thus 

affects SMAD–FoxO1-regulated synexpression of impor-

tant cell cycle checkpoints of keratinocytes and sebocytes. 

Furthermore, conditional deletion of TGFβ signaling resulted 

in PI3K/AKT activation,90 the major FoxO1-controlled path-

way promoting sebaceous lipogenesis.34

FoxO1 interacts with Wingless (Wnt)/β-catenin signaling, 

which blocks differentiation toward the sebocyte phenotype, 

since inhibition of Wnt target genes promotes sebocyte 

development.91–93 β-catenin reduces c-Myc-stimulated 

sebocyte differentiation.94,95 Notably, β-catenin strongly 

binds FoxO1 and FoxO3a. This interaction enhances FoxO’s 

transcriptional activity.96

FoxOs are negative regulators 
of the nutrient-sensitive kinase 
mTORC1
FoxO1 and FoxO3 are negative regulators of the nutrient-

sensitive kinase mTORC1.97,98 mTORC1 has recently been 

recognized to play a major role in diet-induced acne.47,99,100 

FoxO1 activates the transcription of the eukaryotic initia-

tion factor 4 binding protein-1 (4EBP-1), which is a major 

downstream substrate of mTORC1 and functions as a potent 

translational inhibitor and growth suppressor.101,102 Insulin 

and IGF-1 activate mTORC1, the cell’s master regulator 

orchestrating insulin and IGF-1 signaling, nutrient, glucose, 

energy, and amino acid availability.103–105 Insulin, IGF-1, 

and amino acids are required for full activation of mTORC1 

signaling. The essential branched-chain amino acid (BCAA) 

leucine plays a primary role in mTORC1 activation.105–107 

Glutamine, an abundant amino acid constituent of milk 

proteins, has recently also been demonstrated to have a sup-

portive role in mTORC1 activation.108 Leucine and glutamine 

stimulate mTORC1 by rag GTPase-dependent and indepen-

dent mechanisms. In contrast to other amino acids, leucine 

promotes mTORC1 signaling also independent of lysosomal 

translocation of mTOR.109

mTORC1 regulates anabolism,110 nutrient-dependent cell 

cycle progression,111 and activates lipogenesis112 by inducing 

the expression and activation of SREBP-1c and PPARγ.113–116 

Insulin/IGF-1-mediated activation of AKT results in 

mTORC1 activation. Importantly, mTORC1 phosphorylates 

and inactivates the negative SREBP-1 regulator lipin 1114 and 

promotes gene expression of SREBP-1c.116 mTORC1 via 

activation of the kinase S6K1 promotes SREBP-1c cleavage 

into its transcriptionally active form.113 Thus, several converg-

ing mTORC1-dependent pathways enhance the activation of 

the lipogenic transcription factor SREBP-1c.

SREBP-1c promotes sebum fatty 
acid desaturation
It is of critical importance to consider that SREBP-1c is a 

key regulator of stearoyl-CoA desaturase and ∆6-desaturase 

gene expression. Insulin stimulates the expression of 

∆6-desaturase.117,118 Stearoyl-CoA desaturase catalyzes 

the conversion of stearic acid (18:0) to oleic acid (18:1), 

a major fatty acid of sebum triglycerides. ∆6-Desaturase and 

∆5-desaturase are key enzymes for the synthesis of highly 

unsaturated fatty acids such as arachidonic acid, which is 

the precursor of proinflammatory eicosanoids such as leu-

kotriene B4 (LTB4) and prostaglandin E2 (PGE2) involved 

in inflammatory responses of sebaceous glands.119 Sebocyte 

∆6-desaturase converts palmitic acid (16:0) to sapienic acid 

(16:1),120 which functions as a natural antimicrobial agent 

involved in epidermal host defenses.121,122 Thus, sebocyte 

SREBP-1c activity not only controls the total amount of 

synthesized sebum triglycerides but, via SREBP-1c-mediated 

gene expression of ∆6-desaturase and stearoyl-CoA desatu-

rase, increases sebum triglyceride levels of monounsaturated 

fatty acids. In fact, an association between the synthesis of 

total sebum triglycerides with increased triglyceride levels of 

sapienic acid (16:1) and decreased stearic acid (18:0) – due 

to its conversion to oleic acid (18:1) – has been observed 

(Figure 1).123

FoxO1 is critically involved in the regulation of SREPB-

1c activity via GHR-mediated hepatic IGF-1 synthesis,45 

FoxO1-regulated expression of IGF binding protein 1,45 

FoxO1-mediated suppression of LXRα, and FoxO1-regulated 

expression of SREBP-1c.75–77 FoxO-mediated inhibition of 

mTORC1 also controls mTORC1-dependent SREBP-1c 

expression and its final nuclear activation.113–116

Western diet drives acne 
metabolomics
High-acne prevalence rates of over 90% during adoles-

cence, and increasing persistence of acne into the sec-

ond and third decades of life in around 64% and 43% of 
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individuals respectively, clearly point to the predominance 

of environmental and epigenetic factors.124,125 Populations 

exposed to paleolithic dietary conditions (low glycemic load, 

no milk and dairy consumption) such as the Kitavan island-

ers of Papua New Guinea, the Ache hunters in Paraguay, the 

Inuit, and adolescents of rural areas of Brazil are examples 

of acne-free populations. An increase in acne prevalence has 

been reported for Inuits, Okinawa islanders, and Chinese after 

transition from their traditional diets to Westernized nutrition. 

Accumulating epidemiological, clinical, and translational 

evidence underlines the impact of nutritional factors in the 

pathogenesis of common acne vulgaris. Especially nutrients 

that increase insulin/IGF-1 signaling and thus reduce nuclear 

FoxO1 levels but enhance mTORC1 have been identified as 

the most critical inducers of epidemic acne. According to 

Burris et al,126 acne severity in a cohort of New York young 

adults was associated with: 1) increased intake of sugar (high 

glycemic load), 2) number of milk servings per day, and 3) 

amount of saturated fat and trans-fatty acid (TFA) intake. The 

nutrigenomic impact of these acneigenic food classes will now 

be discussed in more detail.

Hyperglycemic carbohydrates
There is a general consensus that a high intake of refined 

carbohydrates plays a pivotal role in acne pathogenesis.127 

The effect of high glycemic load diets on the induction and 

aggravation of acne has been confirmed by several placebo- 

and case-controlled studies.126,128–132 A low glycemic load 

diet increased IGF binding protein 1 (IGFBP1) and IGFBP3, 

whereas a high glycemic load diet decreased sex hormone 

binding globulin (SHBG).131 Thus, the amount of hypergly-

cemic carbohydrates modulates the bioactivity of free serum 

IGF-1 and free serum androgens. Importantly, Kwon et al78 

observed a decrease of sebaceous gland size and reduced 

SREBP-1 expression in facial acne skin after 10 weeks of 

a low glycemic load diet. This metabolic reaction pattern is 

explained by attenuated AKT–mTORC1 signaling due to 

carbohydrate reduction with attenuated insulin signaling. 

Resulting increases of nuclear FoxO1 and decreased 

mTORC1 activity are in accordance with reduced cutaneous 

expression of SREBP-1. Decreased cutaneous SREBP-1 

expression should not only reduce total sebum production 

but should also decrease the rate of sebum triglyceride fatty 

acid desaturation. In fact, a low glycemic load diet increased 

the ratio of saturated to monounsaturated fatty acids in skin 

surface triglycerides.133 In contrast, increased sebum out-

flow was associated with an increase in the proportion of 

monounsaturated fatty acids, thus reflecting SREBP-1-driven 

total lipogenesis as well as increased SREBP-1c-dependent 

stimulation of desaturase activity (Figure 1). Thus, a high 

glycemic load changes the composition of sebum fatty acids, 

a most critical proinflammatory and comedogenic mechanism 

that will be discussed later.

There is recent evidence that diet also modifies the 

expression of microRNAs that play an important role in 

posttranscriptional regulation of metabolism.134 High glucose 

concentration upregulates microRNA-21 in macrophages.135 

MicroRNA-21 is a central regulator of cell proliferation and 

inflammation.136 MicroRNA-21 promotes macrophage polar-

ization toward proinflammatory M1 macrophages secreting 

IL-1β, and stimulates Th17 cell differentiation.137,138

Milk
In 1885, Bulkley139 reported on acne-aggravating effects of 

milk consumption in his extensive dietary studies involv-

ing 1,500 patients with acne. Harvard epidemiologists 

Adebamowo et al140–142 provided the first epidemiological 

evidence for the association between milk consumption and 

acne by evaluating data of the retrospective Nurses’ Health 

Study II and the prospective Growing-up Today Study. 

Further controlled clinical studies corroborated the milk–

acne connection.61,129,143 A recent semantic connectivity map 

approach of 563 subjects showed that moderate-to-severe 

adolescent acne was closely associated with high consump-

tion of milk, in particular, skim milk, cheese/yogurt, sweets/

cakes, chocolate, and a low consumption of fish, and limited 

intake of fruits/vegetables,144 which is the opposite food pat-

tern of paleolithic nutrition.

Milk is a very special functional food designed by evolu-

tion to promote anabolism and growth of newborn mammals. 

To understand milk’s impact on acne, it is important to real-

ize that milk promotes anabolic mTORC1 signaling.145 To 

fulfill its growth-promoting function, this secretory product 

of mammary glands transfers a hardware consisting of amino 

acids that promote insulin/IGF-1/mTORC1 signaling, and 

a software delivering exosomal microRNAs, including 

microRNA-21 that enhances AKT–mTORC1 signal trans-

duction (Figure 1).145

Daily consumption of 710 mL ultra-heat-treated (UHT) 

milk in prepubertal Mongolian children not used to milk 

consumption over 4 weeks substantially increased serum GH 

and IGF-1 levels.146 Notably, IGF-1 serum levels increased 

by 23% from pretreatment concentrations. These data clearly 

show that milk consumption switches the somatotropic axis. 

It is important to realize that it is not the IGF-1 content of 

cow’s milk that exaggerates serum IGF-1 levels of the milk 
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consumer, but the milk-driven hepatic production of IGF-1 

by the transfer of amino acids that promotes IGF-1 synthesis 

in the liver of the milk recipient.145 Notably, the major whey 

protein α-lactalbumin has the highest tryptophan content 

among all other protein food sources.147 Tryptophan avail-

ability is of critical importance for hepatic IGF-1 synthesis.148 

Milk’s essential BCAAs (leucine, isoleucine, and valine) 

induce pancreatic insulin secretion and explain the high 

insulinemic index of whole milk and skim milk.149,150

Thus, milk intake enhances insulin/IGF-1 signaling. 

Furthermore, milk proteins transfer high amounts of the 

insulinotropic amino acid leucine, which promotes mTORC1 

activation.145 Whey proteins contain the highest amount of 

leucine (14%) compared with all other animal proteins such 

as beef (8%).151 In comparison with beef protein (4.74 g 

glutamine/100 g), milk protein (8.09 g glutamine/100 g) 

contains about twice as much glutamine.152 Glutamine not 

only promotes cellular leucine uptake,153 but is the precursor 

of the glutaminolysis pathway that is critically involved in 

mTORC1 activation.108,109,154 Remarkably, the glutaminolysis 

pathway plays a special role in sebaceous lipogenesis and 

sebocyte proliferation.155 In freshly isolated human chest 

sebaceous glands, glutamine deprivation reduced cell pro-

liferation and lipogenesis by 41% and 37%, respectively.155 

These data indicate that milk is the ideal fuel for FoxO1/

mTORC1/SREBP-1c-regulated sebaceous gland hyperplasia 

and sebaceous lipogenesis. Increased IGF-1 production by 

milk protein intake is thus superimposed on exaggerated 

IGF-1 signaling of puberty, which explains the earlier onset 

of puberty and the persistence of acne in the third decade of 

life in milk-consuming populations.

Analogously to androgen abuse in the bodybuilding envi-

ronment, excessive milk protein intake has to be considered as 

a form of doping.156 It is of critical concern that milk protein 

(whey and casein) abuse in the fitness and bodybuilding scenario 

is associated with the onset and aggravation of acne.157–160

The recent prediction of Melnik et al145,149 that milk 

transfers a gene-regulatory metabolically active software 

consisting of exosomal bioactive microRNAs has recently 

been confirmed experimentally for cow’s milk.161–163 Binding 

of microRNAs through partial sequence homology to the 

3′-untranslated region of target mRNAs causes translational 

block or degradation of target mRNAs.164 MicroRNAs, 

enclosed by membranous microvesicles (exosomes), allow 

intercellular transfer of microRNAs over long distances.165,166 

Milk is apparently the exosomal signaling system of mam-

mals that allows maternal–neonatal communication.145,167 

It is of critical concern that the 245 microRNAs of pasteurized 

cow’s milk are absorbed by humans in biologically 

meaningful amounts, reach the systemic circulation, and 

affect the expression of more than the estimated 11,000 genes 

of the human milk consumer.161 In fact, it has been shown 

that exosomal milk-derived microRNAs are taken up by 

human cells and modify gene expression.161,163 Intriguingly, 

bovine microRNA-21, a predominant microRNA constitu-

ent of cow’s milk, is identical to human microRNA-21.168 

MicroRNA-21 inhibits mRNA expression of phosphatase 

and tensin homologue (PTEN).169,170 PTEN is a dual protein/

lipid phosphatase. Its main substrate, phosphatidyl-inositol 

3,4,5, triphosphate, is the product of PI3K. MicroRNA-21-

mediated suppression of PTEN mRNA thus promotes PI3K/

AKT signaling, which downregulates nuclear FoxO1. Fur-

thermore, there is recent evidence that microRNA-21 directly 

targets FoxO1 mRNA.171,172 Another recently identified target 

of microRNA-21 is IGFBP3,173 which reduces the bioavail-

ability of IGF-1. The recent observation that exosomal 

microRNA-21 downregulates the expression of TGFβR2174 

is of critical importance for acne-prone individuals with a 

genetic weakness of TGFβ signaling.83 Thus, milk-derived 

microRNA-21 inhibits FoxO1- as well as TGFβ-signaling at 

various layers of posttranscriptional regulation.

Danby175 emphasized that 75%–90% of marketed commer-

cial milk and milk products in the US are derived from pregnant 

cows. The milk of these animals contains DHT precursors. 

During pregnancy, the bovine adrenal gland produces substan-

tial amounts of DHEA, which can be converted to andros-

tenedione via the enzyme 3β-hydroxysteroid dehydrogenase. 

Androstenedione levels increase in cow’s plasma and milk 

during pregnancy.176 Raw milk of pregnant versus nonpregnant 

cows contains 3.4 times more androstenedione (mean =36.7 

versus 10.9 ng/dL), 1.2 times more DHEA (mean =10.5 versus 

8.7 ng/dL), and 1.3 times more testosterone (mean =10.3 ver-

sus 8.0 ng/dL), respectively.177 Activation of estrogen receptor 

beta and AR by the DHEA metabolites androst-5-ene-3,17-

dione, androst-5-ene-3β,17β-diol, DHT, and 5α-androstane-

3β,17β-diol increased microRNA-21 transcription in HepG2 

human hepatoma cells, increasing cell proliferation.178 Thus, 

both milk-derived exosomal microRNA-21 and milk andro-

gen precursor-mediated expression of microRNA-21 may 

enhance PI3K–AKT- signaling, decreasing FoxO1’s nuclear 

activity. Intriguingly, there has recently been interest in the 

role of microRNAs as natural ligands of toll-like receptors 

(TLRs).179 MicroRNA-21 and microRNA-29a, both com-

ponents of cow’s milk, can directly bind to TLR8.180 TLR8 

stimulation activates the inflammasome and upregulates IL-1β 

secretion.181,182
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Saturated and trans-fats
Recently, Yasuda et al183 provided evidence that the major 

saturated fatty acid palmitate activates mTORC1 and 

enhances its lysosomal translocation, whereas the ω3-fatty 

acid eicosapentaenoic acid (EPA), a major fatty acid of fish 

oil, inhibited mTORC1 activation. It is thus conceivable that 

sebum-derived free palmitate may activate cell prolifera-

tion of acroinfundibular keratinocytes by palmitate-driven 

mTORC1 signaling, thereby promoting comedogenesis. 

Notably, palmitate is a major fatty acid, constituting 32% 

of milk triglycerides.184,185 Burris et al126 and Jung et al61 

observed an aggravation of acne with increased intake of 

saturated fat, whereas a higher intake of fish, a nutrient source 

enriched in ω3-fatty acids, exhibited an acne-protective 

effect.61,143,144

Industrially produced TFAs, which structurally resemble 

palmitate, are major components of fast food and have been 

found to aggravate acne.61,126 Their mTORC1-activating effect 

is predictable, but has not yet been studied. These partially 

hydrogenated fats have displaced natural solid fats and liquid 

oils in many areas, the most notable ones being in fast food, 

snack food, fried food, and baked goods that have all been 

associated with diet-induced acne.61,126 In a comparative study 

of the TFA content of Swedish bakery products in 2007, 3 of 

41 products had TFA levels above 2% of total fatty acids.186 

However, TFA intakes of  Canadian children aged 5–6 years 

have decreased since 2004 to a 95% intake of 1.28% of 

energy.187 TFA intake during pregnancy and lactation of rats 

increased the expression of TNF receptor-associated factor 6 

(TRAF6) in the rat offspring.188 Remarkably, TRAF6 mediates 

IL-1 signaling.189 Toll/IL-1 receptor (TIR) domain-containing 

adaptor protein (TIRAP) is involved in bridging MyD88 to the 

receptor complex for TLR2 and TLR4 signaling in response 

to bacterial infection.190 Verstak et al190 characterized a novel 

role for TIRAP in facilitating the direct recruitment of TRAF6 

to the plasma membrane, which is necessary for TLR2- and 

TLR4-induced transactivation of NF-κB and induction 

of subsequent proinflammatory responses. Thus, Western 

diet-derived TFA intake via TRAF6-mediated stimulation of 

proinflammatory TLR2/TLR4 signaling may contribute to 

nutrient-mediated inflammatory responses of pilosebaceous 

follicles.

Western diet promotes NRLP3 
inflammasome activation
It has long been known that “sebum is the oil of the acne 

flame.” P. acnes flourishes when sebum production increases. 

Regional variations in density of P. acnes are correlated with 

sebum secretion.191 P. acnes strain 266, which belongs to the 

IA (I-1a/ST18) phylotype, is associated with moderate to 

severe acne and possesses particular virulence potential.192 

The gehA gene (PPA2105) encoding the secreted triacylgly-

cerol lipase is a virulence factor that is upregulated in P. acnes 

strain 266 during exponential growth phases.193 Recently, 

P. acnes biofilm formation has been confirmed in sebaceous 

follicles of acne patients.194 Bacteria undergo behavioral and 

transcriptional changes based on the surrounding bacterial 

population, a process called quorum sensing (QS).195 QS 

inhibitors appear to play an important role in the inhibition 

of biofilm formation.196 Biofilm formation substantially 

increases P. acnes virulence associated with enhanced 

expression of exogenous P. acnes triglyceride lipase that 

increases sebum concentrations of free palmitate and oleate 

(Figure 1).197,198 Zouboulis et al199 recently emphasized that 

not only the total amount of sebum but, predominantly, 

alterations of sebum lipid composition are main players 

in the induction of inflammatory acne. Notably, free oleic 

acid generated by SREBP-1c-dependent stearoyl desaturase 

and subsequent triacylglycerol lipase-mediated hydrolysis 

increases P. acnes adherence and growth.200,201 Thus, P. acnes 

lipase may aid colonization and biofilm formation within 

the pilosebaceous follicle, by promoting oleate-dependent 

cell adherence.200

Innate immunity is activated in acne. Incubation of human 

keratinocytes with P. acnes fractions induced the expression 

of TLR2 and TLR4.202 Positive TLR2 expression in epidermis, 

pilosebaceous units, and dermal inflammatory infiltrates has 

been demonstrated immunohistochemically in acne-involved 

skin.203 Notably, excess saturated fatty acids appear to func-

tion as danger signals (DAMPs),204 which activate TLR2/

TLR4-driven inflammatory signaling.195 Snodgrass et al205 

recently demonstrated that human monocyte TLR2 activation 

and inflammasome-mediated secretion of IL-1β are modu-

lated by dietary fatty acids. Remarkably, palmitic acid directly 

activates TLR2 by inducing heterodimerization with TLR1, 

whereas docosahexaenoic acid (DHA), a major ω3-fatty 

acid of fish oil, inhibited TLR2/TLR1 dimerization.205 TLR2/

TLR1 dimerization is thus a most critical palmitate-dependent 

regulatory mechanism in inflammasome activation resulting 

in subsequent IL-1β secretion. This molecular mechanism 

apparently links enhanced levels of free sebum palmitate to 

TLR2-driven inflammasome activation of the pilosebaceous 

follicle in acne. There is recent evidence that inflammatory 

TLR2–NF-κB signaling in macrophages is well enhanced 

by palmitate.206 Sebum free saturated fatty acids apparently 

promote a TLR-mediated danger response of the sebaceous 
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follicle associated with upregulated β-defensin-2 expression 

of human sebocytes.207 Palmitate has been recognized as a 

crucial stimulator of the NLRP3 inflammasome and plays 

an important role in lipotoxic inflammasome activation 

of macrophages.208,209 In human monocyte/macrophages, 

both palmitate and stearate triggered IL-1β secretion in a 

caspase-1/ASC/NLRP3-dependent pathway.210 In chondro-

cytes as well, palmitate synergized with IL-1β in stimulat-

ing proinflammatory cellular responses.211 Thus, excessive 

production and release of sebum-derived free palmitic acid 

appears to be a lipotoxic danger signal of the sebaceous fol-

licle that drives inflammation.

The NLRP3 inflammasome is regarded as a sensor of 

metabolic danger signals activated by lysosomal rupture, 

potassium efflux, and reactive oxygen species production.212 

Kistowska et al213 demonstrated that lysosomal rupture is 

required for IL-1β secretion in response to P. acnes. Notably, 

palmitate is known to destabilize lysosomes, leading to 

NLRP3 inflammasome activation.208 Thus, excess satu-

rated fatty acids stimulate and augment a danger response 

via TLR2 activation and lysosomal destabilization finally 

processed by the NLRP3 inflammasome that mediates 

IL-1β signaling (Figure 1).208,214 In addition to palmitate, 

P. acnes itself triggers NLRP3 inflammasome activation of 

monocyte–macrophages and human sebocytes, increasing 

IL-1β secretion.213,215,216

IL-1β release stimulates the Th17 
response
IL-1β activates IL-17A positive T cells (Th17 cells) and 

CD83 dendritic cells in acne lesions, resulting in the acti-

vation of Th17-related cytokines.217 In addition to IL-17A, 

both Th1 and Th17 effector cytokines, transcription factors, 

and chemokine receptors are strongly upregulated in acne 

lesions.218 IL-17A and IL-17F are key cytokines for the 

recruitment and activation of neutrophils and can target 

keratinocytes, endothelial cells, monocytes, and fibroblasts 

to produce proinflammatory mediators such as IL-6, TNFα, 

IL-1β, PGE2, nitric oxide, matrix metalloproteinases, and 

various chemokines.219 IL-17-related antimicrobial peptide 

and CXCL chemokine production with neutrophil attrac-

tion in acne lesions are thus important factors triggering the 

inflammatory infiltrate. There is substantial support for the 

hypothesis of Lwin et al,195 who suggest that P. acnes sends 

no signals or only “safety signals” when present in controlled 

quantities under commensal conditions, but becomes patho-

genic and sends “danger signals” via QS in the form of exces-

sive free fatty acid production, which stimulates TLR2 and 

TLR4 as the bacterial population and its virulence increases  

(Figure 1).

Sebum free fatty acids promote 
comedogenesis
Abnormal follicular keratinization is important for comedo 

formation in acne. Diet-induced changes in sebum quantity 

and composition may not only induce the inflammation 

of acne but may also drive the process of comedogenesis. 

Increased release of the danger signal “free palmitate” 

activates TLR2/IL-1β signaling of dendritic cells that 

promote Th17 cell differentiation with increased secretion 

of IL-17A.220 In fact, increased local levels of IL-1β and 

IL-17A have been detected in lesional acne skin (Figure 1).217 

IL-17 is a key cytokine that stimulates keratinocyte prolif-

eration via IL-6/STAT3 signaling.221 IL-17 contributes to 

keratinocyte hyperproliferation and attenuates keratinocyte 

differentiation.222 Thus, IL-17 disturbs follicular keratino-

cyte homeostasis in acne, a comparable mechanism driving 

keratinocyte hyperproliferation in psoriasis.223

Choi et al224 reported that oleic acid applied on the inner 

surface of the ear of New Zealand White rabbits induced 

comedones. Permeability barrier disruption in oleic-acid-

applied follicular keratinocytes may disrupt the keratinocyte 

intracellular calcium gradient, leading to keratinocyte pro-

liferation and follicular hyperkeratosis.224 In fact, applica-

tion of oleic acid and palmitoleic acid induced scaly skin, 

abnormal keratinization, and epidermal hyperplasia.225 

Furthermore, application of unsaturated fatty acids increased 

the intracellular calcium concentration of the keratinocytes. 

Notably, intracellular calcium increase of keratinocytes 

stimulated by exposure to free oleic acid increased the pro-

duction of IL-1α (Figure 1),226 which has been implicated 

in comedogenesis.227–231

Taken together, there is compelling evidence that the 

nutrigenomic changes promoted by Western diet increase 

the local availability of sebum free palmitic and oleic acid, 

driving IL-1β- and IL-1α-mediated comedogenesis. Both 

cytokines not only play an important role in early- and late-

inflammatory responses in acne,232 but apparently represent 

key mediators of comedo formation.

Nutrition therapy of acne
In 2005, Cordain233,234 emphasized the beneficial effects of 

a paleolithic diet (no hyperglycemic carbohydrates, no milk 

and dairy products) for the treatment of acne. Today, his 

dietary recommendations can be interpreted on the basis 

of nutrigenomic disturbances induced by Western diet. 
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Apparently, dietary and pharmacological treatment of acne 

have a common mode of action: the increase of nuclear FoxO1 

and the attenuation of mTORC1 signaling (Table 1).235 Natu-

ral dietary compounds that either increase FoxO1 or inhibit 

mTORC1 as well as inflammasome activation are promising 

agents for the dietary cure of acne.236 The acne-preventive 

effect of fish consumption is well explained by the anti-

inflammatory effects of ω3-fatty acids. A preliminary case 

study showed an overall improvement of acne severity by 

12-week daily supplementation of 3 g fish oil (930 mg EPA).237 

Dietary supplementation of acne patients with either 2 g EPA 

and DHA or borage oil containing 400 mg γ-linoleic acid 

significantly decreased inflammatory and noninflammatory 

acne lesions.235 DHA has been demonstrated to inhibit TLR2/

TLR1 dimerization, TLR2 signaling, and thus inflammasome 

activation.205 In fact, DHA reduced macrophage IL-1β produc-

tion by limiting inflammasome activation.238 This inhibition 

required DHA binding to free fatty acid receptor 4, also known 

as GPR120/40, which recruits the adapter protein β-arrestin 

1/2.239 ω3- and ω6-PUFAs (polyunsaturated fatty acids) are 

both natural ligands of GPR120/40.240 After receptor bind-

ing ω3-fatty acids inhibited the NLRP3 inflammasome.208,239 

Remarkably, both the NLRP3 inflammasome and mTORC1 

are activated by palmitic acid and inhibited by DHA, respec-

tively.183,208,239 Furthermore, PUFAs counteract the activation 

of SREBP-1c by increasing SREBP-1c proteolytic cleavage 

and decreasing its mRNA abundance (Table 2).241,242

mTORC1 activity is also attenuated by plant-derived 

natural compounds such as the major green tea polyphe-

nol epigallocatechin-3-gallate (EGCG) and the stilbenol 

resveratrol.236 EGCG suppressed IGF-1-induced lipo-

genesis, reduced the activation of AKT and mTOR, and 

attenuated the expression of IL-1, IL-6, and IL-8 in SZ95 

sebocytes.243 EGCG is a dual PI3K/mTOR inhibitor, and it 

enhances nuclear FoxO1 and attenuates mTORC1 signal-

ing,244 explaining the improvement of acne by topical EGCG 

treatment.245 EGCG has been shown to inhibit SREBP-1 in 

SEB-1 sebocytes, and improved acne in an 8-week random-

ized clinical trial with EGCG.244 EGCG-mediated activation 

of AMP-activated kinase is another inhibitory mechanism 

attenuating mTORC1–SREBP-1 signaling, which explains 

EGCG-mediated suppression of sebaceous lipogenesis.245 

These data are in accordance with reduced sebum produc-

tion of healthy volunteers topically treated with a 3% green 

tea emulsion.246 Notably, a preliminary case study reported 

improvement of acne with daily oral intake of 1 g EPA and 

200 mg EGCG (Table 2).247

Resveratrol, the polyphenolic flavonoid from grapes and 

red wine, downregulates PI3K/AKT/mTORC1 signaling.248–252 

Furthermore, it inhibits the growth of P. acnes,253 directly 

inhibits PI3K,254 upregulates FoxO1, and downregulates 

PPARγ mRNA expression.254 Importantly, resveratrol 

inhibited SZ95 sebocyte growth through inactivation of 

the PI3K/AKT pathway.255 Resveratrol via stimulation of 

Table 1 Acneigenic food components of western diet

Nutrients Metabolic and nutrigenomic effects Sources

Hyperglycemic  
carbohydrates

Postprandial hyperinsulinemia 
Insulin-mediated hepatic IGF-1 synthesis 
Reduction of IGFBP3 
Increased bioavailability of free circulating IGF-1 
Reduction of SHBG 
Increased bioavailability of free circulating testosterone 
Reduced nuclear activity of FoxO1 
Increased expression of sebocyte SReBP-1c 
Activation of mTORC1 
Glucose-mediated microRNA-21 expression

Sugar 
Sweets 
Soft drinks 
Pizza 
Pasta 
wheat bread 
wheat rolls 
Cornflakes

Milk and dairy 
products

Postprandial hyperinsulinemia  
Increased levels of circulating IGF-1 
Leucine-mediated activation of mTORC1 
Glutamine-mediated activation of mTORC1 
Palmitate-mediated activation of mTORC1 
Milk-microRNA-21-mediated proliferation and inflammation

whole and skim milk 
Pasteurized fresh milk 
Yogurt 
Ice cream 
whey and casein supplements 
Cheese

Saturated fats Palmitate-mediated activation of mTORC1  
Palmitate-driven inflammasome activation

Butter 
Cream

Trans-fats Possible mTORC1 activation  
Proinflammatory signaling

Fast food 
French fries

Abbreviations: IGF-1, insulin-like growth factor 1; IGFBP3, IGF binding protein 3; SHBG, sex hormone binding globulin; FoxO1, forkhead box O1; SReBP-1c, sterol 
response element binding protein 1c; mTORC1, mechanistic target of rapamycin complex 1.
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FoxO1 signaling apparently inhibits SREBP-1c.254,256–258 

In fact, topical treatment of facial acne vulgaris in 20 

patients with a resveratrol-containing gel (0.01% wt/vol) 

significantly reduced the number of microcomedones, 

papules, and pustules compared with vehicle control.259 

Furthermore, resveratrol eradicated P. acnes biofilm forma-

tion (Table 2).260

Conclusion
Food is a conditioning environment that shapes the activity of 

the human genome.261 Acne is obviously the visible outcome 

of imbalanced nutrigenomics induced by Western diet, the 

maximized form of neolithic nutrition, that exaggerates insu-

lin/IGF-1 signaling.33 Suppression of FoxO1 by Western diet 

increases the activity of most important transcription factors 

involved in sebaceous lipogenesis (Figure 1). Upregulated 

SREBP-1c not only enhances total sebum production but 

modifies sebum triglyceride fatty acid composition by gener-

ating a proinflammatory and comedogenic fatty acid pattern. 

These metabolomic changes are of critical importance for 

P. acnes overgrowth and biofilm formation and subsequent 

P. acnes-driven inflammation. Oleic acid promotes P. acnes 

adherence, which favors biofilm formation with QS that 

enhances P. acnes virulence by increasing the synthesis of 

exogenous lipase that releases free palmitic and oleic acid. 

Free palmitic acid functions as a danger signal that stimulates 

TLR2-mediated activation of the NLRP3 inflammasome 

providing proinflammatory IL-1β. IL-1β with subsequent 

Th17 activation and IL-17 signaling promotes comedogenesis 

and inflammation.

There is good reason to assume that genetic predispositions 

to acne increase the acneigenic responsiveness to Western diet. 

Individuals with persistent insulin resistance, hyperinsuline-

mia, and hyperandrogenism, such as women with polycystic 

ovary syndrome (PCOS), will exhibit increased responsiveness 

to the acneigenic signals of Western diet.262 Notably, PCOS 

responds favorably to metformin,263 a recently characterized 

mTORC1 inhibitor.264 Exaggerated mTORC1–S6K1 signaling 

links acne to increased BMI and insulin resistance.265

Androgen abuse has synergistic acneigenic effects with 

Western diet-driven nutrient signaling, because androgens 

activate mTORC2 that activates AKT and thus reduces 

nuclear levels of FoxO1.266,267

Nutrient signaling induced by Western diet synergizes 

with IGF-1 polymorphism associated with increased 

serum IGF-1 levels,60,268 fibroblast growth factor receptor-2 

(FGFR2) gain-of-function mutation (Apert syndrome) with 

increased activation of AKT,269,270 CAG repeat polymorphism 

with enhanced AR transcriptional activity,32 P450 polymor-

phisms with accelerated retinoic acid catabolism decreasing 

nuclear levels of FoxO1,271 disturbed TFGβ signaling impair-

ing FoxO–SMAD-dependent gene synexpression,83–86 IL-1α 

polymorphism with increased IL-1α signaling,272 and, finally, 

the IL-1β-producing PAPA (pyogenic arthritis, pyoderma 

gangrenosum, and acne) syndrome.273–275

Epidemic acne vulgaris is an mTORC1-driven systemic 

disease of Western civilization such as obesity, diabetes, 

and cancer.47,99,276–278 Acne patients should control their total 

calorie uptake and restrict sugar and refined carbohydrates, 

milk, whey, and casein protein supplements, saturated fats, 

and trans-fats. Acne patients should avoid pasteurized fresh 

milk intake that transfers bioactive microRNA-21, a most 

critical microRNA that downregulates FoxO1 and promotes 

inflammation.136,161,162,171,172

The ideal “antiacne diet” will be a paleolithic-like nutri-

tion with accentuated intake of vegetables and fruits with low 

glycemic index and sea fish enriched in anti-inflammatory 

ω3-fatty acids.279–281 Beneficial and acne-preventive nutrients 

should contain plant-derived natural mTORC1 inhibitors 

such as green tea (EGCG), resveratrol, curcumin, genistein, 

and silymarin (Table 2).236,282–284

Western diet obviously induces an IGF-1/mTORC1-driven 

pilosebaceous inflammasomopathy of adolescence, unmask-

ing a visible metabolic danger signal, which should alert the 

medical community. Comparable NLRP3-driven reaction pat-

terns have been realized as major pathogenic factors of serious 

Table 2 Paleolithic-type diet for the nutrition therapy of acne

Nutrients Metabolic effects Sources

Carbohydrates with  
low glycemic index

Reduced insulin signaling 
Reduction of free IGF-1 
Increase of IGFBP3 und SHBG 
Increase of nuclear FoxO1 
Reduction of SReBP-1c 
Attenuation of mTORC1

Salads 
vegetables

ω-3-fatty acids  
(docosahexaenoic acid  
and eicosapentaenoic  
acid)

Inhibition of mTORC1 
Inhibition of SReBP-1c 
Reduction of proinflammatory 
eicosanoids (LTB4, PGe2) 
Inhibition of NRLP3 
inflammasome activation

Sea fish 
ω-3-fatty acid-
containing oils

Plant products and  
spices enriched in  
natural mTORC1  
inhibitors and FoxO1  
enhancers

Inhibition of mTORC1 
Activation of nuclear FoxO1 
Inhibition of P. acnes/biofilm

Green tea 
(eGCG) 
Berries 
(resveratrol) 
Curcumin

Abbreviations: IGF-1, insulin-like growth factor 1; IGFBP3, IGF binding protein 3; 
SHBG, sex hormone binding globulin; FoxO1, forkhead box O1; SReBP-1c, sterol 
response element binding protein 1c; mTORC1, mechanistic target of rapamycin 
complex 1; LTB4, leukotriene B4; PGe2, prostaglandin e2; eGCG, epigallocatechin-
3-gallate.
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diseases of civilization.212 The advice of Kapahi et al285 “with 

TOR less is more” apparently applies for the treatment and 

prevention of the most common diet-induced inflammatory 

skin disease. Future acne research should determine in vivo 

mTOR expression and mTORC1-dependent phosphorylation 

states of S6K1 and 4E-binding protein 1 in acne skin, which 

could explain the disturbed diet-induced metabolomics in acne 

skin and their corrections by dietary intervention such as the 

decreased expression of SREBP and IL-8 in lesional skin of 

acne patients during a low glycemic load diet.78
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