
ORIGINAL RESEARCH
published: 13 December 2019
doi: 10.3389/fdata.2019.00050

Frontiers in Big Data | www.frontiersin.org 1 December 2019 | Volume 2 | Article 50

Edited by:

Yvonne Will,

Janssen Pharmaceuticals, Inc.,

United States

Reviewed by:

Agnes Karmaus,

Integrated Laboratory Systems, Inc.,

United States

Alexander Sedykh,

Sciome LLC, United States

*Correspondence:

Ruili Huang

huangru@mail.nih.gov

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Big Data

Received: 29 May 2019

Accepted: 29 November 2019

Published: 13 December 2019

Citation:

Ngan DK, Ye L, Wu L, Xia M,

Rossoshek A, Simeonov A and

Huang R (2019) Bioactivity Signatures

of Drugs vs. Environmental Chemicals

Revealed by Tox21 High-Throughput

Screening Assays.

Front. Big Data 2:50.

doi: 10.3389/fdata.2019.00050

Bioactivity Signatures of Drugs vs.
Environmental Chemicals Revealed
by Tox21 High-Throughput Screening
Assays
Deborah K. Ngan 1, Lin Ye 1, Leihong Wu 2, Menghang Xia 1, Anna Rossoshek 1,

Anton Simeonov 1 and Ruili Huang 1*

1Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of

Health (NIH), Rockville, MD, United States, 2National Center for Toxicological Research, US Food and Drug Administration,

Jefferson, AR, United States

Humans are exposed to tens of thousands of chemicals over the course of a lifetime, yet

there remains inadequate data on the potential harmful effects of these substances on

human health. Using quantitative high-throughput screening (qHTS), we can test these

compounds for potential toxicity in a more efficient and cost-effective way compared

to traditional animal studies. Tox21 has developed a library of ∼10,000 chemicals

(Tox21 10K) comprising one-third approved and investigational drugs and two-thirds

environmental chemicals. In this study, the Tox21 10K was screened in a qHTS format

against a panel of 70 cell-based assays with 213 readouts covering a broad range of

biological pathways. Activity profiles were compared with chemical structure to assess

their ability to differentiate drugs from environmental chemicals, and structure was

found to be a better predictor of which chemicals are likely to be drugs. Drugs and

environmental chemicals were further analyzed for diversity in structure and biological

response space and showed distinguishable, but not distinct, responses in the Tox21

assays. Inclusion of other targets and pathways to further diversify the biological response

space covered by these assays is likely required to better evaluate the safety profile of

drugs and environmental chemicals to prioritize for in-depth toxicological studies.

Keywords: in vitro assay, quantitative high throughput screening, Tox21, drug, environmental chemical

INTRODUCTION

One of the major challenges in the commercial market is the accurate assessment of potential
adverse effects of approved drugs and environmental chemicals on human health. All drugs
available for sale in the U.S. have been approved by the U.S. Food and Drug Administration (FDA)
to ensure that they work correctly and that their health benefits outweigh their known and potential
risks (U.S. Fod Drug Administration, 2018). Similarly, environmental chemicals (ENVCs), defined
by the Centers for Disease Control and Prevention (CDC) as “a chemical compound or chemical
element present in air, water, food, soil, dust, or other environmental media such as consumer
products,” (Centers for Disease Control Prevention, 2017) are required to be analyzed for safety
by the Environmental Protection Agency (EPA) prior to releasing to the market (United States
Environmental Protection Agency, 2017). As a result of the independent evaluation processes,
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different regulatory decisions may be required for the assessment
of drugs and ENVCs. Marketed drugs may be considered unsafe
after exhibiting unexpected toxicity in the clinic, and these
drugs are often recalled for this very reason (Saluja et al.,
2016). Furthermore, older drugs that were not subjected to
the same rigorous FDA approval process and “grandfathered”
into the market were generally not sufficiently tested for safety
and effectiveness prior to human use (Chhabra et al., 2005;
Nasr et al., 2011). As for ENVCs, there is a general lack of
information on their potential toxicological effects (Huang et al.,
2016). People are exposed to thousands of drugs and ENVCs
during their lifetime, presenting the need for the development of
high-throughput methods to systematically evaluate the toxicity
of these chemicals. While filling in the toxicity data gap, such
methods also need to be assessed to determine if they are suitable
for characterizing both types of chemicals.

The Toxicology in the Twenty-First Century (Tox21)
partnership (NRC, 2007; Collins et al., 2008; Kavlock et al.,
2009; Tice et al., 2013) has developed in vitro methods with the
aim to rapidly and efficiently evaluate the safety of commercial
chemicals, pesticides, food additives/contaminants, and medical
products (Shukla et al., 2010). In Tox21, quantitative high-
throughput screening (qHTS) (Attene-Ramos et al., 2013, 2015;
Hsu et al., 2014; Huang et al., 2014, 2018; Hsieh et al., 2015),
an automated robotic process in which each compound of a
large chemical library is tested at multiple concentrations, is
used to test large collections of chemicals in a battery of cell-
based assays (Huang et al., 2016). A collection of ∼10,000
ENVCs, as well as approved and investigational drugs, called the
Tox21 10K library, has been screened for potential biological
pathway disruptions that may result in toxicity. The NCATS
Pharmaceutical Collection (NPC), a collection of small molecule
drugs approved for clinical use or investigational purposes, is
also part of the Tox21 10K library (Huang et al., 2011a). This
library has been tested against ∼70 cell-based assays from the
Tox21 testing pipeline in qHTS format and has generated nearly
100 million data points to date (Huang et al., 2016, 2018;
NCATS, 2016). The assay panel focuses on two major biological
areas: nuclear receptor signaling (Huang et al., 2011b) and
stress response pathways (Shukla et al., 2010), and also includes
a smaller number of assays that probe for genotoxicity (Witt
et al., 2017), developmental toxicity, and cell-death signaling
(Hsieh et al., 2017).

QSAR modeling has been widely used to predict the drug-
likeness of a molecule, but these methods have focused mostly
on screening for ADME-Tox properties (Clark and Pickett, 2000;
Di and Kerns, 2016; Shin et al., 2016). The rich set of compound
activity profiles established across a wide spectrum of Tox21
assays provided us with the unique opportunity to characterize
the biological responses of drugs vs. ENVCs. Drugs are generally
expected to be better characterized, more target specific, and
thus exhibit response profiles different from those of ENVCs in
a panel of toxicity-focused assays such as the Tox21 assays. The
Tox21 assay panel, on the other hand, could capture unexpected
drug side effects that result in toxicity. Ideally, an optimally
designed panel of assays should be able to distinguish drug-like
characteristics from ENVCs, and these different safety profiles

could be applied to help decision-making on both prioritization
for in-depth toxicological studies and drug development. The
Tox21 10K library is comprised of approximately one-third drugs
and two-thirds ENVCs (Huang et al., 2011a). To evaluate the
suitability of the current Tox21 assay panel for assessing drug
and ENVC toxicity, we compared the biological responses of
all drugs and ENVCs in the Tox21 10K compound collection
when screened against∼70 assays with 213 different readouts. In
addition, computational models were built to explore if drugs in
the 10K compound library could be identified using the in vitro
assay activity profiles or chemical structure, i.e., if compound
activity profiles, in comparison to chemical structure, could be
used as signatures to predict which compounds are likely to
be drugs. The data collectively gathered in this study can be
applied to optimize the Tox21 assay panel which can lead to
better characterization of drugs and ENVCs, improved in vivo
toxicity prediction, and ultimately more effective prioritization
of substances for additional investigational studies.

MATERIALS AND METHODS

In vitro Assay and Structure Data
qHTS data generated from the Tox21 10K collection up to
the end of 2018 were used for modeling, including 70 assays
with 213 readouts (Supplementary Table 1) (Attene-Ramos
et al., 2013; Huang et al., 2016, 2018). All data and detailed
descriptions of these assays with target annotations are publicly
available through the NCATS website (https://tripod.nih.gov/
tox21/assays/) and PubChem (Wang et al., 2012; PubChem,
2016). Curve rank was used as themeasure for compound activity
(Huang et al., 2011b). The detailed process of data normalization,
correction, classification of concentration response curves, and
activity assignment was described previously (Huang, 2016).
For modeling purposes, compounds with absolute curve rank
>0.5 were set as active (1) and inactive (0) otherwise.
ToxPrint chemotypes generated from the ChemoTyper (Yang
et al., 2015) were used as fingerprints (729-bit) for structure-
based models.

Drug Prediction Modeling
In this study, only compounds that were included in the NPC
subset library of the Tox21 10K collection were considered to
be drugs. Any remaining drugs that were not part of the NPC
library were removed from the ENVC category. A total of 8,427
unique compounds with structures available, including 3,739
drugs and 4,688 ENVCs, were used for chemical structure-based
modeling. To obtain a balanced modeling set, a subset of ENVCs
with a size roughly equal to the set of drug molecules was
randomly chosen from the original dataset. The modeling set
was randomly split into two sets, 70% for training and 30% for
model validation, and this process was repeated 100 times. For
assay activity-based models, compounds with complete profiles
in the 70 assays (213 readouts), including 2,369 drugs and
4,735 ENVCs, were used for model training and validation.
The same modeling procedure was repeated for the activity-
based models. All compounds used for modeling were derived
from the Tox21 10K collection, with ∼80% of the compounds
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overlapping between the two sets used for structure- and activity-
based models.

Models were built using the random forest (RF) method
within R (version 3.5.0). RF is an ensemble learning method
for classification and regression that operates by constructing
multiple decision trees. Each tree is trained on roughly two-
thirds of the total training data and gives a classification
on the remaining one-third of data. The forest chooses the
classification having the most votes over all the trees in the
forest. For a binary dependent variable, the vote will be
either YES or NO. The percent YES votes received is the
predicted probability.

Model performance was evaluated by calculating the area
under the receiver operating characteristic curve (AUC-
ROC). The ROC curve is a graphical plot that illustrates

the predictive ability of a binary classification model across
different thresholds. The ROC curve is created by plotting
true positive rates against false positive rates at various

thresholds. The area under the curve (AUC) provides an
aggregate measure of model performance. A larger AUC value
indicates better classifier performance. A perfect predictive
model would have an AUC of 1 and an AUC of 0.5 indicates a
random classifier.

Statistical Tests
Principal component analysis (PCA) was performed within
R package version 3.5.0. PCA reduces a large number
of independent variables into just a few variables (the
principal components). These principal components are a linear
combination of the original variables to project high dimensional
data into low dimensional spaces (3D or 2D). In this study, the
first two principal components, PC1 and PC2, were calculated
based on the 28 physiochemical descriptors derived from
KNIME R© as well as the 213 assay readouts. Drugs and ENVCs
were plotted using just the first two principal components to
evaluate the distribution of these two groups of compounds in
both chemical and bioassay space. Other statistical tests, such as
the χ

2-test, were performed in R package version 3.5.0.

RESULTS

Summary of in vitro Assay Data Across All
Test Substances
High-throughput evaluations of the biological activity of drugs
and ENVCs in the Tox21 10K compound library were conducted
using 70 assays (213 readouts) from the Tox21 testing pipeline.
The 213 readouts were divided up into four groups based

FIGURE 1 | Individual assay responses of drugs and ENVCs grouped by readout type: (A) agonist, (B) antagonist, (C) control, and (D) viability. For each assay

readout, the activities of drugs and ENVCs were compared using the χ
2-test. Hit rate differences were determined by subtracting the ENVC hit rate from the drug hit

rate. A p-value was calculated to determine the statistical significance of the hit rate difference. Assays marked in red signifies significant (p > 0.05) and gray otherwise.
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on assay mode and readout type: agonist, antagonist, control,
and viability. The agonist mode tested for compounds that
induced the activity of a pathway/target, while the antagonist
mode was used to identify compounds that inhibited the
activity of a pathway/target. Furthermore, the control readout
measured assay artifacts such as compound auto fluorescence
and cytotoxicity. The control readout is not a counter screen, but
rather it is one of the readouts generated from a multiple readout
assay, such as the beta-lactamase (BLA) reporter gene assays
(Huang et al., 2011b); not all assays have a control readout. Lastly,
the viability readout assessed the integrity of the cells where a loss
in signal indicates cell death or cytotoxicity. A summary of the
assay activity of the drugs compared to ENVCs tested across the
panel of Tox21 assays can be observed in Figure 1.

Aχ
2-test was performed to compare the hit rate (measured by

curve rank; a compound with an absolute curve rank >0.5 was
considered active or a hit) of the drugs and ENVCs in the Tox21
10K library in each assay readout and the statistical significance
of the difference between the drug and ENVC hit rates were
measured by a p-value from the χ

2-test such that p < 0.05 was
considered as statistically significant.

In Figure 1, the assays in each of the four readout types
are sorted by increasing hit rate differences between drugs and
ENVCs starting with highest value at the top and descending
to the lowest value at the bottom. The gray regions located
primarily in the middle of the graphs represent assays in which
drugs and ENVCs did not show any significant difference in
activity. The four readout types showed different distributions
of significant assays, with “agonist” having the largest fraction
of non-significant assays, followed by “viability,” “control,” and
“antagonist.” The majority of assays in all four readouts revealed
higher hit rates from drugs, thus indicating that drugs showed
more activities than ENVCs.

Overall, ∼68.5% of the assay readouts (146 out of 213
readouts) showed a significant difference (p < 0.05) between
drug and ENVC responses. The assay readouts that showed
the largest difference between drugs and ENVCs (smallest p-
values) include (in descending significance): viability readout
of ER-BG1 antagonist, viability readout of TR-beta antagonist,
viability readout of AhR, viability of HepG2 cells at 0 h, and
control readout of GR-BLA agonist, activity readout of TR-beta
agonist, viability readout of FXR-BLA agonist, activity readout
of GR-BLA agonist, viability readout of ER stress, and viability
readout of PXR agonist. For the agonist readout, the assays
with drugs showing more activities than ENVCs are: activity
readout of GR-BLA agonist, activity readout of TR-beta agonist,
activity readout of ERR agonist, activity readout of AR-BLA
agonist, and activity readout of PPAR-gamma agonist. Likewise,
the assays with more active ENVCs than drugs in this readout
are: activity readout of CAR agonist, activity readout of ER-BG1
agonist (in the presence of antagonist), activity readout of ER-
beta agonist, activity readout of hedgehog agonist, and activity
readout of HSE-BLA. For the antagonist readout, the assays
that exhibited the greatest drug activity compared to ENVCs
are: activity readout of TR-beta antagonist, activity readout of
ER-BLA antagonist, activity readout of hedgehog antagonist,
activity readout of CAR antagonist, and activity readout of

FIGURE 2 | Hit rates of drugs and ENVCs when screened against (A) all

assays or (B) only viability assays.

ER-BLA antagonist. ENVCs were more active in the following
antagonist assay readouts: activity readout of RAR antagonist,
activity readout of luciferase/biochemical, activity readout of
mitochondria toxicity, activity readout of PGC-ERR, and activity
readout of AR-BLA antagonist. For the viability readout, the
assays that showed the highest activity among drugs include: ER-
BG1 antagonist, TR-beta antagonist, FXR-BLA agonist, AhR, and
Caspase-3/7 induction in CHO cells. Likewise, the assays for the
viability readout that display the highest ENVC activity are: ER
stress, SBE-BLA (TGF-beta) antagonist, mitochondria toxicity,
RAR agonist, and RAR viability. A complete list of assay readouts
and their significances in activity differences between drugs and
ENVCs can be found in Supplementary Table 1.

Hit Rate: Drugs vs. ENVCs
The hit rates of drugs and ENVCs were compared across two
groups: all assays and only viability assays. The violin plots
displayed in Figures 2A,B show the distribution of hit rates for
drugs and ENVCs. These values were calculated by dividing the
number of assay hits by the total number of assays tested.
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TABLE 1 | Top 30 most active (A) drugs and (B) ENVCs from Tox21 10K library

screens based on hit rates against all assays.

# CAS Name Hit rate (%)

(A)

1 1404-88-2 Tyrothricin 98.0

2 102-98-7 Phenylmercuric borate 98.0

3 623-07-4 4-Chloromercuriphenol 98.0

4 17406-45-0 alpha-Tomatine 96.0

5 34031-32-8 Auranofin 96.0

6 82318-06-7 Deslorelin acetate 96.0

7 298-83-9 Nitroblue tetrazolium dichloride 96.0

8 111358-88-4 Lestaurtinib 96.0

9 1055-55-6 Bunamidine hydrochloride 96.0

10 90-03-9 o-(Chloromercuri)phenol 96.0

11 114899-77-3 Trabectedin 96.0

12 218600-53-4 Bardoxolone methyl 96.0

13 548-62-9 Methylrosaniline chloride 95.8

14 458-37-7 Curcumin 94.3

15 65558-69-2 1,3-Diiminobenz(f)isoindoline 94.2

16 50935-04-1 Carminomycin 94.0

17 18378-89-7 Plicamycin 94.0

18 3380-34-5 Triclosan 92.5

19 2437-29-8 Malachite green oxalate 92.5

20 54965-24-1 Tamoxifen citrate 92.0

21 62-38-4 Phenylmercuric acetate 92.0

22 633-03-4 Brilliant Green 92.0

23 97-77-8 Disulfiram 91.5

24 97-18-7 Bithionol 91.1

25 68844-77-9 Astemizole 91.1

26 538-71-6 Domiphen bromide 91.1

27 140-66-9 4-tert-Octylphenol 90.6

28 70-30-4 Hexachlorophene 90.6

29 25155-18-4 Methylbenzethonium chloride 90.1

30 113-73-5 Gramicidin S 90.0

(B)

1 2390-60-5 Basic Blue 7 94.4

2 117-80-6 Dichlone 93.4

3 989-38-8 Rhodamine 6G 92.5

4 7487-94-7 Mercuric chloride 91.5

5 654057-97-3 Trihexyltetradecylphosphonium bromide 91.5

6 23541-50-6 Daunorubicin Hydrochloride 91.5

7 137-30-4 Ziram 91.1

8 952-23-8 Proflavin hydrochloride 91.1

9 121107-18-4 Methyltrioctylammonium

trifluoromethanesulfonate

91.1

10 1600-27-7 Mercury(II) acetate 90.6

11 1162-06-7 Triphenyllead acetate 90.6

12 14866-33-2 tetra-N-Octylammonium bromide 90.6

13 2772-45-4 2,4-Bis(1-methyl-1-phenylethyl)phenol 90.1

14 7173-51-5 Didecyldimethylammonium chloride 90.1

15 258864-54-9 Trihexyltetradecylphosphonium chloride 90.1

16 2390-68-3 Didecyldimethylammonium bromide 90.0

17 9004-95-9 Polyethylene Glycol Monocetyl Ether 90.0

(Continued)

TABLE 1 | Continued

# CAS Name Hit rate (%)

(B)

18 79622-59-6 Fluazinam 89.7

19 13331-52-7 (Acryloyloxy)(tributyl)stannane 89.7

20 848641-69-0 1-Ethyl-3-methylimidazolium

diethylphosphate

89.7

21 23906-97-0 Tetraoctylphosphonium bromide 89.7

22 701921-71-3 Trihexyltetradecylphosphonium dicyanamide 89.7

23 70862-65-6 1,3-Didecyl-2-methylimidazolium chloride 89.7

24 143-50-0 Chlordecone 89.2

25 76-87-9 Fentin hydroxide 89.2

26 2425-06-1 Captafol 89.2

27 1897-45-6 Chlorothalonil 89.2

28 100-56-1 Phenylmercury chloride 89.2

29 6317-18-6 Methylene dithiocyanate 89.2

30 5137-55-3 Methyltrioctylammonium chloride 89.2

Hit rate is the percentage of assays in which the compound is active.

When tested against all assays (Figure 2A), the median
number of assays hit by ENVCs was ∼14.1%, while the median
value for drugs was 18.0%. Furthermore, when tested against
only the viability assays (Figure 2B), the median percentage
of assay hits for ENVCs and drugs were 11.4 and 18.5%,
respectively. It is evident that both ENVCs and drugs showed
similar hit rates when tested against all assays and only viability
assays. The correlation in these values regardless of the type
of assays they were tested against suggests that the two sets
of compounds behaved similarly in the assays. It is important
to note that ENVCs had a greater number of outliers than
drugs, suggesting the ENVCs show a more diverse range of
activities. When the compounds were tested against all assays,
∼8.6% of ENVCs were outliers compared to only 3.0% of
drugs. A similar trend was observed when compounds were
tested against only the viability assays, with outliers comprising
of 10.2% of ENVCs and 2.8% of drugs. On the other hand,
the ENVCs showed a smaller interquartile range, across both
all assays and viability assays only, when compared to drugs.
Wider sections of the violin plot indicate a higher distribution
of compounds sharing a particular hit rate, and narrower regions
represent a lower distribution. The widest section of the violin
plots when tested against all assays and viability assays only
for both ENVCs and drugs fell within the range of 8–10%
hit rate. Since drugs often have known targets for which they
were designed, we would expect to see more on-target activity
in drugs compared to ENVCs for certain biological assays.
ENVCs, however, may have much more unintended biological
activity depending on their use category, hence the need for
further study on these substances to better understand the
potential unintended toxic effects and harm they can cause to the
human body.

The top fivemost active drugs when screened against all assays
are tyrothricin, phenylmercuric borate, 4-chloromercuriphenol,
alpha-tomatine, and auranofin; the most active ENVCs include
basic blue 7, dichlone, rhodamine 6G, mercuric chloride, and
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trihexyltetradecylphosphonium bromide. A list of the top 30
active drugs and ENVCs and their hit rates when screened against
all assays can be found in Tables 1A,B, respectively.

When tested against only viability assays, many of the top
active compounds overlapped with those screened against all
assays. In fact, the top five most active drugs across all assays and
viability assays are identical to each other in the same order of
hit rate. The most active ENVCs in viability assays were similar
to those across all assays, but there was more variability among
ENVCs compared to drugs. The top five ENVCs in viability assays
are didecyldimethylammonium bromide, polyethylene glycol
(20) hexadecyl ether, tetrabutyltin, basic blue 7, and dichlone.
Tables 2A,B presents a summary list of the top 30 active drugs
and ENVCs in viability assays.

While the top five most active ENVCs from the two tables
are not exactly the same, there are many repeated compounds.
Compounds that overlap between Tables 1, 2, such as the drugs
tyrothricin, trabectedin, and curcumin and the ENVCs basic blue
7, rhodamine 6G, and mercury(II) acetate, indicate that their
activity is most likely due to cytotoxicity or other assay artifacts
such as compound auto fluorescence, as captured by the control
readout. On the other hand, compounds that appear in Table 1

but not Table 2, such as the drugs lestaurtinib, bardoxolone
methyl, and carminomycin and the ENVCs ziram, 2,4-bis(1-
methyl-1-phenylethyl)phenol, and fluazinam, suggests that the
unexpected activity of these compounds could be due to non-
specific activities other than cytotoxicity (Simeonov et al., 2008;
Jadhav et al., 2010).

Comparison of Activity Profiles of ENVCs
and Drugs by Category
Unlike ENVCs, most drugs for clinical use have knownmolecular
targets. To examine the relationship between the hit rate of a
drug and its intended clinical use, drugs were assigned at least
one of 16 categories, when applicable, based on their specific
disease area: hematologic malignancy, oncology, endocrinology,
obstetrics/gynecology, dermatology, allergy, hematology,
rheumatology, gastroenterology, neurology/psychiatry, urology,
infectious disease, cardiology, pulmonary, ophthalmology, and
otolaryngology (Figures 3A,B).

The hit rate distributions for each disease area are presented
in a series of box-and-whisker plots. The oncology drugs
showed the highest median number of assay hits: 39.0% of
all assays and 41.8% of viability assays. This was expected
because oncology drugs are often toxic chemicals that can disrupt
normal cell function, such as replication and growth, resulting in
cytotoxicity. The apparent high hit rates of these drugs against
viability assays as well as all assays are likely a reflection of generic
cytotoxic responses. Compared to oncology drugs, other disease
areas, such as pulmonary and otolaryngology, were noticeably
less active with median hit rates of 12.0–14.0%. The three disease
areas with the highest drug counts were neurology/psychiatry,
infectious disease, and cardiology. The median hit rates for
these three disease areas in viability assays were 16.5, 15.2, and
14.3%, respectively. These values are comparable to the overall
median hit rate (16.5%) of all drugs when tested against only

TABLE 2 | Top 30 most active (A) drugs and (B) ENVCs from Tox21 10K library

screens based on hit rates against only viability assays.

# CAS Name Hit rate (%)

(A)

1 1404-88-2 Tyrothricin 100

2 102-98-7 Phenylmercuric borate 100

3 623-07-4 4-Chloromercuriphenol 100

4 17406-45-0 alpha-Tomatine 100

5 34031-32-8 Auranofin 100

6 82318-06-7 Deslorelin acetate 100

7 1055-55-6 Bunamidine hydrochloride 100

8 90-03-9 o-(Chloromercuri)phenol 100

9 114899-77-3 Trabectedin 100

10 458-37-7 Curcumin 100

11 113-73-5 Gramicidin S 100

12 521-35-7 Cannabinol 100

13 25999-20-6 Lasalocid sodium 100

14 8004-87-3 Methyl Violet 100

15 2748-88-1 Miripirium chloride 100

16 2437-29-8 Malachite green oxalate 98.7

17 97-18-7 Bithionol 98.7

18 3380-34-5 Triclosan 97.5

19 54965-24-1 Tamoxifen citrate 97.5

20 70-30-4 Hexachlorophene 97.5

21 25155-18-4 Methylbenzethonium chloride 97.5

22 55-56-1 Chlorhexidine 97.5

23 1715-30-6 Alexidine dihydrochloride 97.5

24 58-27-5 Menadione 97.5

25 54767-75-8 Suloctdil 97.5

26 62-38-4 Phenylmercuric acetate 96.2

27 23593-75-1 Clotrimazole 96.2

28 538-71-6 Domiphen bromide 96.2

29 124-03-8 Ethylhexadecyldimethylammonium bromide 96.2

30 121-54-0 Benzethonium chloride 96.2

(B)

1 2390-68-3 Didecyldimethylammonium bromide 100

2 9004-95-9 Polyethylene glycol (20) hexadecyl ether 100

3 1461-25-2 Tetrabutyltin 98.7

4 2390-60-5 Basic Blue 7 97.5

5 117-80-6 Dichlone 97.5

6 989-38-8 Rhodamine 6G 97.5

7 7487-94-7 Mercuric chloride 97.5

8 1600-27-7 Mercury(II) acetate 97.5

9 1162-06-7 Triphenyllead acetate 97.5

10 14866-33-2 Tetra-N-octylammonium bromide 97.5

11 23906-97-0 Tetraoctylphosphonium bromide 97.5

12 506-61-6 Potassium silver cyanide 97.5

13 130-61-0 Thioridazine hydrochloride 97.5

14 7774-29-0 Mercury(II) iodide 97.5

15 11024-24-1 Digitonin 97.5

16 101-96-2 N,N’-Bis(1-methylpropyl)-1,4-

benzenediamine

97.5

17 3697-42-5 Chlorhexidine dihydrochloride 97.5

18 654057-97-3 Trihexyltetradecylphosphonium bromide 96.2

(Continued)

Frontiers in Big Data | www.frontiersin.org 6 December 2019 | Volume 2 | Article 50

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Ngan et al. Drugs vs. Environmental Chemicals

TABLE 2 | Continued

# CAS Name Hit rate (%)

(B)

19 23541-50-6 Daunomycin hydrochloride 96.2

20 952-23-8 Proflavin hydrochloride 96.2

21 121107-18-4 Methyltrioctylammonium

trifluoromethanesulfonate

96.2

22 13331-52-7 (Acryloyloxy)(tributyl)stannane 96.2

23 5137-55-3 Methyltrioctylammonium chloride 96.2

24 1166-52-5 Dodecyl gallate 96.2

25 900-95-8 Triphenyltin acetate 96.2

26 3282-73-3 Didodecyldimethylammonium bromide 96.2

27 4342-36-3 Tributyltin benzoate 96.2

28 171058-21-2 1-Methyl-3-tetradecylimidazolium chloride 96.2

29 203942-49-8 UK-337312 96.2

30 10540-29-1 Tamoxifen 96.2

Hit rate is the percentage of assays in which the compound is active.

FIGURE 3 | Hit rates of drugs by disease area when screened against (A) all

assays, or (B) only viability assays.

viability assays. Figure 3B shows the hit rates of different drug
categories in viability assays only to see how much of the drug
activities observed could be attributed to cytotoxicity. With
the exception of obstetrics/gynecology and rheumatology drugs,

the cytotoxicity of the drugs in their respective disease areas
correlated with their activity when tested against all assays.

Contrary to clinically used drugs, ENVCs generally do not
have as well-known or established cellular targets. Therefore,
it is likely that these chemicals behave more unpredictably in
various assays due to their less-studied nature. The compounds
in the Tox21 10K library were grouped by different use
categories, such as drug, manufacturing, pesticide, industrial
manufacturing, consumer use, food additive, personal care, raw
material, cosmetics, fragrance, and flavor. The full list of ENVCs
use categories can be found on the EPA CompTox Chemicals
Dashboard (Williams et al., 2017; EPA, 2018). These chemicals
are presented as cumulative box-and-whisker graphs, with the
most active category on the left and descending to the least active
on the right (Figures 4A,B).

The categories with the highest hit rates include hematologic
malignance, oncology, and dermatology, which are all drug
categories (Figure 4A). The most active ENVCs categories
included food residue, allergy, crop, drinking water contaminant,
and food withmedian hit rates of 21.5, 20.3, 17.7, 17.7, and 16.5%,
respectively (Figure 4B). The percentage of assay hits leveled
out at ∼14.0–18.0% for most of the remaining compounds. The
ENVCs categories with the lowest hit rates include fragrance,
flavor, cleaning/washing, food additive, and surface treatment
with median hit rates of 10.1, 10.1, 11.4, 11.5, and 12.7%,
respectively. Contrary to drugs, ENVCs had drastically more
outliers in terms of both activity and cytotoxicity. This difference
can mostly likely be attributed to the fact that ENVCs are not
designed to hit any specific biological target and their activity
would be much less predictable in these assays than drugs.

Drug Prediction—Assay Activity vs.
Chemical Structure
To see if drugs and ENVCs can be differentiated by their
assay activity profile, we developed RF models to predict which
compounds in the Tox21 10K library are likely to be drugs.
Models were built using either the Tox21 assay data or chemical
structure data. Model performance was measured by the area
under the ROC curve (AUC). A good model performance would
indicate that the drugs and ENVCs in the Tox21 library are
distinguishable by activity or structure. Figure 5 shows example
ROC curves from the models.

Both types of models performed well with an average AUC of
0.88± 0.01 for the structure-based model and 0.78± 0.01 for the
assay activity-based model. These results indicate that the activity
profiles of drugs in the Tox21 assays are sufficiently different from
those of ENVCs, and these profiles can be used to identify drug-
like compounds. However, the AUC of the activity-based model
was lower than that of the structure-based model, suggesting that
chemical structure is a better predictor of drugs.

The RF models also identified the structure features and
assay readouts that contributed the most to differentiating
drugs from ENVCs. The top five contributing structure
features (in order of significance) are: aliphatic amine bond,
heterocyclic ring, aromatic benzene ring, carboxamide bond,
and amino carboxyl bond, which are common features found
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FIGURE 4 | Hit rates of drugs and ENVCs by use category when screened against (A) all assays, or (B) only viability assays.

among drugs. As for assays, the top five contributing assay
readouts are: activity readout of RAR antagonist, viability
readout of PPAR-gamma antagonist, viability readout of TR-
beta antagonist, activity readout of mitochondria toxicity, and
viability readout of ER-BG1 antagonist. The complete list of
significant chemical features and Tox21 assays can be found in
Supplementary Figures 1, 2, respectively.

Chemical and Biological Space
Coverage—Drugs vs. ENVCs
Principal component analysis (PCA) was used to visually
represent the spatial distribution of both drugs and ENVCs

(Figures 6A,B). As noted in the previous section, chemical
structure performed better at predicting a compound’s drug-
likeness in the Tox21 10K collection than assay activity.
Figure 6A shows the separation of drugs and ENVCs based on
assay activity, where clusters of drugs are marked in red and

ENVCs in teal. The variance of assay activity captured by the
first two principle components are PC1: 48.8% and PC2: 3.3%.
The separation of drugs and ENVCs based on chemical structure

is illustrated in Figure 6B. In the shaded regions, clusters of
red points representing drugs were shifted right in the spatial
distribution while clusters of ENVCs noted by teal dots were
shifted left. For the structure-based PCA using physiochemical
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FIGURE 5 | Example ROC curves of drug prediction models based on (A) assay activity and (B) chemical structure. Model performance is measured by the area

under the ROC curve (AUC).

descriptors, the variance captured by the first two principle
components are PC1: 51.4% and PC2: 13.4%. The drug cluster
suggests that they are structurally different from ENVCs and
can generally be distinguished based on chemical structure. The
better separation of drugs and ENVCs by structure compared
to assay data is consistent with the modeling results, where
chemical structure showed better performance, i.e., higher AUC,
in predicting which compounds are likely to be drugs.

In Figures 6A,B, a teal shaded area representing ENVCs can
be seen overlaying a red area marked for drugs. The shaded
regions captured 95% of the variance in assay activity (Figure 6A)
or chemical structure types (Figure 6B) based on the PCA. The
larger shaded areas from drugs reveals that drugs covered a wider
activity and structure space than ENVCs. The diverse activity

observed in drugs matches the larger interquartile range seen
in the box-plot distribution in Figure 2A. This is not surprising
because drugs are designed to hit a diverse range of biological
targets for different therapeutic purposes. In addition, to further
compare the structures of drugs and ENVCs, we calculated
the average nearest neighbor Tanimoto similarities of drugs to
ENVCs, drugs among themselves, and ENVC among themselves.
Both drugs (Tanimoto score: 0.748) and ENVCs (Tanimoto
score: 0.827) were found to be more similar among themselves
than to each other (Tanimoto score: 0.627), and the drugs
appear to be more structurally diverse than ENVCs with a lower
average nearest neighbor Tanimoto score. This is consistent with
our PCA results where drugs covered a larger structural space
than ENVCs.
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FIGURE 6 | PCA of drugs and ENVCs using (A) Tox21 assay activity profiles, and (B) chemical structure data. The shaded area captures 95% of variance in data.

DISCUSSION

The lack of a comprehensive understanding on the potential
toxic effects of drugs and ENVCs in humans has revealed a
grave need and urgency to better investigate the activity profiles

of these compounds. Drugs, while diverse in their intended

targeted areas, continue to present toxic effects that are often
not detected in early pre-clinical and clinical studies. Likewise,
ENVCs, while widely present in our everyday lives, suffer from

a similar lack of knowledge about their potential toxicities. In
this study, the Tox21 10K compound collection was screened

against ∼70 assays to test their biological responses. Drugs
displayed greater hit rates when screened against the assay
panel compared to ENVCs. We hypothesize that the difference

in assay hits could be a result of drugs having more known
biological targets than ENVCs and the fact that the present
set of Tox21 assays covered mostly easy-to-test popular target
classes and pathways with a wealth of known modulators.
Drugs are intended to treat specified disease related biological
conditions while most ENVCs are not intended to serve this
same purpose.

The group of ENVCs included a notably higher number
of outliers than drugs in terms of hit rates, some with very
high hit rates. Since ENVCs do not undergo the same rigorous
evaluation as drugs, they are likely to show more unexpected
activity against different biological targets. These results reiterate
the need to more thoroughly investigate the toxic effects of
ENVCs prior to making them available on the commercial
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market. It was surprising to observe that some of the ENVC
use categories were not as active as what one would expect.
For instance, the median hit rate of pesticides was 15.2%
of viability assays, which is lower than one might anticipate
considering that pesticides are designed to kill organisms. The
toxic effects of ENVCs on human health, including pesticides,
is an important area of concern. Interestingly, in this study, the
median percentage of actives from the collection of ENVCs tested
was only 11.4%, whereas oncology drugs showed the highest
median hit rate of 41.8% among viability assays, nearly four
times the rate of ENVCs. This is not surprising since oncology
drugs are generally designed to be cytotoxic, though the much
lower pesticide hit rate underscores the need to screen a more
diverse set of assays to fully evaluate the toxicological effects
of ENVCs.

To further investigate if drugs and ENVCs showed distinct
activity profiles in the Tox21 assays, we built computational
models to see if the Tox21 assay data could be used to predict
compounds in the Tox21 10K collection that are likely to be

drugs. The assay activity-based models were further compared
with models built with chemical structure data. The results
showed that with the current set of assays, chemical structure
was a better feature than assay activity in distinguishing drugs

from ENVCs, given that the activity-based models also achieved
good predictive performance. This may be due to the narrow
biological space covered by the assays tested—with a heavy

focus on nuclear receptors and stress response pathways—and in
turn leads to the question of whether the current set of Tox21
assays included a sufficient variety of targets and pathways to

comprehensively evaluate the activity, as well as toxicity, of drugs
and ENVCs. Had a more diverse panel of assays been screened
against these compounds, we could have better represented a
comprehensive set of biological responses and gathered more
accurate conclusions on the similarities and differences of the
compound responses in the Tox21 collection, consistent with a
previous analysis indicating that expanding the biological space
coverage of the Tox21 assays, with G-protein-coupled receptor
signaling and cytochrome P450 assays, for example, would lead
to better prediction of in vivo drug toxicity (Huang et al.,
2018). While RF modeling seemed to achieve modest success
in distinguishing drugs from ENVCs based on either chemical
structure or bioassay activity, the PCA results were not able to
distinguish drugs from ENVCs when considering solely Tox21
activity data. The higher AUC obtained from the structure-
based models indicated that chemical structures among various
drugs have enough similarities to be distinct from those of
the ENVCs.

Taken together, our results show that the drugs and
ENVCs in the Tox21 10K library are distinguishable both
by chemical structure and assay activity profile. Activity

profile could be applied to predict which compounds are
likely to be drugs, though not as precise a predictor as

chemical structure, with the current set of assays. Drugs
overall were consistently more active than ENVCs. Drugs
also appeared to be more diverse, in terms of both assay
activity and structure space coverage, when compared to
ENVCs. The addition of new assays that cover biological
space unexplored in this study could lead to better
characterization of drug and ENVC activity profiles that
could aid in the prioritization of compounds for in depth
toxicological evaluation.
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