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Summary

To draw real-world evidence about the comparative effectiveness of multiple time-varying treat-

ment regimens on patient survival, we develop a joint marginal structural proportional haz-

ards model and novel weighting schemes in continuous time to account for time-varying con-

founding and censoring. Our methods formulate complex longitudinal treatments with multiple

“start/stop” switches as the recurrent events with discontinuous intervals of treatment eligibility.

We derive the weights in continuous time to handle a complex longitudinal dataset on its own

terms, without the need to discretize or artificially align the measurement times. We further

propose using machine learning models designed for censored survival data with time-varying

covariates and the kernel function estimator of the baseline intensity to efficiently estimate the
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continuous-time weights. Our simulations demonstrate that the proposed methods provide better

bias reduction and nominal coverage probability when analyzing observational longitudinal sur-

vival data with irregularly spaced time intervals, compared to conventional methods that require

aligned measurement time points. We apply the proposed methods to a large-scale COVID-19

dataset to estimate the causal effects of several COVID-19 treatment strategies on in-hospital

mortality or ICU admission, and provide new insights relative to findings from randomized trials.

Key words: Causal inference; Observational study; Stabilized inverse probability weights; Time-varying

treatments; Recurrent events; Machine learning

1. Introduction

The COVID-19 pandemic has been a rapidly evolving crisis challenging global health and economies.

Public health experts believe that this pandemic has no true precedent in modern times. While

multiple COVID-19 vaccines have been developed across the globe, no consensus has been reached

on optimal clinical management of COVID-19 (Yousefi et al., 2020). The lack of evidence for effec-

tive treatment options warrants further investigation into the causal effects of multiple COVID-

19 treatment strategies currently implemented in clinics. Although randomized controlled trials

(RCTs) are considered as the gold standard for evaluating the efficacy of COVID-19 therapies,

they are enormously expensive and time consuming, especially in a time of crisis. Stringent inclu-

sion and exclusion criteria also limit the generalizability of RCTs to frailer populations at higher

risk for severe morbidity and mortality. To overcome these challenges, we study the causal effects

of COVID-19 treatment strategies on patient survival by leveraging the continuously growing ob-

servational data collected at the Mount Sinai Health System—New York City’s largest academic

medical system. We focus on four commonly used medication classes that are of most clinical

interest: (i) remdesivir; (ii) dexamethasone; (iii) anti-inflammatory medications other than cor-
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ticosteroids; and (iv) corticosteroids other than dexamethasone.

The complex nature of COVID-19 treatments, owing to differential physician preferences and

variability of treatment choices attributable to evolving clinical guidelines, poses three major

challenges for statistical analysis of observational data that cannot be easily addressed by ex-

isting longitudinal causal inference methods. First, treatment is not randomly allocated and the

treatment status over time may depend upon the evolving patient- and disease-specific covariates.

Second, the measurement time points during the follow-up are irregularly spaced. Third, there is

more than one treatment under consideration. Patients can be simultaneously prescribed to var-

ious treatment combinations, or can be switched to a different treatment. Figure 1 illustrates the

observed treatment trajectories for nine randomly selected patients during their hospital stays.

While previous work has shown that a continuous-time marginal structural model is effective

in addressing time-varying confounding and provides consistent causal effect estimators (Johnson

and Tsiatis, 2005; Saarela and Liu, 2016; Hu et al., 2018; Hu and Hogan, 2019; Ryalen et al.,

2020), the development has been restricted to a single longitudinal treatment and therefore may

not be directly applicable. We consider a joint marginal structural model to accommodate mul-

tiple longitudinal treatments in continuous time. To estimate causal parameters in the joint

marginal structural model, we derive a novel set of continuous-time stabilized inverse probability

weights by casting each treatment process as a counting process for recurrent events, allowing for

discontinuous intervals of eligibility. In addition, we propose to use machine learning and smooth-

ing techniques designed for censored survival data to estimate such complex weights. Through

simulations, we demonstrate that our approach provides valid causal effect estimates and can

considerably alleviate the consequence of unstable inverse probability weights under parametric

formulations. We further undertake a detailed analysis of a large longitudinal registry data of clin-

ical management and patient outcomes to investigate the comparative effectiveness of multiple

COVID-19 treatments on patient survival.
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2. Joint Marginal Structural Survival Model

2.1 Notation and set up

We consider a longitudinal observational study with multiple treatments and a right-censored

survival outcome. Denote t as the time elapsed from study entry (e.g., hospital admission), to the

maximum follow-up time, and T a collection of time points on the interval [0, to]. Suppose each

individual has a p-dimensional covariate process {L(t) : t ∈ T }, some elements of which may be

time-varying; by definition, the time-fixed elements of L(t) are constant over T . Let T denote

time to an outcome event of interest such as death, with {NT (t) : t ∈ T } as its associated zero-

one counting process. We consider W different medication classes (treatments), whose separate

and joint causal effects on patient survival are of interest. We use Aw(t) to denote the assignment

of treatment w ∈ W = {1, . . . ,W}, which can be characterised as the counting process, where

we let Aw(t) = 1 if an individual is treated with w at time t and Aw(t) = 0 otherwise (Johnson

and Tsiatis, 2005). Let C denote the time to censoring due to, for example, discharge or loss to

follow up. We use the overbar notation to represent the history of a random variable, for example,

Āw(t) = {Aw(s) : 0 6 s 6 t} corresponds to the history of treatment Aw from hospital admission

up to time t and L̄(t) = {L(s) : 0 6 s 6 t} corresponds to the covariate history up to time t.

Following the convention in the longitudinal causal inference literature (Robins et al., 2008), we

assume the treatment decision is made only after observing the most recent covariate information

just prior to the treatment; that is, for a given t, Aw(t) occurs after L(t) for all w.

Let T ā1(t),...,āW (t) represent the counterfactual failure time to event of interest had an individ-

ual been assigned treatment history {ā1(t), ā2(t), . . . āW (t)} rather than the observed treatment

history {Ā1(t), Ā2(t), . . . ĀW (t)}. Similarly, T Ā1(t),...,ĀW (t) represents the observed failure time to

event for an individual given the observed treatment history. We similarly define C ā1(t),...,āW (t)

as the counterfactual censoring time under treatment {ā1(t), ā2(t), . . . āW (t)}. The observed data

available for drawing inferences about the distribution of potential outcomes are as follows: the
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observed time to outcome event is T ∗ = T ∧ C, with the censoring indicator ∆T = I(T 6 C).

Note that both the treatment processes {Aw(t), w = 1, . . . ,W} and the covariate process L̄(t)

are defined for all t ∈ T but are observed only at discrete and potentially irregularly spaced

time points for each individual. For example, individual i may have covariates and treatment

status observed at a set of discrete time points from study entry t = 0 to his or her last follow-up

time tiKi
6 to. We denote the set of discrete time points with observed covariate and treatment

information for individual i as Ti = {0, ti1, . . . , tiKi
}, and therefore the observed covariate and

treatment histories become L̄i(Ti) = {L(t) : t ∈ Ti} and Āw,i(Ti) = {Aw,i(t) : t ∈ Ti}.

2.2 Joint marginal structural model for survival outcomes

We consider a marginal structural model to estimate the joint causal effects of Ā1(t), . . . , ĀW (t)

on patient survival. The most popular model specification is a marginal structural Cox model,

for its flexibility in handling baseline hazard and straightforward software implementation when

used in conjunction with the stabilized inverse probability weights (Howe et al., 2012). When

there is a strong concern that the proportional hazards assumption may not be satisfied across

the marginal distribution of the counterfactual survival times, alternative strategies including

the structural additive hazards model or accelerated failure time model can also be considered.

For purposes of presenting our methodology, we focus on the marginal structural Cox model but

extensions to alternative structural models are possible. For notational brevity but without loss

of generality, we first consider W = 2 treatments. Expansion of the joint marginal structural

model and weighting schema for W > 3 treatments is discussed in Section 3.4. Specifically, we

assume T ā1(t),ā2(t) follows a marginal structural proportional hazards model of the form

λT
ā1(t),ā2(t)

(t) = λ0(t) exp {ψ1a1(t) + ψ2a2(t) + ψ3a1(t)a2(t)} , (2.1)

where λT
ā1(t),ā2(t)

is the hazard function for T ā1(t),ā2(t) and λ0(t) is the unspecified baseline hazard

function when treatment A1 and A2 are withheld during the study. The parameter ψ1 encodes
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the instantaneous effect of treatment A1 on T ā1(t),ā2(t) in terms of log hazard ratio while A2 is

withheld during the study. Similarly, ψ2 corresponds to the instantaneous treatment effect for

A2 in the absence of A1. The multiplicative interaction effect of A1 and A2 is captured by ψ3.

In addition, the hazard function λT
ā1(t),ā2(t)

can depend on baseline covariates by elaborating

model (2.1) or by using a stratified version of λ0(t). Model (2.1) implicitly assumes that the

instantaneous treatment effect is constant in the course of follow-up. This model assumption is

reasonable given that the COVID-related hospitalization is generally short and medications are

prescribed for days in succession. Finally, model (2.1) is a continuous-time generalization of the

discrete-time model considered by Howe et al. (2012) for estimating the joint survival effects of

multiple time-varying treatments.

Model (2.1) offers two advantages for the estimation of treatment effects. First, the coun-

terfactual survival function can be expressed as ST ā1(t),ā2(t)

(t) = exp
{
−
∫ t

0
λT ā1(t),ā2(t)(s)ds

}
.

Therefore, causal contrasts can be performed based on any relevant summary measures of the

counterfactual survival curves including median survival times and restricted mean survival times.

Second, model (2.1) allows for the estimation of causal effects of interventions defined by varying

treatment initiation timing and treatment duration. For example, an intervention may take the

form of ā1(t†) = {a1(s) = 1, 0 6 s 6 t†}, representing prescribing treatment A1 until t† (e.g.,

t† = day 6). A more complex intervention strategy is {ā1(t†), ā2(t†)} = {a1(s) = 1(0 6 s 6

t†/2), a2(s) = 1(t†/2 < s 6 t†)}, which refers to assigning treatment A1 until t†/2 and then

switching altogether to A2 until t†.

3. Estimating Structural Model Parameters in Continuous Time

To obtain a consistent estimator for ψ = {ψ1, ψ2, ψ3} in model (2.1) using longitudinal obser-

vational data with two treatments, we introduce the following causal assumptions and maintain

them throughout the rest of the article:
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(A1) Consistency. The observed failure times, T =
∑
A T

ā1(t),ā2(t)
1(Ā1(t) = ā1(t), Ā2(t) = ā2(t)),

where A = {ā1(t), ā2(t) : a1(t) ∈ {0, 1}, a2(t) ∈ {0, 1}, t ∈ T }. Similarly for the observed censor-

ing times, C =
∑
A C

ā1(t),ā2(t)
1(Ā1(t) = ā1(t), Ā2(t) = ā2(t)). The consistency assumption im-

plies that the observed outcome corresponds to the counterfactual outcome under a specific joint

treatment trajectory {ā1(t), ā2(t)} when an individual actually follows treatment {ā1(t), ā2(t)}.

This is an extension of the consistency assumption developed with a single time-varying treatment

(Robins, 1999) to two time-varying treatments.

(A2) Conditional Exchangeability. Alternatively referred to as sequential randomization, this as-

sumption states that initiation of treatment at time t among those who are still alive and remain in

the study is conditionally independent of the counterfactual survival time T ā1(t),ā2(t) conditional

on observed treatment and covariate histories. Mathematically, let Ō(t−) = {L̄(t−), Ā1(t−), Ā2(t−)}

denote the observed history up to t−, then ∀ t ∈ T

λA1,A2

(
t | Ō(t−), T > t−, C > t−, T ā1(t),ā2(t)

)
= λA1,A2

(
t | Ō(t−), T > t−, C > t−

)
, (3.2)

where λA1,A2(t) is the joint intensity process of the joint counting process A1(t) and A2(t). Sim-

ilarly, let Ō(t) = {L̄(t), Ā1(t), Ā2(t)} denote the observed history up to t, we assume conditional

exchangeability for censoring such that ∀ t ∈ T ,

λC
(
t | Ō(t), T > t, C > t, T ā1(t),ā2(t)

)
= λC

(
t | Ō(t), T > t, C > t

)
, (3.3)

where λC(t) is the intensity process corresponding to the counting process of censoring. Our

conditional exchangeability assumption is a continuous-time generalization of the usual sequential

randomization assumption for the discrete-time marginal structural models (Robins, 1999; Howe

et al., 2012).

(A3) Positivity. We assume that at any given time t, there is a positive probability of initiat-

ing a treatment plan, among those who are subject to initiating at least one treatment, for all

configurations Ō(t−): P
{
λA1,A2(t | Ō(t−), T > t−, C > t−) > 0

}
= 1. For a pair of joint treat-
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ments (A1, A2), at a given time t, individuals with treatment status (0, 0), (0, 1) or (1, 0) are

subject to “initating” at least one treatment. The treatment initiation patterns can be as fol-

lows: (0, 0) → {(0, 1), (1, 0), (1, 1)}, (0, 1) → {(1, 1), (1, 0)}, (1, 0) → {(1, 1), (0, 1)}. Treatment

discontinuation (from 1 to 0), however, is not considered a stochastic process in our study, as

COVID medication is typically prescribed with a specific treatment duration, e.g., treat with

dexamethasone at a dose of 6 mg once daily for 10 days (RECOVERY Collaborative Group,

2021). Furthermore, because an individual cannot be at risk for receiving the same treatment

once he or she is on the treatment, we only need to assume the positivity when the individual is

off that specific treatment, i.e., at risk for initiating that treatment.

3.1 Framing repeated treatment initiation as recurrent events

As Figure 1 suggests, the observed treatment pattern is complex due to considerable variability

in COVID treatment protocols and clinician preferences over time. Individuals may discontinue

a treatment and restart the same treatment at a later time; or they may be switched altogether

to another treatment. Meanwhile, patients can take more than one treatment for a period of

time. Each treatment can therefore be viewed as the counting process of recurrent events, with

discontinuous intervals of treatment eligibility (Andersen and Gill, 1982). Specifically, casting

treatment initiation as a recurrent event process captures two distinguishing features of our

observational data: (i) having received a treatment would prevent an individual from receiving

the same treatment again for the time period while the individual is on the treatment; and (ii)

after the individual was off the treatment, he or she would be eligible or at risk for re-initiating

the treatment.

To formalize the treatment initiation process, we first consider a univariate treatment process

NAw . We assume that the jumps of Aw(t), i.e., dAw(t), is observed on certain subintervals of

T only. Specifically for individual i, we observe the stochastic process Aw,i(t) on a set of in-
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tervals Ew,i =
⋃Ji

j=1(Vw,ij , Uw,ij ], where 0 6 Vw,i1 6 Uw,i1 6 . . . 6 Vw,iJi 6 Uw,iJi 6 tw,iKi .

This representation implies the following results. First, an individual can have at most Ji > 1

initiations of treatment w: if Uw,iJi
= tw,iKi

, then individual i has Ji − 1 treatment initia-

tions; and if Uw,iJi
< tw,iKi

, then individual i has Ji treatment initiations. A special case

where Ji = 1 and Uw,iJi
= tw,iKi

corresponds to the situation where individual i is continu-

ously eligible for treatment initiation and has not been treated with w during the follow-up.

Second, once treatment is initiated, Aw,i(t) is no longer stochastic until person i discontinues

the treatment. This also suggests that the jth treatment initiation is observed at Uw,ij . Third,

Aw,i(t) = 1 ∀ t ∈ (Uw,ij , Vw,i(j+1)], j = 1, . . . , Ji − 1. In words, treatment status is equal to one

deterministically on the discontinuous intervals of ineligibility (i.e., on treatment period). Define

a censoring or filtering process by DAw
i (t) = I(t ∈ Ew,i), and the filtered counting process by

NAw
iq (t) =

∫ t

0
DAw

i (u)dNAw,iq(u), where q indexes the qth treatment initiation.

Following Andersen et al. (1993), we assume conditional independence among occurrences

of treatment initiation given all observed history, and that the set Ew,i is defined such that

DAw
i (t) is predictable. The observed data with occurrences on the set Ew,i can therefore be viewed

as a marked point process generating the filtration (FD
w,t). Similarly, we denote the filtration

generated by the counting process {Aw(t) : t ∈ T } corresponding to Ew,i = T by (Fw,t). We

assume Aw,iq(t) follows Aalen’s multiplicative intensity model (Aalen et al., 2008) λw,iq(t, θ) =

αiq(θ, t)Yw,iq(t), with respect to (Ft), where λw,iq(t, θ) is the intensity process of Aw,iq(t), αiq(θ, t)

is the hazard rate function parameterized by θ, and Yw,iq(t) is the at-risk function with Yw,iq(t) =

1 indicating person i is eligible just before time t for the qth initiation of treatment w in the

interval [t, t + dt), and Yw,iq(t) = 0 indicating otherwise. It follows that the filtered counting

process NAw
iq (t) follows the multiplicative intensity model

λAw
iq (t, θ) = αiq(θ, t)Y Aw

iq (t) (3.4)

with respect to (FD
w,t) (Andersen et al., 1993). Here, Y Aw

iq (t) = Yw,iq(t)DAw
i (t). With two treat-
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ments, model (3.4) can be directly extended for the joint treatment initiation process as

λA1,A2

iq (t, θ) = αiq(θ, t)Y A1,A2

iq (t), (3.5)

where Y A1,A2

iq (t) = Y(1,2),iq(t)DA1,A2

i (t) is the at-risk process for the qth treatment initiation with

the filtering process defined jointly by A1 and A2.

3.2 Derivation of the continuous-time weights

Under assumptions (A1)-(A3), a consistent estimator ofψ can be obtained by solving the weighted

partial score equations (Hu et al., 2018),

n∑

i=1

∫ ∞

0

ΩA1,A2(tKi
)
{
Z(A1i, A2i, t)− Z̄∗(t;ψ)

}
dNT

i (t) = 0, (3.6)

where ΩA1,A2(tKi) is the weight that corrects for potential time-varying confounding for time-

varying treatments A1 and A2, Z(A1i, A2i, t)(3×1) = [A1i(t), A2i(t), A1i(t)A2i(t)]
>, and

Z̄∗ =

∑
k∈RT

t
Z(Ak1, Ak2, t)Y

∗T
k (t)r(Ak1, Ak2, t;ψ)

∑
k∈RT

t
Y ∗Tk (t)r(Ak1, Ak2, t;ψ)

(3.7)

is a modified version of the weighted mean of Z over observations still at risk for the outcome

event at time t. In equation (3.7), we define the weighted risk set indicator for outcome Y ∗Ti (t) =

ΩA1,A2(tKi)Y
T
i (t), where Y T

i (t) is the at-risk function for the outcome event, and r(a1, a2, t) =

exp{ψ1a1(t) + ψ2(t)a2(t) + ψ3a1(t)a2(t)}.

In the discrete-time setting with non-recurrent treatment initiation, the stabilized inverse

probability weights (we suppress subscript i for brevity) are given by Howe et al. (2012)

ΩA1,A2(t) =





∏

{k:tk6t}

P
(
A1(tk) = a1(tk) | Ā1(tk−1), Ā2(tk−1)

)

P
(
A1(tk) = a1(tk) | Ā1(tk−1), Ā2(tk−1), L̄(tk−1), T > t, C > t

)



×





∏

{k:tk6t}

P
(
A2(tk) = a2(tk) | Ā1(tk), Ā2(tk−1)

)

P
(
A2(tk) = a2(tk) | Ā1(tk), Ā2(tk−1), L̄(tk−1), T > t, C > t

)



 ,

(3.8)

where tk’s are a set of ordered discrete time points common to all individuals satisfying 0 = t0 <

t1 < t2 < . . . 6 t. While ΩA1,A2(t) in (3.8) corrects for time-varying confounding by adjusting
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for L̄(t) in the weights, it requires that the time points are well aligned across all individuals. In

addition, it does not accommodate the recurrent nature of complex intervention strategies as in

our observational study.

We now generalize the weights developed for the discrete-time setting to a continuous-time

process, which do not require the time points to be well aligned. Partition the time interval [0, t]

into a number of small time intervals, and let dAw(s) be the increment of Aw over the small time

interval [s, s + ds),∀s ∈ [0, t]. Recall that treatment initiation, or the jumps of Aw(t), dAw(t),

is observed on a number of subintervals of T only. That is, conditional on history L̄(s), the

occurrence of treatment initiation for an individual in [s, s+ ds)I(s ∈ E) is a Bernoulli trial with

outcomes dAw(s) = 1 and dAw(s) = 0. Then the P (Aw(tk) = aw(tk) | •) in equation (3.8) can

be represented by

DAw(s) {P (dAw(s) = 1 | •)}dAw(s) {P (dAw(s) = 0 | •)}1−dAw(s)
,

which takes the form of the individual partial likelihood for the filtered counting process {DAw(s)Aw(s) :

0 6 s 6 t}. When the number of time intervals in [0, t] increases and ds approaches zero, the

finite product over the number of time intervals of the individual partial likelihood will approach

a product integral (Aalen et al., 2008), given by

t

R
0

{
DAw(s)λAw(s | •)ds

}dAw(s) {
DAw(s)

(
1− λAw(s | •)ds

)}1−dAw(s)

=

[
t

R
0

{
DAw(s)λAw(s | •)

}∆Aw(s)

]
exp

{
−
∫ t

0

DAw(s)λAw(s | •)ds,
}

(3.9)

where ∆Aw(t) = Aw(t)−Aw(t−). For individual i, both factors in (3.9) need to be evaluated with

respect to the individual’s filtered counting process {NAw
iq (t) : 0 6 t 6 tKi

, q = 1, . . . , Qw,i}, with

the first quantity being equal to the finite product over the jump times and the second quantity

being the survival function for treatment initiation. As described in Section 3.1, the number of

treatment initiations for individual i, Qw,i can take three values: (i) Qw,i = 0, (ii) Qw,i = Ji − 1
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or (iii) Qw,i = Ji. Corresponding to the three cases, the quantity in (3.9) can be rewritten as

Quantity (3.9) =





SAw (tKi
| •) if Qw,i = 0

fAw (Ui,Ji−1 | •)
{
SAw (ViJi

| •)− SAw (tiKi
| •)
}

if Qw,i = Ji − 1

fAw (UiJi
| •) if Qw,i = Ji,

where SAw and fAw are the survival and density function of the filtered counting process for

treatment Aw. Here we assume that initiations of different treatments are ordered. For example,

whether to initiate A2 at time t is decided upon observing the treatment status A1(t). This

suggests that the hazard function λA2 is estimable by conditioning on Ā1(t) and Ā2(t−); and the

hazard function λA1 is estimable by conditioning on Ā1(t−) and Ā2(t−). For exposition brevity,

let Ō1(t) = {Ā1(t−), Ā2(t−), L̄(t−), T > t, C > t}, Ō2(t) = {Ā1(t), Ā2(t−), L̄(t−), T > t, C > t},

ŌA1(t) = {Ā1(t−), Ā2(t−), T > t, C > t} and ŌA2(t) = {Ā1(t), Ā2(t−), T > t, C > t}. Putting

this all together, the individual continuous-time stabilized inverse probability weight that corrects

for time-varying confounding by L̄ is given by ΩA1,A2(t) = ΩA1(t)ΩA2(t) with ΩAw being:

ΩAw(tKi)

=





SAw
(
tKi | ŌAw(tKi)

)

SAw
(
tKi
| Ōw(tKi

)
) if Qw,i = 0

fAw
(
Ui,Ji−1 | ŌAw(Ui,Ji−1)

) {
SAw

(
ViJi
| ŌAw(ViJi

)
)
− SAw

(
tiKi
| ŌAw(tKi

)
)}

fAw
(
Ui,Ji−1 | Ōw(Ui,Ji−1)

) {
SAw

(
ViJi | Ōw(ViJi)

)
− SAw

(
tiKi | Ōw(tKi)

)} if Qw,i = Ji − 1

fAw
(
UiJi | ŌAw(UiJi)

)

fAw
(
UiJi
| Ōw(UiJi

)
) if Qw,i = Ji

(3.10)

Turning to censoring, under the conditional exchangeability assumption (A2), the censoring

process is covariate- and treatment-dependent. To correct for selection bias due to censoring, we

additionally define a weight function associated with censoring,

ΩC(Gi) =
SC (Gi |Ci > Gi, Ti > Gi)

SC
(
Gi | Ā1(Gi), Ā2(Gi), L̄(Gi), Ci > Gi, Ti > Gi

) ,

where SC is the survival function associated with the censoring process, and

Gi = 1(∆T
i = 1)Ti + 1(∆T

i = 0, Ci > tKi
)tKi

+ 1(∆T
i = 0, Ci 6 tKi

)Ci.
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This leads to a final modification of the estimating equation for ψ,

n∑

i=1

∫ ∞

0

ΩA1,A2ΩC(Gi)
{
Z(A1i, A2i, t)− Z̄∗∗(t;ψ)

}
dNT

i (t) = 0, (3.11)

where Z̄∗∗ =

∑
k∈RT

t
Z(Ak1, Ak2, t)Y

∗∗T
k (t)r(Ak1, Ak2, t;ψ)

∑
k∈RT

t
Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ)

and Y ∗∗Ti (t) = ΩC(Gi)Ω
A1,A2(tKi

)Y T
i (t).

3.3 Estimation of the causal survival effects

We consider four ways in which the continuous-time weights ΩA1,A2(t) can be estimated: (i)

fitting a usual Cox regression model for the intensity process of the counting process of treatment

initiation {Aw(t) : t ∈ T }, estimating the density function fAw and survival function SAw from

the fitted model with the Nelson-Aalen estimator for the baseline intensity function, and finally

calculating the weights following equation (3.10); (ii) smoothing the Nelson-Aalen estimator and

in turn fAw and SAw estimated from the fitted Cox regression model by means of kernel functions

(Ramlau-Hansen, 1983), and calculating the weights using the smoothed version of fAw and SAw ;

(iii) fitting a multiplicative intensity tree-based model (Yao et al., 2020) in which the functional

form of the intensity ratio for treatment initiation is flexibly captured to estimate the fAw and

SAw and calculate the weights; (iv) smoothing the Nelson-Aalen estimator of the baseline intensity

from the tree-based model and calculating the weights using the smoothed version of fAw and

SAw . Among these approaches, (i) relies on the parametric assumptions about the intensity ratio

relationships between the treatment initiation process and covariate process and may be subject

to model misspecification and bias for estimating causal effects. Compared to the Nelson-Aalen

estimator which includes discrete jumps at event occurrences, the kernel function estimator in (ii)

may help alleviate the issue of extreme or spiky weights, and has also been shown to be a consistent

and asymptotically normal baseline intensity estimator (Andersen et al., 1993). Approach (iii)

leverages a recent random survival forests model (Yao et al., 2020) that can accommodate time-

varying covariates to mitigate the parametric assumptions and attendant biases associated with
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the usual Cox regression. With baseline time-fixed treatment, prior work has used similar machine

learning techniques to improve propensity score weighting estimators (Lee et al., 2010) as well

as to provide more accurate causal effect estimates with censored survival data (Hu et al., 2021).

Finally, approach (iv) smooths the baseline intensity estimated from the survival forests for

estimating the stabilized inverse probability weights, and serves as an additional step to smooth

over the potentially spiky weights. In Section 4, we compare the performances of these four

strategies to estimating the continuous-time weights to generate practical recommendations. In

addition, the censoring weight function ΩC(Gi) can be estimated in a similar fashion via any one

of these four approaches. Additional details of kernel function smoothing in approach (ii) and

random survival forests in approach (iii) are presented in Web Appendix S1.

To accommodate the time-varying covariate process and account for the recurrent nature of

treatment initiation, we fit a survival model to the counting process style of data input. Each

individual is represented by several rows of data corresponding to nonoverlapping time intervals

of the form (start, stop]. To allow for discontinuous intervals of eligibility, when defining multiple

time intervals Ew,i = ∪Ji
j=1(Vw,ij , Uw,ij ] on T for individual i, the duration of a treatment is

removed from T when the individual is currently being treated and therefore no longer eligible

for initiating the treatment. Finally, since our estimators for ψ is a solution to the weighted partial

score equation (3.11), we can use the robust sandwich variance estimator to construct confidence

intervals for the structural parameters. In practice, the robust sandwich variance estimator is

at most conservative under the discrete-time setting (Shu et al., 2021), and we will empirically

assess the accuracy of this variance estimator with continuous-time weights via simulations.

3.4 Extensions to more than two time-varying treatments

Although we introduce our methods with two longitudinal treatments, our approach can be

extended to more than two time-varying treatments in a straightforward fashion. In theory, a
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fully interacted version of model (2.1) can be formed to include all the main effects of aw(t)

∀w ∈ W and the interactions thereof. Clinical interests and data sparsity on combinations of

treatments may also be used to guide the inclusion of interaction terms into the structural model.

Suppose B = {b1(t), . . . , bV (t)} is a collection of causal interaction effects of interest, e.g., b1(t) =

a1(t)a2(t), the general joint marginal structural proportional hazards model is

λT
ā1(t),...,āW (t)

(t) = λ0(t) exp

{
W∑

w=1

ψ1waw(t) +
V∑

v=1

ψ2vbv(t)

}
, (3.12)

where ψ1w’s and ψ2v’s capture the causal main and interaction effects on the counterfactual

hazard function. A consistent estimator of ψ = {ψ11, . . . , ψiW , ψ21, . . . , ψ2V } can be obtained by

solving the general form of the estimating equation

n∑

i=1

∫ ∞

0

ΩA1,...,AW ΩC(Gi)
{
Z(A1i, . . . , AWi, t)− Z̄∗∗(t;ψ)

}
dNT

i (t) = 0, (3.13)

where Z(A1i, . . . , AWi, t) is a vector of length W + J representing the time-varying treatment

status Aw(t) and multiplicative terms of the treatment status Av(t)Av′(t), Z̄∗∗ is evaluated using

weighted risk set indicators Y ∗∗Ti (t) = ΩC(Gi)Ω
A1,...,AW (tKi

)Y T
i (t). The joint treatment weights

ΩA1,...,AW (tKi
) can be estimated by assuming a specific order in which treatments are initiated

and calculating the weights using appropriate history information Ōw(t) and ŌAw(t), similar as

described in Section 3.2. The estimation of the censoring weights ΩC(Gi) also follows the same

strategy outlined in Section 3.2 with two longitudinal treatments.

4. Simulation Study

4.1 Simulation design

We carry out simulations to investigate the finite-sample properties of the proposed weight es-

timators for the marginal structure Cox model parameters. We simulate data compatible with

the marginal structural Cox model by generating and relating data adhering to the structural

nested accelerated failure time (SNAFT) model (Young et al., 2008). A general representation of
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a SNAFT model for time-varying treatment a is (Hernán et al., 2005)

T 0̄ =

∫ T ā

0

exp [ψafta(t)] ,

where T 0̄ is the counterfactual failure time under no treatment. Robins (1992) developed a simu-

lation algorithm to generate data adhering to the SNAFT model under the discrete-time version

of the identifying assumptions (A1)-(A3) in Section 3. Young et al. (2008) showed that, under

the same identifying assumptions, data adhering to a marginal structural Cox model of the form

λT
ā

(t) = λ0(t) exp [ψmsma(t)]

can be simulated from a SNAFT model with ψaft = ψmsm by adding an additional quantity to

the term exp [ψafta(t)]. In particular when T 0̄ has an exponential distribution, the additional

quantity is zero, hence the structural nested AFT model simulation algorithm (Robins, 1992)

can be used to appropriately simulate data compatible with the marginal structural cox model

under complex time-varying data structures. Building on these previous works, we extend the

simulation algorithm described in Karim et al. (2017) to generate data from the joint marginal

structural Cox model, while allowing for multiple time-varying treatments with discontinuous

intervals of treatment eligibility and for both continuous and discrete time-varying confounders.

Throughout we simulate an observational study with n = 1000 patients and two time-varying

treatments A1(t) and A2(t). We assume L̄(t) is appropriately summarized by a continuous time-

varying confounding variable L1(t) and a binary time-varying confounding variable L2(t). The

simulation algorithm includes two steps. In step (1), we consider nonlinear terms for the continu-

ous variable L1(tk) and the interaction term A1(tk−1)×L1(tk), A2(tk)×L1(tk), A1(tk−1)×L2(tk)

and A2(tk) × L2(tk) in the true treatment decision model. In particular, past treatment sta-

tus {A1(tk−1), A2(tk)} is a predictor of L(tk), which then predicts future treatment exposure

{A1(tk), A2(tk+1)} as well as future failure status Y (tk+1) via 1/ log(T 0̄) (Karim et al., 2017).

Therefore, L(tk) is a time-dependent confounder affecting both the future treatment choices and
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counterfactual survival outcomes. The simulation of treatment initiation is placed in the recurrent

events framework. Once treatment is initiated at time tk, treatment duration following initiation

is simulated from a zero-truncated Poisson distribution. In step (1), we generate a longitudi-

nal data set with 100 × 1000 observations (100 aligned measurement time points for each of

n = 1000 individuals). In step (2), we randomly discard a proportion of follow-up observations

for a randomly selected subset of individuals (Lin et al., 2004); and in the resulting data set,

the individuals will have varying number of follow-up measurement time points, which are also

irregularly spaced. Web Appendix S2 provides the full pseudo-code for simulating data under the

marginal structural Cox model with two time-varying treatments.

Our simulation parameters are chosen so that the simulated data possess similar character-

istics to those observed in the COVID-19 data set. The treatments A1 and A2 are simulated

to resemble dexamethasone and remdesivir such that: (i) about 20% patients did not take any

of the anti-viral and anti-inflammatory medications aimed at treating COVID-19; (ii) among

those who were treated, 62% took dexamethasone only, 25% took remdesivir only and 13% took

both (either concurrently or with treatment switching); (iii) the number of initiations for both

treatments ranges from 0 to 4 with the average medication duration about 5 days. The values of

treatment effect parameters ψ1 and ψ2 were set to yield a 6.7% mortality proportion among those

who received dexamethasone and a 4.9% mortality proportion in those treated with remedesivir.

4.2 Comparison of methods

We conduct two sets of simulations to investigate the finite-sample performance of our proposed

joint marginal structural survival model in continuous time (JMSSM-CT). First, we compare how

accurate the four weight estimators described in Section 3.3 estimate the structural parameter ψ.

Second, we use the best weight estimator, suggested by the first set of simulation, for JMSSM-

CT, and compare it with the joint marginal structural model that requires aligned discrete time
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points (JMSM-DT). To ensure an objective comparison, we use the random forests (Yao et al.,

2020) and adapt it into our proposed recurrent events framework to estimate the weights for

JMSM-DT. In addition, we implement both JMSSM-CT and JMSM-DT on the “rectangular”

simulation data with 100 aligned time points for each individual and on the “ragged” data with

irregular observational time points. The performance on the rectangular data will be considered

as the benchmark performance, based on which we will assess the relative accuracy of JMSSM-CT

and JMSM-DT when estimating the structural parameters with the “ragged” data.

4.3 Performance characteristics

To assess the performance of each method, we simulate 250 observational data sets using the

above approach, and evaluate the absolute bias, root mean squared error (RMSE) and covarage

probability (CP) for estimating the ψ. The CP is evaluated on normality-based confidence in-

tervals with the robust sandwich variance estimator. Figure 2 suggests that the weight estimator

(iv) using both the flexible tree-based survival model and kernel function estimator of the treat-

ment initiation intensity yielded the lowest biases in estimating both ψ1 and ψ2. By contrast, the

weight estimator (i) via the usual main-effects Cox regression model along with the Nelson-Aalen

baseline intensity estimator produced the largest estimation bias. Applying the kernel function

smoothing to the Nelson-Aalen estimator led to bias reduction for both the Cox (approach (ii))

and tree-based survival model (approach (iv)) for the treatment process. Flexible modeling of

the intensity ratio function has a larger effect in reducing the bias in structural parameter esti-

mates than smoothing the nonparametric baseline intensity estimator. For example, compared to

approach (ii), approach (iii) further reduced the mean absolute bias (MAB) in estimating ψ̂1 by

approximately 67%. Supplementary Table 1 summarizes the MAB, RMSE and CP for the four

weight estimators and similarly suggests that approach (iv) led to the smallest MAB and RSME,

and provided close to nominal CP with the robust sandwich variance estimator.
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The second set of simulation benchmarks the performance of JMSSM-CT versus JMSM-DT on

the data with fully aligned follow-up time points and compare how much each method can recover

the benchmark performance in situations where the longitudinal measurements are irregularly

spaced. Table 2 displays the MAB, RMSE and CP for each of the two methods under both

data settings, and Supplementary Figure 1 visualizes the distributions of biases across 250 data

replications. In the rectangular data setting with fully aligned time points, compared to JMSM-

DT, JMSSM-CT had similar CP but smaller MAB and RMSE. As the sparsity of longitudinal

measurements increased and the time intervals became unevenly spaced, the proposed JMSSM-

CT could still recover the benchmark performance; whereas the JMSM-DT had a deteriorating

performance (larger MAB and RMSE and lower CP), with larger performance decline under

coarser discretization of the follow-up time. Supplementary Table 2 summarizes the distribution

of estimated individual time-varying weights from one random replication of the ragged data for

JMSSM-CT and JMSM-DT. Overall, JMSSM-CT with the weight estimator (iv) provided the

smallest maximum/minimum weight ratio (2.36/0.68) and no extreme or spiky weights.

5. Estimating Causal Effects of Multiple COVID-19 Treatments

We apply the proposed JMSSM-CT with the best weight estimation approach (iv) (Section 3.3)

to analyze a comprehensive COVID-19 data set drawn from the Epic electronic medical records

system at the Mount Sinai Medical Center, with the goal of studying the comparative effectiveness

of multiple COVID-19 treatment strategies. The data set includes 11,286 de-identified unique

adult patients (>18 years of age) who were diagnosed with COVID-19 and hospitalized within

the Mount Sinai Health System between February 25, 2020 to February 26, 2021. A confirmed

case of COVID-19 was defined as a positive test result from a real-time reverse-transcriptase

PCR-based clinical test carried out on nasopharyngeal swab specimens collected from the patient

(Wang et al., 2020). We focus on four treatment classes that are of most clinical interest: (i)
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remdesivir; (ii) dexamethasone; (iii) anti-inflammatory medications other than corticosteroids;

and (iv) corticosteroids other than dexamethasone. Detailed definitions of the four treatment

classes are provided in Supplementary Table 3. The observed treatment patterns are visualized

in Figure 1; patients could be simultaneously prescribed two or more treatment strategies, or

they could switch from one treatment class to another during their hospital stays.

We considered a composite outcome, ICU admission or in-hospital death, whichever occurs

first. The outcome may be right censored by hospital discharge or administratively censored on

to= February 26, 2021, the date on which the database for the current analysis was locked. For

modeling purposes, we assumed that L̄(t) was appropriately summarized by age, sex, race, ethnic-

ity, D-dimer levels (the degradation product of crosslinked fibrin, reflecting ongoing activation of

the hemostatic system), serum creatinine levels (a waste product that forms when creatine breaks

down, indicating how well kidneys are working), whether the patient used tobacco at the time of

admission, whether the patient was admitted to ICU, history of comorbidities represented by a set

of binary variables: hypertension, coronary artery disease, cancer, diabetes, asthma and chronic

obstructive pulmonary disease, hospital site, and patient oxygen levels (definition provided in

Supplementary Table 4). The time-varying confounding variables were ICU admission, D-dimer

levels, serum creatbinine level and patient oxygen levels. When fitting the joint marginal struc-

tural proportional hazards model (3.12), pairwise treatment interactions were included if there

were sufficient data points supporting the joint use of the pair of treatments.

Using the stabilized inverse probability weights to correct for time-varying confounding and

censoring, the structural model parameter estimates ψ̂ (log hazard ratio) and the associated

95% confidence intervals are provided in Table 2. Using the parameter estimates, we further

computed the counterfactual survival curves under each treatment regimen. Figure 3 presents the

counterfactual survival curves for ICU admission or death, whichever occurs first, among patients

with COVID-19 infection, under five treatment regimens given upon admission to hospital. Among
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the four separate treatment classes, remdesivir had significantly better treatment benefits followed

by dexamethasone than two alternative treatment classes: anti-inflammatory medications other

than corticosteroid and corticosteroids other than dexamethasone. Interestingly, remdesivir and

corticosteroids other than dexamethasone had a significant treatment interaction effect suggesting

additional survival benefit when they are used in combination. This is demonstrated by the highest

counterfactual survival curve under the concomitant use of these two types of medications.

6. Discussion

Motivated by inconclusive real-world evidence for the comparative effectiveness of multiple treat-

ment strategies for COVID-19, we have developed a joint marginal structural survival model

and novel weighting schemes to address time-varying confounding and censoring in continuous

time. There are three main advantages of our proposed method. First, this approach casts the

complex time-varying treatment with irregular “start/stop” switches into the process of recurrent

events where treatment initiation can be considered under the recurrent event framework with

discontinuous intervals of eligibility. This innovative formulation enables us to address complex

time-varying confounding by modeling the intensity processes of the filtered counting processes

for complex time-varying treatments. Second, the proposed method is able to handle a complex

longitudinal dataset on its own terms, without discretizing and artificially aligning measurement

times, which would lead to less accurate and efficient treatment effect estimates, as demonstrated

by our simulations. Third, modern machine learning techniques designed for censored survival

data and smoothing techniques of the baseline intensity function can be used easily for with our

weighting method to further improve the treatment effect estimator under conventional para-

metric formulations. We have also introduced a simulation algorithm that is compatible with the

complex data structures of our proposed modeling framework, and demonstrated the accuracy of

the proposed method for estimating causal parameters.



22 Hu and others

Our approach can be extended in the following two directions. First, we considered a joint

marginal structural proportional hazards model and a tailored simulation algorithm to generate

datasets of complex time-varying structures that are compatible with the proportional hazards

model. It may be worthwhile to develop alternative joint marginal structural survival models such

as the structural additive hazards model, and assess the robustness of different structural models

for estimating counterfactual survival functions under different data generating processes. Sec-

ond, we have maintained the conditional exchangeability assumption in our work, and therefore

developing sensitivity analyses to capture the effects of time-varying unmeasured confounding for

our model would be a worthwhile and important contribution.

7. Software

R codes to implement the proposed methods and replicate our simulation studies are provided

in the GitHub page of the first author https://github.com/liangyuanhu/JMSSM-CT.

8. Supplementary Material

Web Appendices, Tables and Figures referenced in Section 3, 4, 5, are available online at http:

//biostatistics.oxfordjournals.org.
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Fig. 1. Treatment processes for nine randomly selected patients visualized by heat maps. Colors indicate
remaining on treatment. Lack of color corresponds to being switched off treatment.

Table 1. Comparing the proposed method JMSSM-CT in continuous time with JMSM-DT in discrete time
in estimating the treatment effect ψ on the bases of mean absolute bias (MAB), root mean square error
(RMSE) and coverage probability (CP) across 250 data replications. In the estimation of the weights, the
weight esimator (iv) was used for JMSSM-CT and the random forests adapted into our recurrent events
framework (Section 3.2) was used for JMSM-DT. Both methods were implemented on the “rectangular”
simulation data with 100 aligned time points for each individual and on the “ragged” data with unaligned
time points. With the ragged data, the follow-up time was discretized in the space of 0.5 , 1 and 2 days
for JMSM-DT.

Data format Methods
ψ1 ψ2

MAB RMSE CP MAB RMSE CP

Rectangular
JMSM-DT .021 .026 .944 .019 .023 .948

JMSSM-CT .015 .020 .948 .014 .018 .948

Ragged

JMSM-DT (2d) .040 .047 .660 .035 .041 .668

JMSM-DT (1d) .033 .041 .732 .029 .035 .738

JMSM-DT (0.5d) .027 .034 .801 .024 .030 .804

JMSSM-CT .016 .022 .952 .015 .019 .952
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Fig. 2. Biases in the estimates of ψ1 and ψ2 among 250 data replications using four approaches to estimate
the weights as described in Section 3.4. Approach (i) uses main-effects Cox regression model and Nelson-
Aalen estimator for baseline intensity. Approach (ii) uses kernel function smoothing of the Nelson-Aalen
estimator in approach (i). Approach (iii) uses a survival forests model that accommodates time-varying
covariates and Nelson-Aalen estimator for baseline intensity. Approach(iv) uses kernel function smoothing
of the Nelson-Aalen estimator in approach (iii).

Table 2. The joint and interactive effect estimates ψ̂ (log hazard ratio) of COVID-19 treatments and
associated 95% confidence intervals (CI), using the COVID-19 dataset drawn from the Epic electronic
medical records system at the Mount Sinai Medical Center. The composite outcome of in-hospital death
or admission to ICU was used for the general COVID-19 patients. Time to in-hospital death was used
for subpopulations of those who had never been admitted into ICU (pre-ICU) and of post-ICU patients.
Confidence intervals were estimated via the robust sandwich variance estimators. “×” denotes treat-
ment interaction and “—” indicates that the pairwise interaction was not included in the joint marginal
structural survival model.

Treatment classes
ψ̂ (95% Confidence Interval)

Overall Pre-ICU Post-ICU

Dexamethasone −0.20(−0.35,−0.06) −0.06(−0.71, 0.64) −0.75(−1.42,−0.08)

Remdesivir −0.53(−0.75,−0.31) −0.62(−1.22,−0.02) −0.54(−1.04,−0.04)

Corticosteroids other than

dexamethasone −0.08(−0.29, 0.19) −0.13(−0.46, 0.21) −0.19(−0.27,−0.03)

Anti-inflammatory medications

other thancorticosteroids −0.05(−0.56, 0.47) −0.28(−1.02, 0.45) −0.08(−0.89, 0.72)

Remdesivir × Corticosteroids

other than dexamethasone −0.74(−0.95,−0.52) — −0.71(−1.38,−0.04)

Dexamethasone × Corticosteroids

other than dexamethasone — — −1.13(−1.78,−0.46)



28 REFERENCES

Fig. 3. Counterfactual survival curves for each of five treatment strategies among the general COVID-19
patients. The composite outcome of ICU admission or death is used.
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S1 Additional technical details

S1.1 The kernel function estimator

In Section 3.4, four approaches are described to estimate the stabilized time-varying inverse prob-

ability of treatment weights. The Nelson-Aalen estimator of the baseline intensity is smoothed by

means of kernel functions in approach (ii) and approach (iv). For exposition brevity, consider a

simple multiplicative intensity model for treatment initiation

λ(t) = λ0(t)r
(
L̄(t), β

)
Y (t),

where λ0(t) is the baseline intensity rate function, r
(
L̄(t), β

)
> 0 is the (time-dependent) intensity

ratio function parameterized by β, and Y (t) is the at risk indicator. The cumulative baseline

hazard is Λ0(t) =
∫ t

0 λ0(s)ds. The kernel function estimator for λ0(t) is derived by smoothing the

increments of the Nelson-Aalen estimator of Λ̂0 as

λ̂0(t) = b−1

∫

T
K

(
t− s
b

)
dΛ̂0(s),

where K is the kernel function, which is a bounded function on [-1,1] and has integral 1, and

the bandwidth b is a positive parameter governing the amount of smoothness. Commonly used

kernel functions include the standard normal density function K(x) = φ(x) and the Epanechnikov

kernel function K(x) = 0.75(1 − x2), |x| ≤ 1. ? shows that the kernel function estimator λ̂0(t) is

consistent and asymptotically normal provided that there exists a sequence of positive constants

{an}, increasing to infinity as n→∞, and that the bandwidth tends to zero more slowly than a−2
n

as n→∞.
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Placed in the framework of recurrent events for a treatmentAw that can have multiple “start/stop”

switches as described in Section 3.1, the intensity of the qth treatment initiation λAw
q (t) is smoothed

by means of kernel function estimator of the baseline intensity function λAw
0q (t).

In our simulations (Section 5) and COVID-19 case study (Section 6), we used both the stan-

dard normal density φ(x) and Epanechnikov kernel functions and they yielded similar results. We

presented results from the normal density kernel function. Following ?, we chose the optimal

bandwidth b as the value that minimizes the mean integrated squred error (MISE)

MISE(λ̂0) = E

∫ to

0

[
λ̂0(t)− λ(t)

]2
dt.

S1.2 Random survival forests accommodating time-varying covariates

Approach (iii) uses a recent random survival forests model (?) that accommodates time-varying

covariates to reduce the parametric assumptions about the form of the intensity ratio function

required by the usual proportional intensity regression model. ? proposed a forest method that

estimates the survival function by three steps. In step (1), reformat the data in the counting

process structure, that is, for individual i, the time-varying covariate L(i)(t) will be represented as

L(i)(t) = l
(i)
j , t ∈

[
t
(i)
j , t

(i)
j+1

)
, j = 0, . . . , J (i) − 1. Then split the individual i observation into J (i)

pseudo subject observations:
(
t
(i)
j , t

(i)
j+1, δ

(i)
j , l

(i)
j

)
with left-truncated right-censored (LTRC) times

t
(i)
j , t

(i)
j+1 and event indicator δ

(i)
j for the time interval

[
t
(i)
j , t

(i)
j+1

)
. Pool the counting process styled

records from N subjects to create a list of pseudo-subjects,

{
t
′
l, t

′
l+1, δ

′
l , l

′
l

}n

l=1
, n =

N∑

i

J (i). (1)

The set of pseudo-subjects is treated as if they were independent. Step (2) is to apply the forest

algorithms on the reformatted dataset given in (1), to fit a model. In step (3), given a partic-

ular stream of covariate values at the corresponding time values, a survival function estimate is

constructed based on the outputs of the forest algorithms.

We now briefly describe the forest algorithms. ? extended the relative risk forests, which com-

bines the relative risk trees (?) with random forest methodology (?), for LTRC data by modifying

the splitting criteria. The splitting criterion under the relative risk framework is to maximize the

reduction in the one-step deviance between the log-likelihood of the saturated model and the max-

imized log-likelihood. Let Rh denote the set of observations that fall into the node h. Let Λ0 index

the baseline cumulative hazard function, ϕh represent the nonnegative relative risk of the node h,
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and tl and δl be the time and event indicator of the lth observation ∀l ∈ Rh. Given the right

censored observations (tl, δl), the full likelihood deviance residual for node h is defined as

dh =
∑

l∈Rh

2

{
δl log

(
δl

Λ̂0(tl)ϕ̂h

)
−
(
δl − Λ̂0(tl)ϕ̂h

)}
. (2)

Two steps are needed to modify the splitting rule and obtain the deviance residual appropriate

for LTRC data (?). First, compute the estimated cumulative hazard function Λ̂0(·) based on all

pseudo-subject observations. Second, replace Λ̂0(tl) in (2) with Λ̂0(t
′
l+1) − Λ̂0(t

′
l), and replace δl

in (2) with δ
′
l . We refer to ? for more detailed description of the random survival forests model.

S1.3 Variance estimation

Since our estimators for ψ (marginal structural proportional hazards model parameter) can be

considered as solution to the weighted partial score equation, we consider the robust sandwich

variance estimator as a convenience device to construct confidence intervals. The robust sandwich

variance estimator has been considered, for example, in ?, and ??, and has been shown to be at most

conservative under the discrete-time setting. We use this estimator for inference in conjunction with

our continuous-time stabilized inverse probability weights, and formally evaluate its performance

in our simulations. We briefly describe the robust sandwich variance estimator below. With the

continuous-time weights, we focus on equation (11) in the main text with two treatments:

n∑

i=1

∫ ∞

0
ΩA1,A2ΩC(Gi)

{
Z(A1i, A2i, t)−

S(1)(t;ψ)

S(0)(t;ψ)

}
dNT

i (t) = 0,

where ΩA1,A2ΩC(Gi) is the weight for time-varying treatments A1 and A2 and censoring (in con-

tinuous time), Z(A1i, A2i, t)(3×1) = [A1i(t), A2i(t), A1i(t)A2i(t)]
>, and

S(0)(t;ψ) =
∑

k∈RT
t

Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ)

S(1)(t;ψ) =
∑

k∈RT
t

Z(Ak1, Ak2, t)Y
∗∗T
k (t)r(Ak1, Ak2, t;ψ).

In the above definition, RT
t refers to the collection of subjects still at risk for the outcome event

at time t, Y ∗∗Tk (t) = ΩC(Gi)Ω
A1,A2(tKi)Y

T
k (t), where Y T

i (t) is the at-risk function for the outcome

event, and r(a1, a2, t) = exp{ψ1a1(t) + ψ2(t)a2(t) + ψ3a1(t)a2(t)}. Now further define

S(2)(t;ψ) =
∑

k∈RT
t

Z(Ak1, Ak2, t)
⊗2Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ),

3



with a⊗2 = aa> for any vector a. Then the robust sandwich variance estimator takes the form

Σ−1
0 Σ1Σ−1

0 (?), where

Σ0 =

n∑

i=1

∫ ∞

0
ΩA1,A2ΩC(Gi)

{
S(2)(t;ψ)

S(0)(t;ψ)
− S(1)(t;ψ)⊗2

S(0)(t;ψ)

}
dNT

i (t),

and

Σ1 =
n∑

i=1

[∫ ∞

0
ΩA1,A2ΩC(Gi)

{
Z(A1i, A2i, t)−

S(1)(t;ψ)

S(0)(t;ψ)

}
dMT

i (t)

]⊗2

,

and MT
i (t) = NT

i (t)−
∫ t

0 Y
∗∗T
k (u)λ0(u)r(Ak1, Ak2, u;ψ)du is the martingale based on the counting

process for outcome event. The sandwich variance estimator is obtained when both Σ0 and Σ1 are

evaluated at the estimated weights and ψ̂.

Because the above robust variance estimator considers the weights ΩA1,A2ΩC(Gi) as fixed known

values (?), it could result in conservative (but still valid) inference. With time-invariant weights

estimated by logistic regression in the cross-sectional treatment setting, the corrected robust sand-

wich variance estimator has been derived to achieve improved variance estimation for hazard ratio

parameters (?). However, an extension to continuous-time weights is not trivial and currently

unavailable. Alternatively, resampling method such as the bootstrap method (??) could be used

to make more robust inference for ψ that accounts for the uncertainty of the weights. Although

theoretical valid, this resampling approach is not pursued in our current work due to the substan-

tially more intensive computations associated with repeated estimation of complex weights under

the recurrent event framework.

S2 Marginal Structural Cox Model Simulation Algorithm

Here we provide pseudocodes for the marginal structural cox model data simulation. We use the

COVID-19 dataset as the foundation to set the values of the parameters in both the treatment

assignment and marginal structural models. In our simulations, to reduce the impact of data

sparsity, we set the maximum number of treatment initiations to be 4. To do this, the pseudocodes

can be modified by setting treatment exposure status to one at all time points after the fourth

treatment initiation throughout to the end of the follow-up period.

GET

M ← 100 (maximum follow-up); λ0 ← 0.005; n← 1000;

β ← (β0, β1, β2, β3) ← [log(3/7),−0.5,− log(1/2), log(3/2)] (parameter vector for generating

time-varying confounding variables L2);
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ζ ← (ζ0, ζ1, ζ2, ζ3, ζ4) ← [log(2/7),− log(1/2),−0.5, log(3/2), log(2/3)] (parameter vector for

generating time-varying confounding variables L1);

γ ← (γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11)

← [log(2/7), 1/2,−1/2,− log(3/5), 0.8, 0.5, 0.8,−0.5, 1/2, 1.2,−0.6,−0.3] (parameter vec-

tor for generating A1);

η ← (η0, η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11)

← [log(3/7), 1/3,−1/3,− log(2/5), 0.9, 0.6, 0.8,−0.5, 1/3, 0.9,−0.6,−0.4] (parameter vec-

tor for generating A2);

ψ1 ← −0.5 (true log-hazard value representing the effect of treatment A1 )

ψ2 ← −0.3 (true log-hazard value representing the effect of treatment A2)

COMPUTE

for ID ← 1 to n (for each individual) do

INIT: L1(−1)← 0;L2(−1)← 0;A1(−1)← 0;A2(−1)← 0;Y (0)← 0;H(m)← 0;

nA1 ← 0;nA2 ← 0; τA1 ← 0; τA2 ← 0

T 0̄ ∼ Exponential(λ0)

for m← 0 to M do

L1(m)← E (L1(m) = l1(m) |L1(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0; ζ)

← ζ0 + ζ1(1/ log T 0̄) + ζ2A1(m− 1) + ζ3L1(m− 1) + ζ4A2(m− 1)

logit(pL2)← logitP (L2(m) = 1 |L2(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0;β)

← β0 + β1A1(m− 1) + β2L2(m− 1) + β3A2(m− 1)

L2(m) ∼ Bernoulli(pL2)

logit(pA1) = logitP (A1(m) = 1 |L1(m), L1(m− 1), L2(m), L2(m− 1), A1(m− 1),

A2(m− 1), nA1 , Y (m) = 0;γ)

= γ0 + γ1A1(m− 1) + γ2(L2(m− 1))2 + γ3(L1(m− 1))2 + γ4(A1(m− 1)L1(m))

+γ6(L1(m)L2(m)) + γ7(A1(m− 1)L2(m)) + γ8A2(m− 1)

+γ9(A2(m− 1)L1(m)) + γ10(A2(m− 1)L2(m)) + γ11nA1

if A1(m− 1) = 0 or m− 1 = τA1 then

A1(m) ∼ Bernoulli(pA1)

if A1(m) = 1 then

δA1 ∼ zero-truncated Poisson(10) (treatment duration after initiation)

τA1 ← m+ δA1

A1(m+ 1) : A1(max (τA1 ,M))← 1
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nA1 ← nA1 + 1

end if

end if

logit(pA2) = logitP (A2(m) = 1 |L1(m), L1(m− 1), L2(m), L2(m− 1), A1(m),

A2(m− 1), nA2 , Y (m) = 0;η)

= η0 + η1A1(m− 1) + η2(L2(m− 1))2 + η3(L1(m− 1))2 + η4(A1(m)L1(m))

+η6(L1(m)L2(m)) + η7(A1(m)L2(m)) + η8A2(m− 1)

+η9(A2(m− 1)L1(m)) + η10(A2(m− 1)L2(m)) + η11nA2

if A2(m− 1) = 0 or m− 1 = τA2 then

A2(m) ∼ Bernoulli(pA2)

if A2(m) = 1 then

δA2 ∼ zero-truncated Poisson(9) (treatment duration after initiation)

τA2 ← m+ δA2

A2(m+ 1) : A2(max (τA2 ,M))← 1

nA2 ← nA2 + 1

end if

end if

Hm ← Hm + exp {ψ1A1(m) + ψ2A2(m)}
if T 0̄ ≥ Hm

Ym+1 ← 0

else

Ym+1 ← 1

T ← m+ (T 0̄ −Hm)× exp {−ψ1A1(m)− ψ2A2(m)}
end if

end for m

end for ID
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Figure 1: The distributions of biases across 250 simulation replications of the ragged longitudinal

data with unaligned time points, in estimating the parameters ψ1 and ψ2 using the proposed

JMSSM-CT method and the comparison method JMSM-DT. When implementing JMSM-DT, the

follow-up time was respectively discretized into time intervals of length 0.5, 1 and 2 days, as the

method requires aligned measurement time points.
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S3 Supplementary figures and tables

S3.1 Additional simulation results

Table 1: Mean absolute bias (MAB), root mean square error (RMSE) and coverage probability

(CP) for the estimates of ψ across 250 data replications with unaligned follow-up time points,

using four weight estimators (i)-(iv) described in Section 3.4.

Weight estimators
ψ1 ψ2

MAB RMSE CP MAB RMSE CP

(i) .102 .104 .048 .092 .094 .060

(ii) .063 .067 .104 .055 .059 .112

(iii) .023 .029 .936 .020 .025 .940

(iv) .016 .022 .952 .015 .019 .952

Table 2: The distribution of the estimated individual time-varying weights from one random repli-

cation of the “ragged” longitudinal data with unaligned time points, for the proposed JMSSM-CT

versus JMSM-DT. To estimate the weights, the random forests was used for JMSM-DT and four

approaches (i)-(iv) (Section 3.4) were used for JMSSM-CT.

Methods Weight estimators
Distribution of estimated weights

Minimum First quartile Mean Third quartile Maximum

JMSSM-CT

(i) 0.23 0.89 1.05 1.23 5.34

(ii) 0.40 0.98 1.01 1.07 4.28

(iii) 0.52 0.88 1.00 1.09 2.99

(iv) 0.68 0.95 1.00 1.05 2.36

JMSM-DT Random forests 0.43 0.90 1.03 1.11 3.65
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S3.2 Treatment classes for COVID-19

In Table 3, we provide detailed definitions of the four treatment classes for COVID-19 whose

comparative effectiveness on in-hospital death was investigated in Section 6.

Table 3: Definitions of four treatment classes for COVID-19. iv:intravenous; po: by mouth.

Treatment classes Medication (route)

Dexamethasone Dexamethasone (iv), Dexamethasone (po)

Remdesivir Remdesivir (iv)

Corticosteroids other

than dexamethasone

Hydrocortisone (po), Hydrocortisone (iv), Methylprednisolone (po), Methyl-

prednisolone (iv), Prednisolone (iv), Prednisone (po), Prednisone (iv)

Anti-inflammatory

medications other than

corticosteroids

Alpha-1-Proteinase Inhibitor (iv), Anakinra (iv), Azathioprine (po), Belat-

acept (iv), Dexamethasone (iv), Dexamethasone (po), Eculizumab (iv), En-

varsus (iv), Sarilumab (iv), Gengraf (po), Gengraf (iv), Hydrocortisone (po),

Hydrocortisone (iv), Ibrutinib (po), Immune Globulin (iv), Infliximab (iv),

Methylprednisolone (po), Methylprednisolone (iv), Montelukast (po), Pred-

nisolone (iv), Prednisone (po), Prednisone (iv), Ruxolitinib (po), Tocilizumab

(iv), Apremilast (po), Celecoxib (po), Dasatinib (po), Everolimus (iv), Gem-

tuzumab (iv), Ibuprofen (iv), Ibuprofen (po), Ifosfamide (iv), Leflunomide

(po), Mesalamine (iv), Methotrexate (iv), Methylphenidate (iv), Mycopheno-

late (iv), Naproxen (po), Rituximab (iv), Sulfasalazine (po), Tacrolimus (iv),

Pacritinib (po), Risankizumab (iv), Daratumumab (iv), Talquetamab (iv)
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S3.3 Patient oxygen levels

We describe how patient oxygen levels are categorized based on the use of ventilator in Table 4.

Table 4: Definitions of patient oxygen levels based on the use of ventilator

Patient oxygen level Ventilator status

0 Room air

1 Cannula

2 Mask, Blow-by, Face tent, Oxyhood, Non-rebreather, RAM cannula

3 Continuous positive airway pressure machine, High flow nasal cannula,

Hudson prongs

4 Bilevel positive airway pressure machine, Tracheostomy mask

5 Tracheotomy, Transtracheal oxygen therapy, Ventilator, Endotracheal tube,

T-shaped tubing connected to an endotracheal tube, Nasal synchronized

intermittent mandatory ventilation
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