
Data and text mining

mlr3proba: an R package for machine learning in

survival analysis

Raphael Sonabend 1,*, Franz J. Király1, Andreas Bender2, Bernd Bischl2 and

Michel Lang2

1Department of Statistical Science, University College London, London WC1E 6BT, UK and 2Department of Statistics, LMU Munich,

Munich 80539, Germany

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren
Received on October 6, 2020; revised on December 6, 2020; editorial decision on January 7, 2021; accepted on January 18, 2021

Abstract

Summary: As machine learning has become increasingly popular over the last few decades, so too has the number
of machine-learning interfaces for implementing these models. Whilst many R libraries exist for machine learning,
very few offer extended support for survival analysis. This is problematic considering its importance in
fields like medicine, bioinformatics, economics, engineering and more. mlr3proba provides a comprehensive
machine-learning interface for survival analysis and connects with mlr3’s general model tuning and benchmarking
facilities to provide a systematic infrastructure for survival modelling and evaluation.

Availability and implementation: mlr3proba is available under an LGPL-3 licence on CRAN and at https://github.
com/mlr-org/mlr3proba, with further documentation at https://mlr3book.mlr-org.com/survival.html.

Contact: raphael.sonabend.15@ucl.ac.uk

1 Introduction

Survival analysis is the field of statistics concerned with the estima-
tion of time-to-event distributions while accounting for censoring
and truncation. mlr3proba introduces survival modelling to the
mlr3 (Lang et al., 2019a) ecosystem of machine-learning packages.
By utilizing a probabilistic supervised learning (Gressmann et al.,
2018) framework mlr3proba allows for multiple survival analysis
predictions: predicting the time to an event, the probability of an
event over time and the relative risk of an event. mlr3proba includes
an extensive collection of classical and machine-learning models and
many specialized survival measures.

The R programming language (R Core Team, 2020) provides ex-
tensive support for both survival analysis and machine learning via
its core functionality and through open-source add-on packages
available from CRAN and Bioconductor. mlr3proba leverages these
packages by connecting a multitude of machine-learning models and
measures for survival analysis. mlr3proba currently supports simula-
tion of survival data, classical survival models, prediction of survival
distributions by machine learning and support for high-dimensional
data. Interfacing other packages in the mlr3 family provides func-
tionality for optimization, tuning, benchmarking and more.

2 Implemented functionality

A standard pipeline for survival analysis consists of: (i) defining a
survival task as a set of features and survival outcome (time until the
event and a censoring indicator); (ii) training a model on survival

data, with the possibility of optimization via tuning of hyper-
parameters; (iii) making predictions from the trained model on new
data; and (iv) evaluating the quality of predictions with survival-
specific measures, possibly including visualization.

mlr3proba streamlines this process by: (i) standardizing survival
tasks, with the Surv object from the survival (Therneau, 2015)
package, into a single object capable of handling left-, interval-
and right-censoring (TaskSurv); (ii) unifying all survival learners
(LearnerSurv*) with (iii) prediction objects that clearly distinguish
model prediction types (PredictionSurv); and (iv) unifying survival
measures for different survival prediction types (MeasureSurv*).

Careful design and documentation of models and measures
clearly demonstrate the predictions that can be made by models or
evaluated by measures. Each model can predict one or more of:
response—a survival time, distr—a survival distribution, crank—a
relative risk ranking, and lp—a linear predictor. distr predictions are
cast into standardized distribution objects using the distr6 package
(Sonabend and Kiraly, 2019), which allows clean post-processing,
such as predicting survival and hazard functions, amongst other
uses.

Any survival model implemented in mlr3proba can be tuned via
mlr3tuning (Lang et al., 2019b), which includes several tuning meth-
ods (grid search, random search, generalized annealing and more)
and termination criteria (based on iterations, runtime and more) for
nested resampling and optimization on any survival measure.
Additionally, all survival tasks and models can make use of mlr3pi-
pelines (Binder et al., 2020) for pre-processing, such as feature selec-
tion and variable encoding, and post-processing, such as prediction

VC The Author(s) 2021. Published by Oxford University Press. 2789

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(17), 2021, 2789–2791

doi: 10.1093/bioinformatics/btab039

Advance Access Publication Date: 1 February 2021

Applications Note

http://orcid.org/0000-0001-9225-4654
https://github.com/mlr-org/mlr3proba
https://github.com/mlr-org/mlr3proba
https://mlr3book.mlr-org.com/survival.html
https://academic.oup.com/

compositions (see below). Full details for these methods are avail-
able in the mlr3book (https://mlr3book.mlr-org.com).

3 Implemented classes

3.1 Learners
More than 20 survival learners are currently implemented. These
range from classical statistical models to machine learning methods.
For the former, the ‘usual’ semi- and fully-parametric models are
implemented, such as Cox PH (Cox, 1972) and AFT models, as well
as more advanced flexible spline methods (Royston and Parmar,
2002) and penalized regression. Machine-learning methods include
random survival forests (Ishwaran et al., 2008) (conditional infer-
ence, relative risk and log-rank splitting), gradient boosting
machines (with multiple optimization methods) (Buhlmann and
Hothorn, 2007), Van Belle’s support vector machines (Van Belle
et al., 2011) and artificial neural networks (Kvamme et al., 2019)
(including DeepSurv, DeepHit and Cox-Time). Inclusion of Python-
implemented survival neural networks via survivalmodels
(Sonabend, 2020) allows efficient cross-platform comparison of
models.

3.2 Measures
For comparison of different models, 19 survival measures are imple-
mented in mlr3proba. These include quantitative calibration meas-
ures, such as van Houwelingen’s b (Van Houwelingen, 2000), and
visual comparisons of average distribution prediction to Kaplan–
Meier. Implemented discrimination metrics include several measures
of both concordance [e.g. Harrell et al. (1982) and Uno et al.
(2011)] and time-dependent AUCs (Heagerty et al., 2000). Scoring
rules are also implemented including the log-loss, integrated log-
loss, integrated Graf (or Brier) score (Graf et al., 1999) and the
Schmid/absolute score (Schmid et al., 2011). Several of these are
implemented directly in mlr3proba with an Rcpp (Eddelbuettel and
Francois, 2011) implementation for fast and reliable performance.

3.3 Pipelines
Pipelines provide a way to combine multiple pre- and post-
processing steps into an object that can be treated as a learner. Such
pipelines can include general and survival-specific components. One
particular use case is the (re-)casting of one prediction type to an-
other. There are several different possible predictions that could be
made by a survival learner that are not directly comparable, e.g. a
relative risk cannot be directly compared to a survival distribution.
Therefore mlr3proba extends the capabilities of any survival model
by including pipelines that transform one prediction type to another.
The distrcompositor pipeline transforms lp or crank predictions into
distr predictions. Users have the option to specify the baseline distri-
bution estimator (any learner implemented in mlr3proba) and the
model form (proportional hazards, accelerated failure time or pro-
portional odds). Another useful pipeline is the crankcompositor, this
transforms a distr prediction into a crank and/or response prediction
using some summary measure of the distribution, e.g. the mean or
median. Obtaining a survival time prediction from a distribution is
simply a case of wrapping the model in the crankcompositor pipe-
line. By combining these two pipelines, any model in mlr3proba can
make any prediction type. The mlr3pipelines functionality allows
tuning of these and further pipelines to find the optimal parameters
for these compositions.

4 Related work

There are an increasing number of machine-learning packages
across programming languages, including caret (Kuhn, 2008),
mlr (Bischl et al., 2016), tidymodels (Kuhn and Wickham, 2020)
and scikit-learn (Pedregosa et al., 2011). However, functionality for
survival analysis has been mostly limited to ‘classical’ statistical
models with relatively few packages supporting a machine-learning
framework. R ships with the package survival (Therneau, 2015),

which supports left-, interval-, and right-censoring, competing risks,
time-dependent models, stratification and model evaluation.
However, the package is limited to classical statistical models, with
no support for machine learning and limited support for formal
comparison or non-linear models. The Python equivalent to this
package is lifelines (Davidson-Pilon et al., 2020), which is again
limited to a few classical models. pec (Mogensen et al., 2014) imple-
ments no models itself but instead interfaces with many different
survival packages to create survival probability predictions. The
package’s main focus is on model evaluation via prediction error
curves (‘pec’s) with little support for model building/training and
predicting. skpro (Gressmann et al., 2018) is a probabilistic super-
vised learning interface in Python. skpro extends the scikit-learn
(Pedregosa et al., 2011) interface to probabilistic models and
appears to be the only package (in any language) dedicated to
domain-agnostic probabilistic supervised learning. The interface
provides an infrastructure for machine learning based survival ana-
lysis with design choices influencing mlr3proba, but skpro does not
currently support survival models. pysurvival (Fotso et al., 2019) is
another Python package, which implements classical and machine-
learning survival analysis models. The package has the advantage of
being able to natively leverage specific neural network survival mod-
els, which are almost exclusively implemented in Python. Whilst not
directly interfacing the scikit–learn interface, the package introduces
unified functions for model fitting, predicting and evaluation. scikit-
survival (Pölsterl, 2020) builds directly on scikit-learn to implement
a few survival models and measures in a machine-learning frame-
work. Unlike pysurvival, no neural networks are included, thus the
two packages complement each other well.

5 Future developments

As of now, the package is limited to the single-event, right-censored
setting. This is largely a limitation of the current implementations of
the underlying learners. Future developments will focus on exten-
sions to: stratified models, time-varying effects, left-censoring/
truncation, interval censoring, competing risks and multi-state mod-
els. A recently proposed framework could be used to support most
of these tasks without modification of the underlying learners
(Bender et al., 2020). Some extensions, however, might require
updates to the learners. The near-future roadmap includes:

1. Expanding TaskSurv to accommodate the settings above.

2. Extending learners to handle (some of) the more complex

settings.

3. Adding a learner-agnostic reduction pipeline for competing

risks.

6 Example

The example below demonstrates how to benchmark three survival
models and make use of the distribution compositor. Line 1: essen-
tial packages are loaded, mlr3proba always requires mlr3. Line 2:
extra packages are loaded, mlr3learners is required for the xgboost
learner and mlr3pipelines is required for the distribution compos-
ition. Lines 3–4: Kaplan–Meier and Cox PH learners are initialized
with default parameters. Lines 5–7: the XGBoost learner, which
does not provide predictions for the survival probability, is wrapped
in the distrcompositor pipeline to transform its ranking prediction
to a probabilistic prediction. Line 8: learners are combined into a
list for use in the benchmark function. Lines 9–11: a task is created
from a subset of the rats dataset from survival, the outcome is speci-
fied with the ‘time’ and ‘event’ arguments. Line 12: a three-fold
cross-validation resampling scheme is specified. Line 13: the infra-
structure for the experiment is automatically determined by supply-
ing the task(s), learners and resampling method. Line 14: learners
are resampled according to the chosen scheme and benchmarked.
Line 15: predictions are aggregated over all folds and scored with
the integrated log-loss to provide a final comparison.

2790 R.Sonabend et al.

https://mlr3book.mlr-org.com

> library(mlr3); library(mlr3proba)
> library(mlr3learners); library(mlr3pipelines)
> kaplan ¼ lrn(‘surv.kaplan’)
> cox ¼ lrn(‘surv.coxph’)
> xgb ¼ ppl(‘distrcompositor’,
þ learner ¼ lrn(‘surv.xgboost’),
þ estimator ¼ ‘kaplan’, form ¼ ‘ph’)
> learners ¼ list(cox, kaplan, xgb)
> task ¼ TaskSurv$new(id ¼ ‘rats’,
þ backend ¼ survival::rats[, 1:4],
þ time ¼ ‘time’, event ¼ ‘status’)
> resample ¼ rsmp(‘cv’, folds ¼ 3)
> design¼ benchmark_grid(task, learners, resample)
> bm ¼ benchmark(design)
> bm$aggregate(msr(‘surv.intlogloss’))

Funding

R.S. receives a PhD stipend from the Engineering and Physical Sciences

Research Council [EP/R513143/1]. A.B. and M.L. are funded by the German

Federal Ministry of Education and Research (BMBF) under grant No.

01IS18036A and by Deutsche Forschungsgemeinschaft (DFG) within the

Collaborative Research Center SFB 876 ‘Providing Information by Resource-

Constrained Analysis’.

Conflict of Interest: none declared.

References

Bender,A. et al. (2020) A general machine learning framework for survival

analysis. arXiv:2006.15442 [cs, Stat], arXiv:2006.15442.

Binder,M. et al. (2020) mlr3pipelines: Preprocessing Operators and Pipelines

for ‘mlr3’. https://CRAN.R-project.org/package¼mlr3pipelines (26 January

2021, date last accessed).

Bischl,B. et al. (2016) mlr: machine learning in R. J. Mach. Learn. Res., 17,

1–5.

Buhlmann,P. and Hothorn,T. (2007) Boosting algorithms: regularization, pre-

diction and model fitting. Statist. Sci., 22, 477–505.

Cox,D.R. (1972) Regression models and life-tables. J. R. Stat. Soc. Series B

Methodol., 34, 187–220.

Davidson-Pilon,C. et al. (2021) CamDavidsonPilon/lifelines: v0.25.8.

Zenodo. 10.5281/zenodo.4457577

Eddelbuettel,D. and François,R. (2011) Rcpp: seamless R and Cþþ
Integration. J. Stat. Softw., 40, 1–18.

Fotso,S. et al. (2019) PySurvival: Open Source Package for Survival Analysis

Modeling. https://www.pysurvival.io/ (26 January 2021, date last accessed).

Graf,E. et al. (1999) Assessment and comparison of prognostic classification

schemes for survival data. Stat. Med., 18, 2529–2545.

Gressmann,F. et al. (2018) Probabilistic supervised learning.arXiv:

1801.00753.

Harrell,F.E. et al. (1982) Evaluating the yield of medical tests. JAMA, 247,

2543–2546.

Heagerty,P.J. et al. (2000) Time-dependent ROC curves for censored survival

data and a diagnostic marker. Biometrics, 56, 337–344.

Ishwaran,H. et al. (2008) Random survival forests. Ann. Appl. Stat., 2,

841–860.

Kuhn,M. (2008) Building predictive models in R using the caret package.

J. Stat. Softw., 28, 1- 26,

Kuhn,M. and Wickham,H. (2020) tidymodels: Easily Install and Load the

‘Tidymodels’ Packages. https://CRAN.R-project.org/package¼tidymodels

(26 January 2021, date last accessed).

Kvamme,H. et al. (2019) Time-to-event prediction with neural networks and

Cox regression. J. Mach. Learn. Res., 20, 1–30.

Lang,M. et al. (2019a) mlr3: a modern object-oriented machine learning

framework in R. J. Open Source Softw., 4, 1903.

Lang,M. et al. (2019b) mlr3tuning: Tuning for ‘mlr3’. https://CRAN.R-pro

ject.org/package¼mlr3tuning (26 January 2021, date last accessed).

Mogensen,U.B. et al. (2014) Evaluating random forests for survival analysis

using prediction error curves.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Pölsterl,S. (2020) scikit-survival: a library for time-to-event analysis built on

top of scikit-learn. J. Mach. Learn. Res., 21, 1–6.

R Core Team. (2020) R: A Language and Environment for Statistical

Computing. https://www.R-project.org/ (26 January 2021, date last

accessed).

Royston,P. and Parmar,M.K. (2002) Flexible parametric proportional-

hazards and proportional-odds models for censored survival data, with

application to prognostic modelling and estimation of treatment effects.

Stat. Med., 21, 2175–2197.

Schmid,M. et al. (2011) A robust alternative to the Schemper-Henderson esti-

mator of prediction error. Biometrics, 67, 524–535.

Sonabend,R. (2020) survivalmodels: Models for Survival Analysis https://

CRAN.R-project.org/package¼survivalmodels (26 January 2021, date last

accessed).

Sonabend,R. and Kiraly,F. (2019) distr6: The Complete R6 Probability

Distributions Interface. https://CRAN.R-project.org/package¼distr6 (26

January 2021, date last accessed).

Therneau,T.M. (2015) A Package for Survival Analysis in S. https://CRAN.R-

project.org/package¼survival (26 January 2021, date last accessed).

Uno,H. et al. (2011) On the C-statistics for evaluating overall adequacy of risk

prediction procedures with censored survival data. Stat. Med., 30,

1105–1117.

Van Belle,V. et al. (2011) Support vector methods for survival analysis: a

comparison between ranking and regression approaches. Artif. Intell. Med.,

53, 107–118.

Van Houwelingen,H.C. (2000) Validation, calibration, revision and combin-

ation of prognostic survival models. Stat. Med., 19, 3401–3415.

mlr3proba 2791

https://CRAN.R-project.org/package=mlr3pipelines
https://CRAN.R-project.org/package=mlr3pipelines
https://www.pysurvival.io/
https://CRAN.R-project.org/package=tidymodels
https://CRAN.R-project.org/package=tidymodels
https://CRAN.R-project.org/package=mlr3tuning
https://CRAN.R-project.org/package=mlr3tuning
https://CRAN.R-project.org/package=mlr3tuning
https://www.R-project.org/
https://CRAN.R-project.org/package=survivalmodels
https://CRAN.R-project.org/package=survivalmodels
https://CRAN.R-project.org/package=survivalmodels
https://CRAN.R-project.org/package=distr6
https://CRAN.R-project.org/package=distr6
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

