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Emergence of scale-free 
characteristics in socio-ecological 
systems with bounded rationality
Dharshana Kasthurirathna & Mahendra Piraveenan

Socio–ecological systems are increasingly modelled by games played on complex networks. 
While the concept of Nash equilibrium assumes perfect rationality, in reality players display 
heterogeneous bounded rationality. Here we present a topological model of bounded rationality 
in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. 
We argue that system rationality could be measured by the average Kullback–-Leibler divergence 
between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria 
on average corresponds to increased system rationality. Using this model, we show that when a 
randomly connected socio-ecological system is topologically optimised to converge towards Nash 
equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is 
an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological 
systems. Further, we show that in games where multiple equilibria are possible, the correlation 
between the scale-freeness of the system and the fraction of links with multiple equilibria goes 
through a rapid transition when the average system rationality increases. Our results explain the 
influence of the topological structure of socio–ecological systems in shaping their collective cognitive 
behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics 
in such systems.

Game theory is widely used to study and model strategic decision making scenarios, ranging from 
politics and market economics to ecosystems and information routing1–4. Network based games are 
increasingly used to understand critical phenomena in socio-ecological systems5–11. The concept of Nash 
equilibrium has been an important cornerstone in understanding the dynamics of such systems12. While 
Nash equilibrium assumes that all players in a system are fully rational, most real-world strategic decision 
making scenarios involve players with non-optimal or bounded rationality, resulting in their strategies 
and behaviour deviating from those predicted by the Nash equilibrium13. The possible limitations, such 
as the amount of information at hand, cognitive capacity, and the computational time available, may 
force a self-interested autonomous player or agent to have bounded rationality and therefore to make 
non-optimal decisions14.

Numerous theories have been presented to model the non-optimal rationality of players in strategic 
games, including the concepts of the near-rationality equilibrium and the quantal response equilibrium15–18. 
However, these models do not attempt to quantify, in a predictive manner, the levels of rationality prev-
alent in individual players based on their observable characteristics. Meanwhile, studies in psychology 
and cognitive science have conjectured that the rationality of individuals is correlated to the level of their 
social interactions19–21. In this paper, therefore, we propose a topological model of bounded rationality 
in socio-ecological systems, based on this conjecture. Using this model, we investigate how such systems 
could topologically evolve to have higher system rationality, given a heterogeneous bounded rationality 
distribution. Since the calculation of Nash equilibrium assumes perfect rationality of all players, we use 
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the average Kullback–Leibler divergence between Nash and Quantal Response equilibria of each game 
played within the system as an indicator of overall system rationality. It is important to note that we 
distinguish this system rationality from the average rationality, which is simply the average of the het-
erogeneous rationality distribution of a system and therefore not influenced by its topology.

We show that among different topological classes of complex networks modelling socio-ecological 
systems, the scale-free class minimises this divergence (maximises the system rationality). Conversely, 
when a socio-ecological system with a random topology is optimised towards higher system rationality 
( the system on average is driven towards Nash equilibrium), scale-free and small world features emerge. 
This result is true for games with single or multiple equilibria. In the case of games with multiple equi-
libria, the fraction of links in a network where multiple equilibria are actually prevalent is topologically 
dependent. We show that when average rationality is lower, the scale-freeness of the socio-ecological net-
work aids in increasing the fraction of links with multiple equilibria. However, when the average ration-
ality is higher, the scale-freeness actually aids in decreasing this fraction. In fact, we demonstrate that the 
correlation between the ‘scale-freeness’ and the fraction of links with multiple equilibria goes through a 
rapid transition when average network rationality is increased. Our results provide a possible explanation 
for the prevalence of scale-free features in the topologies of real world socio-ecological systems 22, and 
explore how the scale-freeness in turn affects the cognitive decision making behaviour of such systems.

Background
Complex Social Networks and networked game theory. In any cognitive decision making sce-
nario played out in a socio-ecological system, the players are constrained by the contacts they create 
and maintain, and cannot arbitrarily interact with random players who have no direct ‘connection’ to 
them. Thus, these systems can be modelled as a complex network22. Most real world complex networks, 
including those representing socio-ecological systems, display two characteristic topological features: 
the ‘scale-free’ characteristic and the ‘small-world’ characteristic22–26. The scale-free networks display 
power-law degree distributions, while the small world networks are identified by relatively high cluster-
ing and relatively low average path length.

Game theory2, 27–29 is an effective tool to model complex socio-ecological systems that involve mul-
tiple self-interested entities and decision making scenarios30–35. Over the past two decades, networked 
game theory has been increasingly used to understand the constrains placed by the social structure of 
a community on the cognitive decision making process of individuals9, 10, 36, 37. In particular, the role of 
the scale-free structure has been well explored, typically in discussing its influence over the emergence 
of co-operation in games where the Nash-equilibrium occurs at mutual defection, such as Prisoners 
Dilemma38–40. A number of papers have suggested that the scale-free structure aids in the emergence 
of co-operation8, 38. Other studies have, conversely, discussed the evolution of topological features in 
so-called co-evolutionary games where players are able to delete existing links and create fresh links to 
maximise pay-offs. It is often found that scale-free, or similar heterogeneous topologies (such as expo-
nential) emerge as a result of such co-evolution. For example, Szolnoki et al.40 shows that in a Prisoners 
Dilemma game, networks of exponential degree distributions emerge when the network attempts to 
maintain cooperation as a viable strategy. In similar vein, there are other papers arguing that other node 
attributes, such as the ‘age’ of the participants41 or the ‘influence’ they have over other participants42, 
encourage cooperation best when these attributes are distributed heterogeneously (i.e following an expo-
nential or power-law distribution). There are other studies, however, which argue that the non-uniform 
‘participation costs’ involved in a heterogeneous social network negate the advantage the heterogeneity 
confers in encouraging cooperation - at least at an individual node level43. Yet other studies have argued 
that the scale-free nature of the social network has ‘sometimes enhanced and sometimes inhibited’ 
co-operation as a viable strategy44, listing out factors which decide the type of correlation. Meanwhile, 
a group of studies have found conditions, topological and otherwise, under which the number of peo-
ple using a particular strategy (typically co-operation in the game of Prisoners Dilemma) go through a 
phase-transition (for e.g., see45, 46).

In summary, the influence of heterogeneous network structure (particularly scale-free structure) on 
the survival of particular strategies has received considerable attention in recent times. It is in this back-
drop that we set out to explore the relationship between network topology and the convergence towards 
Nash equilibria, which brings a fresh perspective in understanding the role of network structure in 
socio-ecological dynamics.

Games between players with bounded rationality. The concept of Nash Equilibrium12, 47 states 
that in a strategic decision making environment, there exists an equilibrium which no player would ben-
efit deviating from. However, it has been observed that in experimental settings, the equilibrium states 
of players deviate substantially from those predicted by the Nash equilibrium48. One key reason for this 
deviation is the non-perfect, or bounded rationality of players.

Nash equilibrium assumes that the players always adopt the strategy that maximises their utility, and 
rationality is defined as the tendency to maximise one’s own utility under uncertainty13. However, in the 
real-world, the players may not be perfectly rational due to the limitations mentioned before14. Since 
these limitations vary from player to player, it is to be expected that the players would have heterogene-
ous bounded rationality, and would make some sub-optimal or apparently random decisions. A number 
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of studies have indirectly modelled bounded rationality by introducing noise in strategies adopted by 
players (as done, for example, by45, 46, 49). However, the Quantal response equilibrium (QRE)13, 50, 51 
directly presents an analogous way to model games with ‘noisy’ strategies, by using probabilistic choice 
model functions such as logit and probit13. These functions map the vector of expected payoffs from 
available choices into a vector of choice probabilities that is monotone with the expected payoffs. In 
statistical physics such functions are called Fermi functions9, and different versions of them have been 
used recently in studies involving spatial games52, 53.

Let us consider the payoff matrix of a generic normal form game (an example is given in Fig.1 for 
two-player games). As shown in Methods, we choose to use the quantal response logit function (given 
in Eq.(3) in methods), to derive the Quantal Response Equilibrium of a player with a particular level of 
non-perfect rationality. The parameter λi in this equation is known as the rationality parameter of 
player i, and denotes the level of relative rationality the player i possesses, and can vary from zero to 
infinity. Thus, this parameter provides a convenient way to quantify the bounded rationality of a particu-
lar player and the resulting probability distribution denotes the quantal response equilibrium for that 
player at that particular bounded rationality level. The average of λi over all players, λ, is thus an indica-
tor of the average levels of rationality prevalent in the system.

Relationship between rationality and social interaction. We argue that there is an implicit rela-
tionship between the amount of social interaction of a particular player and their bounded rational-
ity. This argument, which is articulated by a number of studies, is critical in topologically quantifying 
the bounded rationality of players. For instance, the social cognitive theory19 suggests that knowledge 
acquisition is directly correlated to the observation of models. Thus, a player with a relatively higher 
amount of social interactions may have higher cognitive capacity compared to a player with a relatively 
lower amount of social interactions. The social learning theory54 expands on this concept. Similarly, the 
social brain hypothesis20, 55 and studies extending it have established that there is a correlation between 
the human brain cortex size and the social cognitive capacity of humans56. This implies that increased 
social interactions aided in improving the cortex sizes, and thereby the cognitive capacity, of primates. 
Conversely, it could also be argued that the cognitive capacity of a person (player) is an ‘inherent’ prop-
erty of a person, and the amount of interactions he engages in is rather a ‘reflection’ of that cognitive 
capacity. Either way, it is reasonable to argue that the cognitive capacity, i.e rationality, of a player is 
positively correlated to the amount of social interactions they undertake.

Modelling
Although there have been attempts to model the rationality of players, they have mostly been concerned 
with proposing a rationality model that identifies the rationality as a constant for all players under a 
particular strategic decision making context. For example, Wolpert17 proposed a model to derive the 
rationality of an abstract player by solving the Maxent (maximum entropy) Lagrangians that model 
the probability distribution of a human player as a Boltzmann distribution. However, as the cognitive 
hierarchical model21 and related empirical observations suggest, rationality of players in a population 
is typically distributed in a heterogeneous distribution instead of all players having the same level of 

Figure 1. The payoff matrix of a generic normal-form game which involves two players. Sj
i denotes strategy j 

adapted by player i, while ujk
i  denotes the payoff to player i, when the first player adapts strategy j and the 

second player adapts strategy k.
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rationality for a particular strategic decision making environment. A social-interaction based modelling 
of bounded rationality would account for this heterogeneity.

Indeed, capturing the heterogeneity of rationality of players using the quantal response equilibrium 
has been studied before18, 57, particularly with models such as Heterogeneous QRE model and Truncated 
QRE model18. It has been demonstrated that the cognitive hierarchical model21 is a special case of 
Truncated QRE model. However, these models too limit themselves to varying heterogeneous rationality 
parameter λi to fit the empirical results, modelling or applying it as an arbitrary parameter without any 
physical interpretation, while acknowledging that the rationality would be heterogeneous in a popula-
tion of players. While this approach increases the versatility of the rationality parameter, it limits the 
predictive capacity of the QRE model. Therefore, we propose a model which has more predictive power, 
at least in relative terms for players within a population, as long as the assumption that the rationality of 
a player could be mapped ( by a linear or non-linear non-decreasing function) to their amount of social 
interaction is justified. The model we propose defines the rationality parameter λi for each player (node) 
as a function of social interactions.

At a very basic level, the number of social ties a player has, (i.e, the ‘degree’ of a node) could be an 
indicator of the amount of social interaction a player engages in. However, the amount of interaction 
would also depend on the ‘tie strength’ attributes, such as the amount of time spent, the volume of infor-
mation exchanged etc, between each pair of players. Furthermore, the correlation between the amount 
of interaction of a player with other players, and the rationality of a player, could be linear or non-linear. 
To model such a dependency, therefore, we use a generic function f, to which the ‘weighted degree’ (on 
simply the ‘degree’, if tie strengths are considered equal) of a node is an input, as shown in Eq. (1).
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Here λi is the rationality of node i; r denotes a ‘network rationality parameter’ that would be a property 
of the network and represent the general level of rationality in the system. It should be noted that the 
average rationality of the system, λ, is proportional to this parameter, as any change in r will result in a 
corresponding proportional change in every λi. The weight wij denotes the weight of the link connecting 
node i with each neighbour j, while n is the number of neighbours that node i has. In this work, we 
model the function f as simple linear, convex or concave functions, though in future studies empirical 
data could be used to fit a more accurate function for a given decision making context. The linear, con-
vex and concave functions that we use are f x x( ) = , f x x 2( ) =  and f x x( ) =  respectively, due to 
the simplicity and the computational efficiency of those functions and also due to the fact that they 
facilitate the [0: ]∞  range of possible rationality values of the rationality parameter. Under this model, a 
node may behave completely randomly if the network rationality parameter is set to r =  0 or when the 
node is completely disconnected (ie. degree is zero). On the other hand, a node may make choices as 
predicted by the Nash equilibrium as the network rationality parameter r → ∞, or when the degree of 
the node is extremely large.

Analysis and Results. Using the topological model for bounded rationality presented by Eq. (1), we 
set out to answer the following questions: (i) Which topological features in a socio-ecological system 
facilitate the highest system rationality, given a particular heterogeneous rationality distribution among 
players? (ii) Is there a connection between the emergence of scale-free features in socio-ecological sys-
tems, and the need to optimise for better system rationality? (iii) Is there a connection between the 
emergence of multiple equilibria in systems with heterogeneous rationality, and the topological structure 
of such systems? In answering these questions, it is important to first define ‘system rationality’. Of 
course, the average of rationality parameters of all players in a system, λ, is one indicator for system 
rationality, however this definition disregards the topological effects. Therefore, we will use an independ-
ent measurement of ‘system rationality’ ρ, which is defined as the average Kullback–-Leibler divergence 
of Nash and QRE equilibria over all pairs of players, with a minus sign to account for the fact that the 
higher this divergence, the lower the system rationality. Details of the computation of ρ are given in the 
Methods. It is obvious that systems which have the same λ may have different ρ, since the later is topo-
logically dependent.

Comparing network topologies based on their average divergence from Nash equilibria. To 
answer the first question mentioned above, we chose three different network models for comparison: 
the scale-free network model, Erdös-Rènyi random network model and a regular (well-mixed) network 
model. The networks we analysed contained 500 or 1000 nodes with average degrees of 4, 6 or 8. We use 
the Prisoners Dilemma game in this analysis, since we choose to focus on games with a single equilib-
rium first. The payoffs used are given in Methods. The rationality of each node was calculated using the 
linear, convex and concave functions separately. Note that since we only need the equilibria, we did not 
actually simulate the games. Based on the Eq. (3), we derived the QRE for each pair of players (each link), 
as described in the Methods. The network rationality parameter r was set to 0.2, 0.002 and 0.5 for the 
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linear, convex and concave functions, respectively. The single Nash equilibrium for Prisoners Dilemma 
occurs when both players defect. Therefore, once the QRE for each pair of players is obtained, the aver-
age KL divergence between Quantal Response and Nash equilibria for the network was computed, as 
described in the Methods.

Table 1 depicts a typical set of results. In this particular experiment, the number of nodes is N =  1000 
and the number of links is M =  2000 (Note that in this and later experiments described, we have verified 
our results with much larger systems sizes, up to twenty thousand nodes and forty thousand links. The 
results show no qualitative difference and scale well. Some results for larger system sizes are included as 
supplementary material.). The simulations are done for two ‘game parameter’ values, β= 1.33and β= 1.67, 
as described in the methods section. The results are averaged over 100 instances, and in each instant, a 
different topology belonging to the same network class was used, while the number of nodes and links 
was kept constant. A degree-preserving re-wiring technique was used to create different ‘instances’ of the 
same topological class. All scale-free networks had a scale-free exponent of 2.0 with a 90% R2-correlation. 
According to the results given in Table 1, it is evident that the Nash-QRE divergence is minimum for the 
scale-free topology class under all three types of rationality functions. As one would expect, the convex 
rationality function gives the highest variations of average Nash-QRE divergence among different topol-
ogy classes. The divergence is highest for the well-mixed topological class (We have verified that this 
result does not qualitatively depend on the utility values of the game, and increasing game parameter β 
in fact makes the difference between topologies more significant.). Thus, it is possible to conjecture that 
one reason for the prevalence of scale-free topology 22 in real-world socio-ecological systems in which 
strategic decision making takes place is that this topology facilitates the highest system rationality for a 
given heterogeneous rationality distribution among players.

Optimising network topology for maximum system rationality. We observed that the scale-free 
topological class aids the convergence towards Nash equilibria on average, when compared to other 
topological classes. Conversely, we could observe whether evolutionary pressure on any given system that 
forces it to move towards Nash equilibria on average, while allowing the system to re-wire itself, results 
in the system becoming scale-free. Therefore, we undertook such topological optimisation using the 
Erdös-Rènyi random network class as the null model, and observed the resulting topological evolution. 
In order to perform the optimisation based on the convergence towards Nash equilibrium, we applied a 
variant of the simulated annealing technique58. Details are given in Methods. In this particular set of 
experiments, bounded rationality was measured using a convex function of degree (because the convex 
function f x x 2( ) =  facilitated rapid topological evolution compared to the other functions) with the 
network rationality parameter being set to r =  0.1. We recorded the scale-free R2-correlation of each 
intermediate network, to observe the emergence of scale-free characteristics. Moreover, we recorded the 
clustering coefficient and the average path length of the intermediate networks, since these are the 
parameters that could be utilised to identify the small-world nature of the networks22. Relatively higher 
clustering coefficients and lower average path length are indications of small-world characteristics emerg-
ing22.

Typical results are shown in Fig. 2 and Fig. 3. As depicted by Fig. 2, the scale-free correlation shows 
an upward trend when the network evolves. Meanwhile as Fig. 3 shows, the clustering coefficient clearly 
increases while the average path-length decreases over time, indicating that the ‘small-worldness’ also 
increases over time. Even though these results are for networks with size N =  1000 and M =  2000, we 
obtained similar results for networks with average degrees 4,6 and 8, and N =  500, attempting all pos-
sible permutations. From these results, it is clear that when network topology is optimised towards 

β=1.33 Scale-free Random Well-mixed λ

Linear 0.378 0.396 0.408 0.8

Convex 0.425 0.430 0.431 0.008

Concave 0.383 0.392 0.403 2.0

β=1.67 Scale-free Random Well-mixed λ

Linear 0.338 0.367 0.383 0.8

Convex 0.419 0.427 0.429 0.008

Concave 0.345 0.360 0.363 2.0

Table 1. The average Nash-QRE divergence (−ρ) of network topologies for different rationality functions. 
The rows represent the rationality functions while the columns contain the topology of the population. The 
network rationality parameter r was set to 0.2,0.002 and 0.5 for the linear, convex and concave functions, 
respectively. The average rationality parameter of nodes, λ is also shown. Note that the results were further 
averaged over 100 different instances of the same topological class. Two ‘game parameter’ values β =  1.33 
and β =  1.67 are used, as detailed in methods.
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maximum system rationality (i.e converegence towards Nash equilibria on average is favoured), scale-free 
and small-world features emerge in systems with random topology.

Interestingly, we also find that the average trend towards system rationality does not imply that the 
average pay-off for the players will also increase. In fact, for Prisoners Dilemma at least, the converse is 
true, as Fig. 2 indicates. However, we need to bear in mind that the premise behind Nash equilibrium in 
Prisoners Dilemma is that given the uncertainty about the other player’s decision, each player will make 
a selfish decision which would ensure that they are not worse-off than the other player, even though the 
expected utility of that decision is lower than both co-operating. That is indeed the ‘dilemma’. The drive 
towards Nash equilibria in this case does not imply an increase in the ‘public good’ of the system59. We 
will discuss this point further in section.

Emergence of scale-freeness in games with multiple equilibria. So far, we primarily focused 
on games with single pure Nash equilibria. However, most normal-form games consist of multiple pure 
and mixed Nash equilibria. When we assume that the bounded rationality of a population of play-
ers is heterogeneous, the existence of multiple equilibria adds an extra layer of complexity. In order to 

Figure 2. (A) The evolution of R2-scale-free correlation of a network over time, when it is optimised to 
minimise the average KL divergence between Nash-QRE equilibria, using simulated annealing. (B) The 
evolution of −ρ, average KL divergence between Nash-QRE equilibria, of the network over time. (C) The 
evolution of the average pay-off over time. Network size is N = 1000, M = 2000. The Prisoners Dilemma 
game was used in simulations.
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observe how the rationality parameter would affect the quantal response equilibria in a game where there 
exists multiple equilibria, we used a set of coordination games that have two pure Nash equilibria. These 
included (i) the stag-hunt game, where the two pure Nash equilibria occur when either both players 
coordinate or both players defect (ii) the meeting game, where the Nash equilibria occurs when both 
choose one location or when both players choose the other location to meet (iii) The matching-pennies 
game60, where the Nash equilibria occurs when the symbols on the penny each player comes up with 
(head/tail) do not match.

We begin with the stag-hunt game, with typical payoffs as described in Methods, and follow an opti-
misation process using simulated annealing, again as described in Methods. Note that since there are 
multiple equilibria, the lowest divergence for each pair of players was used to compute the average KL 
divergence. Again, we recorded the scale-free R2-correlation of each intermediate network, to observe 
the emergence of scale-free characteristics.

As depicted by Fig. 4[A], the scale-free correlation shows an upward trend when the network evolves. 
The corresponding average divergence − ρ is shown in Fig. 4[B], which, as expected, is minimised dur-
ing the process. Interestingly, the average-payoff of players, shown in Fig.  4[C], increases as well. This 
is in contrast to the Prisoners Dilemma game, where the increase in ‘selfish-rationality’ of the system, 
represented by ρ, does not increase the average pay-off. As noted before, depending on the nature of the 
game, the average ‘selfish rationality’ corresponds to the ‘public good’ in some games, and does not in 
others. Regardless, the main observation that the topological optimisation towards high system ration-
ality results in the emergence of scale-free characteristics is true also for games with multiple equilibria. 
We further confirmed this by conducting experiments with other two-player games, such as the meeting 
game (also called the battle of the sexes) and matching-pennies. We avoid showing the results here, 
which are qualitatively similar.

We also recorded the average clustering coefficient and the average path length during this optimi-
sation process, for all the above mentioned games. We observed that, similar to the results obtained for 
Prisoners Dilemma, the average path length decreases and, the average clustering coefficient increases, 
when the network is optimised towards higher system rationality. To avoid repetition of similar results 
we avoid showing these results here. In summary, all these results confirm that when a network is topo-
logically optimised towards increased system rationality, scale-free and small-world features emerge for 
a range of single and multiple equilibria games. Conversely, we also verified (not shown) that among the 
three topological classes we considered (scale-free, random and regular), it is the scale-free class which 
showed the highest system rationality ρ for all the above-mentioned multiple-equilibria games.

Network topology and fraction of links with multiple equilibria. Now we turn our attention to 
the actual prevalence of multiple equilibria in games in which multiple equilibria are possible, and how 
the interplay between heterogeneous rationality and network topology influences this prevalence. In 
particular, we compute the fraction of links with multiple equilibria in the landscape defined by varying 
scale-freeness and varying average rationality, indicated by the network rationality parameter r. It has 
been previously claimed that in two-player games, the players go through transitions of knowledge of 
opponents when the rationality parameter increases61. To begin with, we consider a single pair of players 
playing stag-hunt and verify that the rationality of both players would influence the number of multiple 
equilibria in the system. We solve the quantal response equilibria equations, for a range of λi values for 
both players, as described in Methods. Figure  5 depicts the results observed. For a given player, when 
the opponent’s rationality is relatively high ( 1 02λ = .  or 2 02λ = . ), multiple equilibria can exist, and the 

Figure 3. The evolution of the clustering coefficient and average path length of a network over time, when 
it is optimised to minimise the average KL divergence between Nash-QRE equilibria, using simulated 
annealing. The values are normalised by those of a random network of the same size. The Prisoners 
Dilemma game was used in simulations. Network size is N =  1000, M =  2000.
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probability of coordination goes through a transition, as predicted by Harre et. al.61. If the rationality of 
the opponent is relatively low ( 0 12λ = . ), such transition does not occur. Therefore, we can verify that 
for a single pair of players, multiple equilibria does not always occur and that the rationality levels of 
both players influence whether there could be multiple equilibria. Hence, it is clear that in a socio-ecological 
system (represented by a complex network) with a heterogeneous rationality distribution, on which a 
multiple-equilibria game is played, only a fraction of links would actually support multiple equilibria.

Now let us consider a socio-ecological system of players with a heterogeneous rationality distribution 
who engage in such a game with multiple equilibria, and analyse how the system topology (particularly 
the level of scale-freeness) would influence the number of multiple equilibria. Therefore we generated a 
range of scale-free networks with varying scale-freeness and identical size N =  1000 and M =  2000. To 
do this, we first generated perfect scale-free networks using the well-known Barabási-Albert model22, and 
introduced a measure of ‘randomness’ in each network by randomly rewiring m < M number of links. 
We varied m, and measured the ‘scale-freeness’ of each resulting network by fitting a power-law degree 
distribution and measuring the fitness, as mentioned before. For each of these networks, we used Eq. (1) 
to generate a heterogeneous rationality distribution, and then for each pair of nodes, computed the QRE 

Figure 4. (A) The evolution of the R2-correlation to power-law degree distribution (scale-freeness) of the 
network over time, when it is optimised using Nash-QRE KL divergence and simulated annealing. (B) The 
evolution of the average Nash-QRE KL divergence of the network (−ρ) over time. (C) The evolution of the 
average pay-off over time. Network size is N =  1000, M =  2000. The stag-hunt game was used in simulations.
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equilibria as shown in Methods. Then we counted the links which would have multiple (in this case, two) 
equilibria, and finally thus computed the proportion of links in the entire network which had multiple 
equilibria. For this experiment, we used a convex rationality function. We repeated the whole process 
for different network rationality parameter values, beginning from r =  0.01 (low average rationality) to 
r =  0.3 (high average rationality).

We show our results for two particular values of network rationality, r =  0.01 and r =  0.3, in Fig. 6[a] 
and Fig. 6[b], for the stag-hunt game. In these figures, we plot the fraction of links where multiple equi-
libria is possible against the ‘scale-freeness’ of the network, represented by the scale-free R2-correlation. 
Eighty different networks of increasing scale-freeness have been shown in each plot. We may see that for 
relatively lower network rationality (r =  0.01), the ‘scale-freeness’ of networks have clear positive corre-
lation with the fraction of links with multiple quantal response equilibria. That is, when the scale-free 
nature of the network increases, it becomes easier for links to attain multiple equilibria. By contrast, 
when the network rationality is relatively high (r =  0.3), the fraction of links with multiple equilibria has 
a negative correlation with the ‘scale-freeness’ of the network. That is, the emergence of scale-freeness 
encourages single equilibria among the pairs of players in the population. In fact, to generalise this result, 
we could compute the correlation between the fraction of links with multiple equilibria and the 
‘scale-freeness’ (R2-correlation) of the network for several network rationality parameter (r) values, and 
expect to see a value of r between r =  0.01 and r =  0.3 where this correlation changes sign. Figure.7[A] 
depicts the results of such an experiment, where 16 different values of r from r =  0.01 to r =  0.3 are used. 
From this figure, we can see that indeed such a change of sign occurs when r 0 1≈ . . Moreover, this 
change of sign is not gradual but appears to undergo a rapid transition. Note that the same set of 80 
scale-free networks were used to generate each data point in this plot, with differing values of r. Thus, 
the correlation of ‘scale-freeness’ with the fraction of links with multiple quantal equilibria goes through 
a transition when the overall network rationality, represented by the network rationality parameter r, is 
increased. Let us note, however, that by ‘transition’ we only denote a non-linear rapid increase and do 
not necessarily claim this to be a phase transition. The concept of phase transition has a very specific 
meaning in statistical mechanics which is used rigorously in evolutionary game theory62, and a handful 
of studies have observed such transitions within the context of spatial evolutionary games63, 64. On the 
other hand, as Fig. 7[B] shows, for the same level of ‘scale-freeness’ the fraction of links with multiple 
equilibria increases with rationality parameter r. This is also confirmed by Fig. 6 which shows that the 
range of fraction values is much higher when r =  0.3 compared to r =  0.01. We summarise all these 
results in a 3D plot (Fig. 8), which shows the fraction of links with multiple equilibria in a stag hunting 
game for a range of scale-free networks with differing ‘scale-freeness’ and rationality parameter r. The 
dominant trend shows the fraction increasing then stabilising against rationality; however, we can also 
note the positive correlation with scale-freeness for lower r values and the negative correlation with 
scale-freeness for higher r values. These correlations are relatively less visible however, and it is for this 
reason we showed them separately in Fig. 6 which clearly indentifies the correlation tendencies.

These results are vital in understanding the relationship between network topology and cognitive 
decision making in systems with bounded rationality. They suggest that when the socio-ecological system 
as a whole has less average rationality (i.e more likely to make random decisions), the scale-free structure 
of the system helps players to have a higher number of rational choices. Yet, if the system becomes more 
rational on average, the same scale-freeness becomes a hindrance to players having a higher number of 
rational choices. If a society is increasingly becoming ‘selfishly wise’ (i.e, rational in the game theoretic 
sense), there will come a time where a slight change in the average rationality will have a huge bearing 

Figure 5. The variation of player 1’s coordination probability when the rationality parameter of player 2 is 
fixed (at either 0.1,1.0 or 2.0) and the rationality parameter of player 1 is varied. When the rationality of 
the opponent is small, there is only one equilibrium and otherwise, there are multiple equilibria. The stag-
hunt game was used. Note that the λ values picked (0.1,1.0,2.0) have no particular significance other than 
illustrating the contrast of multiple equilibria occurring/not occurring.
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in the number of rational choices the players may have. In this set of experiments, when r ≈ 0.1, slight 
changes in rationality will hugely impact the fraction of multiple equilibria. Finally, the observations 
that we made suggest that even though a particular strategic decision making scenario may potentially 
encompass multiple equilibria, the actual prevalence of multiple equilibria in a population is topologi-
cally dependent and connected to the average rationality of that population.

To verify whether the results observed were specific to the stag-hunt game or could be generalised to 
other games with multiple equilibria, we undertook similar experiments with the meeting game (battle 
of the sexes) and the ‘matching-pennies’ game described earlier. we used the same set of scale-free and 
partially scale-free networks which we used in the experiments with stag-hunt game. The typical results 
are shown in Fig.  6[Parts C,D,E, and F]. These figures indicate that the observations made earlier are 
generic and not specific to the stag-hunt game alone, and that in any game with multiple equilibria, the 
scale-free features facilitate the prevalence of multiple equilibria when average network rationality is 
lower, and hinder the prevalence of multiple equilibria when average network rationality is higher.

Figure 6. The variation of the fraction of links in games with multiple equilibria of networks with varying 
scale-freeness, under smaller (0.01) and larger (0.30 or 0.10) network rationality parameter values. (a) 
Stag hunt, r =  0.01 (b) Stag hunt, r =  0.30 (c) Battle of the sexes, r =  0.01 (d) Battle of the sexes, r-0.10 (e) 
Matching pennies, r-0.01 (f) Matching pennies, r =  0.30. The results for the stag-hunt game, battle of the 
sexes and matching pennies games are shown.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:10448 | DOi: 10.1038/srep10448

Discussion
The presented analysis resulted in significant findings. First of all, we compared a number of network 
classes, including scale-free, Erdös-Rènyi random, and lattice networks (representing well mixed pop-
ulations), and showed that among these classes, it is the scale-free networks which facilitate the best 
convergence towards Nash equilibrium (highest system rationality), on average. We argued that this 
might be one reason why many real-world social systems are scale-free. Seeking further evidence for 
this conjecture, we simulated the topological evolution of social systems using the simulated annealing 
technique, beginning from a random network topology. We showed that when evolutionary pressure is 
applied on social systems to converge, on average, towards Nash equilibria, scale-free and small world 
features emerge. This is a very significant finding, since it provides an alternative explanation for the 
prevalence of scale-free networks in many real world systems and societies.

Following this, we turned our focus on games with multiple equilibria. Again, we demonstrated 
that when evolutionary pressure is applied on systems to converge, on average, towards Nash-equilibria 

Figure 7. The variation of the fraction of links with multiple equilibria of networks with varying scale-
freeness, under smaller (0.01) and larger (0.30 or 0.10) network rationality parameter values. The results for 
the stag-hunt game, battle of the sexes and matching pennies games are shown.

Figure 8. A three-dimentional plot showing the fraction of links with multiple equilibria against ‘scale-
freeness’ (R2-correlation) and network rationality parameter r, for the stag-hunt game. Please note that the 
apparent stratification is simply a result of the limited number of r values used. To increase clarity of the 
figure, we only show a section of the scale-freeness range we have used.
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(regardless of which equilibrium state a particular pair of players converge towards), scale-free and small 
world features emerge. We also considered the likelihood of the existence of multiple equilibria among 
the players of a system with a bounded heterogeneous rationality distribution, and found that a delicate 
balance exists: when the average rationality (this must be distinguished from what we call the ‘system 
rationality’, which is computed from the KL divergence between QRE and Nash equilibria) is low, the 
scale-free nature of the system encourages the emergence of multiple equilibria, while when the average 
rationality is high, the scale-free character in fact hinders the existence of multiple equilibria. Therefore, 
the number of rational choices available to players, from which they cannot deviate without loss, depends 
on the social network topology as well as the level of rationality prevalent in the system.

It is important to understand that ‘rationality’ of players and that of a system have been defined in a 
very specific way in our work. It could be argued that ‘rational’ players are those who try to maximise 
their average individual pay-offs. If players attempted to do this within a heterogeneous system, they may 
well make choices that are contrary to Nash equilibrium. Therefore, a system which converges towards 
Nash equilibrium will not necessarily have increasing average pay-offs. Indeed, in the case of Prisoners 
Dilemma game, the convergence towards Nash equilibrium results in decreasing average pay-offs. Thus, 
it could be argued that such a system is, on average, not becoming more ‘rational’. However, in an envi-
ronment where there is a lot of ‘mistrust’ and/or competition, the priority of the players will be to make 
sure that their average pay-offs are better than other players with whom they compete - that is, they 
would want to ensure that they are not ‘cheated’ by others. The self-interest, and the relative well-being 
in the system, therefore gains prominence over the ‘absolute well being’, represented by the cumulative 
pay-off. In such systems, the convergence towards Nash equilibria, on average, means the players are 
getting better at preserving their ‘relative’ self-interest, and thus becoming more ‘raional’ in a selfish 
sense. The findings we present here are related to this sense of rationality, and not the ‘public good’ of 
the system59. However, in games other than Prisoners Dilemma (for example, in the stag-hunt game), 
we find that the average pay-off indeed could increase as the system converges towards the (multiple) 
Nash equilibria, depending on the actual values of pay-offs for each scenario. Thus, the ‘public good’ of 
the system matches with the selfish rationality of players. Therefore, it is important to realise that the 
results we have obtained are applicable in terms of average selfish rationality of players, which sometimes 
matches with the ‘public good’ of the system and sometimes does not.

In summary, it is a vital research endeavour of great scientific and practical significance to understand 
how the cognitive decision making of players and the resultant dynamics in socio-ecological systems 
are shaped by both the topology of such systems and the bounded rationality of actors in such systems.

Methods
Description of two-player normal form games. A number of classical games are typically used  
to study cognitive behaviour of players in complex socio-ecological systems5, 5, 65. Since these games in 
their simplest forms are well known and understood, let us just mention the exact pay-off values we used 
in our experiments. We only use normal form games. The meanings of the symbols are as per Fig. 1.
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game parameter β is fixed at 1.67 unless otherwise stated. There are two pure strategy Nash equilibria.
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The matching-pennies game: As an example of an asymmetric game, we use a version of what is gener-

ically described as a ‘matching-pennies’ game60. Here u u u u u u u u0 1 0 1 0 011
1

11
2

12
1

12
2

21
1

21
2

22
1

22
2α α β β= , = . , = , = , = , = , = . , = 

u u u u u u u u0 1 0 1 0 011
1

11
2

12
1

12
2

21
1

21
2

22
1

22
2α α β β= , = . , = , = , = , = , = . , = . The game parameters α,β are fixed at 2.5, 2.0 respectively unless otherwise 

stated, and always α β≥ . There are two pure strategy Nash equilibria (though in the classical symmetric 
matching pennies game, there are no pure strategy equilibria).

Note that in all cases the game parameters must be greater than one ( 1 0 1 0α β> . , > . ) for the 
pay-offs to be in intended order.

Network Models. Scale-free Networks: Scale-free networks retain similar topological characteristics 
irrespective of the scale. Many social networks are scale-free and heterogeneous, because there are always 
people who are more ‘famous’ and well-connected, while there are many who are relatively isolated. 
Scale-free networks display power-law degree distributions, described by p Ak U k kk max= ( / )γ−  where 
U is a step function specifying a cut off at k kmax= . There are a number of growth models which gen-
erate scale-free networks, and prominent among them is the Barabási-Albert model22 utilising preferen-
tial attachment, which we use in this work. Due to the prevalence of scale-free features in many online 
and offline social networks, scale-free networks are good models to study games on social systems, and 
often used for this purpose in recent literature39.

To quantitatively measure the ‘scale-freeness’ of a particular network, we use the R2-correlation of the 
degree distribution to a power law. To compute this, we plot the degree distribution of the given network (in 
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log-log scale) and fit a straight-line to this distribution (in the form of p k Alog log logk γ( ) = − ( ) + ( ) ) 
and then compute the R2-correlation (also called the correlation of determination) of the fit. The R2-correlation 
is computed as:

R
y y

y f
1

2

i i

i i i

2
2

2= −
Σ ( − )

Σ ( − ) ( )

where yi are y-values of the data points, y is the mean y-value of the data points, and fi are the values 
returned by the fitted function for data points i67. This quantity is briefly called ‘scale-free correlation’ 
elsewhere in the text, to mean that it is the R2-correlation measuring the scale-freeness of a given net-
work.

Small-world Networks: Small-world network model suggests that despite the large network size, 
the average distance between two arbitrary nodes remains relatively low22. Small-world networks have 
low characteristic path lengths (compared to network diameter) and high clustering(68–70). It has been 
shown that a range of real-world networks, including social networks, biological networks such as Gene 
Regulatory Networks, metabolic networks, Protein-Protein Interaction networks, and signalling net-
works, as well as the Internet show the small-world property22, 71. Of course, many small-world networks 
can be scale-free to a certain degree, and vice-versa, but the scale-free and small-world characteristics 
need not (and often, do not) overlap49.

Other network models: We also make use the Erdös-Rènyi random topology 22 as a null model, and 
sparse lattice networks as an approximation for well-mixed populations39, 49, 72.

Computing the Quantal Response equilibrium for a pair of players. We use the logit function 
given in Eq. (3) for computing the Quantal Response equilibrium, as often done in literature13, 73.
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Here, P j
i is the probability of player i selecting the strategy j. E s Pi
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i( ),  is the expected utility to player i 

in choosing strategy j, given that other players play according to the probability distribution P (which is 
also denoted P i−  in some literature to highlight the fact that entries ‘belonging’ to player i should be 
discounted when the other players are considered collectively). The total number of strategies that player 
i can choose from is given by K. The rationality parameter λi can vary from zero to infinity. It can be 
shown that as iλ → ∞, the equilibrium probabilities tend towards those given by the Nash equilibrium, 
and as 0iλ → , the player would operate in a totally random (irrational) fashion13.

For a two-player Prisoners Dilemma game, we can derive Eq. (4) and Eq. (5) from Eq. (3) to represent 
the probabilities that the two players would co-operate.
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Here, pc
1 and pc

2 are the probabilities player 1 and 2 would co-operate, respectively, and λ1, λ2 denote the 
rationality parameters of player 1 and 2, which are derived using their respective degrees, the rationality 
function and the network rationality parameter used, as prescribed in Eq. (1), with identical link weights 
set to unity. The two equations have two unknowns pc

1 and pc
2. Thus, we can solve these two equations 

and calculate the probability of cooperation ( and defection ) for a particular pair of players and ration-
ality parameters. The resulting probability distributions provide the QRE for the particular pair of play-
ers.

We already know that the only Nash equilibrium for this game would occur when both players defect 
(that is, p 0c

1 = , p 1d
1 =  and p 0c

2 = , p 1d
2 = ).

We followed a similar procedure to calculate the QRE for other games used in this study, using the 
respective set of utilities for each game as mentioned earlier in Methods.

Computing system rationality as an average Kullback–Leibler divergence between Nash and 
Quantal Response equilibria. The Kullback–Leibler (KL) divergence74, also known as the relative 
entropy, is commonly used to measure the distance or the divergence between two probability distri-
butions. We use the ‘average’ KL divergence between the Quantal Response and Nash equilibria as an 
indicator of the system rationality, based on the assumption that the more ‘selfishly rational’ the players 
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are on average, the closer they will be to Nash, and the less this divergence will be. Given two probability 
distributions P and Q, the KL divergence between them is calculated by,

∑( || ) =
( )

KL P Q P ln
P
Q 6i

i
i

i

where Pi and Qi are elements of the distributions in concern, respectively. However, the Kullback–Leibler 
(KL) divergence is an asymmetric measure, whereby the distance from P to Q is not the same as that 
from Q to P. Where a symmetric measure is more appropriate, an ‘average’ of the divergence is often used 
in the literature, which is sometimes known as Jensen-Shannon divergence75. This ‘average’ is computed 
as
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where M is the distribution computed by averaging the two probability distributions P and Q. It is this 
metric that we use in this work. This is then further averaged across all links, as shown in Eq. (8). Note 
well therefore that the ‘averaging’ is done at two levels. The ‘system’ rationality ρ is given by Eq. (8), where 
the negative sign indicates that the lower this divergence is, the higher the average system rationality. 
Note that in Eq. (8), NK represents the probability distribution of the Nash equilibrium at link k, and Qk 
similarly represents the probability distribution of the quantal response equilibrium at link k, and there 
are M links in the socio-ecological network in total.

M
Div N Q1
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k k
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This average KL divergence should not be confused with the average rationality parameter, λ, of the 
system. The λ indicates the average of the heterogeneous rationality distribution, but two systems with 
same λ may show different average KL divergence from Nash equilibria, because of the topological place-
ment of each player in those systems.

Simulated annealing optimization. The process began with an Erdös-Rènyi random network. In 
each iteration, 0.33% (i.e M/300) randomly selected links were rewired so that the average KL divergence 
from Nash equilibrium decreases. The iterations were continued until M rewirings were made in total 
(i.e three hundred iterations). For each intermediate network, the scale-free R2-correlation, the average 
clustering coefficient and the average path length were recorded. The definition and computation of these 
metrics is well-understood and we avoid repeating them here22. If there are multiple equilibria, the lowest 
divergence for each pair of players was used.
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