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Abstract: Clinical cases of allergic reaction that are due to excipients containing polyethylene glycol
(PEG), a hydrophilic molecule commonly used in drug/vaccine formulations, has attracted much
attention in recent years. In order to develop PEG-free adjuvants, we investigated the feasibility of
natural ingredients in the human body such as hyaluronic acid in the form of hyaluronic acid-glycine
cholesterol (HACH) conjugate as an excipient for vaccine formulation. Interestingly, HACH grafted
with ~13 wt.% cholesterol has good water dispersity and can serve as an emulsifier to stabilize the
squalene/water interfaces, yielding a milky white and isotropic emulsion (SQ@HACH) after being
passed through a high-shear microfluidizer. Our results show that SQ@HACH particles possessed a
unimodal average hydrodynamic diameter of approximately 190 nm measured by dynamic light
scattering and exhibited good stability upon storage at 4 ◦C and 37 ◦C for over 20 weeks. The
results of immunogenicity using a mouse model with ovalbumin (OVA) as the antigen revealed that
SQ@HACH significantly enhanced antigen-specific immune responses, including the polarization
of IgG antibodies, the cytokine secretions of T cells, and enhancement of cytotoxic T lymphocyte
(CTL) activation. Moreover, SQ@HACH revealed lower local inflammation and rapidly absorbing
properties compared with AlPO4 after intramuscular injection in vivo, indicating the potential
functions of the HA-derived conjugate as an excipient in vaccine formulations for enhancement of
T cell-mediated immunity.

Keywords: hyaluronic acid; cholesterol; squalene; nanoemulsion; vaccine adjuvants; PEG-free
formulation; allergy

1. Introduction

Vaccination is the most effective strategy to prevent or limit the severity of infection-
associated syndromes by training the immune system to recognize and destroy the invading
pathogens [1]. For safety issues, new-generation vaccine candidates usually employ a
highly purified sub-portion of the pathogen as an antigen; however, these components
often lack immunogenicity, thus necessitating adjuvants to facilitate the induction of
adaptive immunity [2]. Currently, the most common salts for large-scale vaccination are
aluminum-based mineral salts that mainly function as a depot to drive humoral immunity;
however, they are usually limited by the weak stimulation of cell-mediated immunity [3,4].
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Thus, it is important to make an inventory of suitable compounds for the development of
an efficient adjuvant [5,6] with an acceptable profile of reactogenicity [7].

Several developmental adjuvants have been approved or authorized in prophylactic
human vaccines for enhanced cell-mediated immunity, examples include squalene emul-
sions, saponins, Toll-like receptor (TLR) agonists, liposomes, and lipid nanoparticles [3].
While allergic reactions to vaccines are extremely rare clinically [8], excipients contain-
ing polyethylene glycol (PEG) are speculatively implicated in some severe cases such as
anaphylaxis [9–11]. Currently, nanomaterial-based vaccines contain PEG-derivatives as
a vaccine adjuvant (MF59 and AS03) and an excipient in COVID-19 vaccines, including
licensed BNT162b2 and those under EUA (ChAdOx1 nCoV-19 and mRNA-1273) [12,13].
The presumption of PEG-induced allergic reaction was supported by the finding of com-
plement activation-related pseudoallergy (CARPA) triggered by pre-existing anti-PEG IgG
or IgE-mediated hypersensitivity reactions [14–16]. The Centers for Disease Control and
Prevention has recommended the administration of the Pfizer/BioNTech and Moderna
COVID-19 vaccines, and exclusion of any person who has a history of allergic reaction as-
sociated with any of the vaccine components, including PEG and PEG derivatives, such as
excipient polysorbates as the stabilizer or emulsion adjuvant [14]. Therefore, it is necessary
to develop a PEG-free adjuvant considering the potential risks of PEG allergy.

Hyaluronic acid (HA) is a water-soluble glycosaminoglycan consisting of repeating
disaccharide units of N-acetyl glucosamine and glucuronic acid, it is naturally present in
the human body [17]. HA has been widely used in biomedical applications, such as in joint
cavity injections for the treatment of arthritis and in dermal fillers for aesthetic medicine
because of its controlled biodegradability, biocompatibility in vivo, and ease of modifica-
tion [17–19]. Although some clinical case studies have described HA as a dermal filler that
may cause a foreign body reaction in the injection site with local inflammation and late
granuloma formation [20,21], HA is still classified as a biomaterial of low immunogenicity
and allergenicity [22,23]. The administration of high purity or non-animal source HA does
not elicit cellular or humoral immunity, including anti-HA IgE and IgG production based
on clinical or laboratory evidences [23,24]. HA has shown poor interaction with blood
components, but not shown any sensory-motor or behavioral changes after epidural admin-
istration in rabbits; furthermore, HA does not produce genetic damage in Ames Salmonella
assay [25]. These features reveal that HA possesses low cytotoxicity, neurotoxicity, and
mutagenicity. Some studies showed that HA might inhibit the proliferation of several cells
based on the molecular weight and dosage of HA [26–29]. Generally, high concentration of
high molecular weight HA may inhibit the production of pro-inflammatory mediators [30]
and remove inflammatory cells by inhibition of proliferation to reverse the effects of HA
fragments [27]. Interestingly, low molecular weight HA or HA fragments have an opposite
impact, inducing cell proliferation [26,31], promoting the production of inflammatory
mediators [30], and successfully enhancing the activation of dendritic cells and T cells [32].
They can thus act as a potential biomaterial for the development of adjuvants based on
their safety and immune-related regulatory functions [33,34]. Therefore, it is important
to verify the relationship between molecular weight and immune activation of HA-based
materials.

In this study, we designed a squalene-based nanoemulsion using a PEG-free emulsifier
composed of natural HA, glycine, and cholesterol and then investigated the potential of
HA-glycine-cholesterol (HACH) conjugates for the development of a vaccine adjuvant.
The biocompatibility and possible immune regulation, including T cell and B cell responses
to squalene-based HACH nanoemulsion mixed with ovalbumin (OVA) antigen protein
after single-dose intramuscular injection in mice were evaluated in vivo and ex vivo.

2. Materials and Methods
2.1. Materials

The 100 kDa hyaluronic acid (HA) was provided by Holy Stone Healthcare (Taipei,
Taiwan). Cholesterol was purchased from Alfa Aesar (Tewksbury, MA, USA). n-(tert-
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Butoxycarbonyl) glycine (Boc-Gly-OH), ethyl cyanohydroxyiminoacetate (Oxyma), diiso-
propylcarbodiimide (DIC) and phosphotungstic acid (PTA) were purchased from Sigma-
Aldrich (Burlington, MI, USA). Dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine
(DMAP) were purchased from ACROS (Geel, Belgium). Dichloromethane (DCM) was
purchased from Seedchem (Melbourne, Australia). Dimethyl sulfoxide (DMSO) was pur-
chased from UniRegion Bio Tech (New Taipei, Taiwan). Trifluoroacetic acid (TFA) was
purchased from Lancaster (Lancaster, Lancashire, UK).

2.2. Synthesis and Characterization of Hyaluronic Acid-Gly-Cholesterol (HACH) Conjugates
2.2.1. Synthesis of Boc-Gly-Cholesterol

An amount of 1000 mg (2.59 mmol) of cholesterol and 480 mg (2.74 mmol) of Boc-Gly-
OH were dissolved in 125 mL of DCM, and then 1070 mg (5.18 mmol) of DCC and 372 mg
(3.04 mmol) of DMAP were added into the mixture solution and reacted for 12 h under a N2
atmosphere at room temperature. The reaction was traced by thin layer chromatography
(TLC) to confirm that the coupling reaction had completed. After removing the solvent by
rotary evaporation, the residues were purified by silica gel chromatography with a mobile
phase mixture of hexane/acetone at 3/1. The structure of the product was identified by
1H-NMR spectroscopy (Agilent Technologies 400 MHz NMR, Santa Clara, CA, USA) and
mass spectroscopy (TSQ Altis™ Triple Quadrupole Mass Spectrometer, Thermo Fisher
Scientific, Waltham, MA, USA). 1H-NMR (400 MHz, CDCl3) δ 5.37 (d, J = 4.4 Hz, 1H), 4.99
(s, 1H), 4.68 (m, 1H), 3.87 (d, J = 5.3 Hz, 2H), 2.33 (d, J = 7.8 Hz, 2H), 2.01 (m, 2H), 1.95
(t, J = 4.5 Hz, 1H), 1.90−1.77 (m, 3H), 1.63−1.41 (m, 9H),1.45 (s, 9H), 1.40−1.23 (m, 5H),
1.20−1.03 (m, 8H), 1.01 (s, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.86 (dd, J = 6.6, 1.6 Hz, 6H), 0.67
(s, 3H); ESI-MS: C34H58NO4

+ [M + H]+ 543.9 m/z.

2.2.2. Deprotection of Boc-Gly-Cholesterol

An amount of 500 mg (0.92 mmol) of Boc-Gly-cholesterol was dissolved in 2 mL of
DCM in an ice bath, and then 2 mL of TFA was added into the solution and stirred for 3 h
under a N2 atmosphere at room temperature. The reaction was traced by TLC to check the
completion of de-protection of Boc group. After de-protection, the mixture was neutralized
with saturated NaHCO3 aqueous solution and the precipitate was filtered out and dried
in vacuum to obtain the NH2-Gly-cholesterol white powder. The structure of NH2-Gly-
cholesterol was identified by 1H-NMR spectroscopy (Agilent Technologies 400 MHz NMR)
and mass spectroscopy (TSQ Altis™ Triple Quadrupole Mass Spectrometer). 1H-NMR
(400 MHz, CDCl3) δ 5.37 (broad s, 1H), 4.68 (m,1H), 3.79 (broad s, 2H), 2.33 (m, 2H), 2.01
(m, 2H), 1.95 (t, J = 4.5Hz, 1H), 1.90–1.77 (m, 3H), 1.63–1.41 (m, 7H), 1.40–1.23 (m, 6H),
1.20–1.03 (m, 7H), 1.01 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.5 Hz, 6H), 0.67 (s, 3H);
ESI-MS: C29H50NO2

+ [M + H]+ 444.2 m/z.

2.2.3. Conjugation of HA and NH2-Gly-Cholesterol

An amount of 500 mg (1.25 mmol, 1.0 eq.) sample of HA (100 kDa) was first dis-
solved in a mixture of 70 mL of water and 90 mL of DMSO. A mixture containing 250 mg
(1.11 mmol) of Oxyma and 113 mg (0.25 mmol, 0.2 eq.) of NH2-Gly-Cholesterol was dis-
solved in 10 mL of DMSO and then the resulting solution was added into the HA solution.
The mixed solution was slowly added by 405 µL (2.58 mmol) of DIC and stirred for 24 h.
The obtained solution was transferred into a 3500-MWCO dialysis bag and purified by se-
quential dialysis against DMSO/water (50/50, v/v), 0.3 M NaCl aqueous solution, and pure
water. Finally, water was removed from the dialyzed product solution by freeze-drying to
obtain HACH20. The different DS% of HACH was synthesized by adding corresponding
equivalents of NH2-Gly-Cholesterol; HACH10 and HACH30 means 0.1 or 0.3 equivalent of
NH2-Gly-Cholesterol for the HA conjugation, respectively. The conjugation ratio of HACH
was determined by elemental analysis (Elementar vario EL cube, Langenselbold, Hesse,
Germany).
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The DS% of HACH was analyzed by an elemental analyzer (EA) and calculated using
the following Formula (1):

DS% =
Ry − R0

R100 − R0
× 100% (1)

where Ry is the C/N ratio of HACH, and R0 and R100 represent the C/N ratios of unmodi-
fied HA and theoretical completely modified HACH (100%), respectively.

2.3. Preparation and Characterization of HACH-Stabilized Squalene Emulsion (SQ@HACH)

An amount of 100 mg of HACH20 was dissolved in 9.5 mL of sodium citrate solution
(pH = 6.5, 10 mM), and then 500 µL of squalene was added into the HACH solution.
The resulting solution was pre-mixed in a test tube rotator at 500 rpm for 1 h and then
homogenized through a high-pressure microfluidizer operated at 20,000 psi (Nanolyzer N2,
Gogene Corporation, Hsinchu County, Taiwan). To evaluate the particle size and stability of
SQ@HACH, aliquots of the SQ@HACH emulsion were loaded in 1.5-mL Eppendorf tubes
and stored separately at 4 ◦C and 37 ◦C. At predetermined time points, the appearance
and particle sizes of the emulsion were recorded. The particle size and polydispersity
index (PDI) of HACH20 and SQ@HACH in water solutions were measured by dynamic
light scattering (DLS, Malvern Zetasizer Nano ZS90, Malvern, UK). The HACH20 and
SQ@HACH were stained by PTA negative staining and their morphology was observed
by transmission electron microscopy (TEM, JEOL JEM-1400 electron microscopy, Tokyo,
Japan).

2.4. Animals and Ethics Statement

Female C57BL/6 mice, 6–12 weeks old, were obtained from the National Laboratory
Animal Center (Taipei, Taiwan). All animals were housed at the Animal Center of National
Health Research Institutes (NHRI) and maintained in accordance with the institutional
animal care protocol. All of the animal studies were approved by the animal committee of
the NHRI (NHRI-IACUC-107149).

2.5. Immunization In Vivo and Tissue Sample Preparation
2.5.1. Immunization Schedule

C57BL/6 mice (three mice per group) were immunized by intramuscular injection
at the quadriceps (50 µL each leg) with a total of 50 µg of OVA in sodium citrate solution
(pH = 6.5, 10 mM) in the absence or presence of SQ@HACH (squalene content: 5 µL). An
amount of 50 µg OVA with the aluminum mineral salt adjuvant (AlPO4, aluminum content:
30 µg, BRENNTAG, Vejle, Denmark) was used as control adjuvant. These samples were
gently homogenized by rotation prior to injection.

2.5.2. Preparation of Muscular Tissues at the Injection Sites and Splenocyte Samples

Fourteen days post-immunization, both the quadriceps and spleen were harvested.
The quadriceps tissues were stored in PBS buffer, washed with saline, fixed in formalin,
embedded in paraffin and cut into thick sections on slides (4 µm). The slides were stained
with hematoxylin and eosin (H&E).

The spleens were temporarily pooled in a sterile lymphocyte culture medium to avoid
cell death. The lymphocyte culture medium (LCM) contained 900 mL of RPMI 1640, 100 mL
of FBS, 25 mL of HEPES (25 mM), and 50 µL of β-mercaptoethanol (150 µM). To obtain
splenocyte samples, the spleen was gently pressed with the plunger seal of a 5-mL syringe
on a 70-µm cell strainer into a 50-mL tube and washed through a cell strainer with RPMI
1640 containing 10% (v/v) FBS. Then, the washing buffer was removed by centrifugation at
1200 rpm for 5 min at 4 ◦C. The cell pellet was resuspended in 5 mL red blood cell lysis
buffer (dilution from RBC lysis buffer (10×), Biolegend, Lot: B166991) and incubated in
an ice bath. Then, 30 mL of cold PBS was added for lysis quenching, and the supernatant
was removed by centrifugation at 1200 rpm for 5 min at 4 ◦C. Finally, the cell pellets were
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gently resuspended in LCM. The cell solution was counted and diluted to the desired cell
concentrations.

2.5.3. Preparation of the Sera Samples

C57BL/6 mice (six mice per group) were immunized on the same schedule as de-
scribed in Section 2.5.1. Serum samples from immunized mice were collected by withdraw-
ing submandibular blood at predetermined times, and they underwent a centrifugation at
7500 rpm for 15 min.

2.6. MRNA Expression of T Cells

A total of 5 × 106 cells/mL splenocytes from immunized mice were seeded in 24-well
plates and re-stimulated with or without OVA (low-endo; the final concentration of OVA
was 10 µg/mL). After 24 h, the total RNA of splenocytes was extracted using TRIzol reagent
(Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions. An amount
of 1 µg of total RNA was used for cDNA synthesis with oligo (dT). Real-time PCR was
carried out using the Light Cycler 480 II (Roche, Basel, Switzerland). The geometric mean
of the housekeeping gene β-actin was used as an internal to normalize the variability in
expression levels, and it was analyzed using the 2−∆∆CT method.

2.7. Cytotoxic T Lymphocyte-Mediated Killing Activity

A total of 5 × 106 cells/mL splenocytes from immunized mice were seeded in 24-well
plates and re-stimulated with or without 1 µg/mL H-2Kb OVA peptide (OVA257–264, SI-
INFEKL, MBL, Code No.: TS-5001-P) for 24 h and detected by cell staining using anti-
CD8-PE (MBL, Code No.: D271-5), anti-CD19-PE-Cy7 (Biolegend, Cat No.: 115520) and
Live/Dead-FITC. The stained OVA-specific CD8+ T cells (gating strategy: total cells/live
cells/CD19-/CD8+) were analyzed by flow cytometry. The FACS data were analyzed and
calculated by Flow Jo software (Version v10, Ashland, OR, USA), and the results are shown
as the mean fluorescence intensity and population percentage.

2.8. IgG and IgG Subtype Titers

The titers of OVA-specific IgG and IgG subtypes were measured using goat anti-
mouse IgG H&L (HRP) (Abcam, Cambridge, UK), goat anti-mouse IgG1 (HRP) (Abcam,
Cambridge, UK) and goat anti-mouse IgG2a (HRP) (Abcam, Cambridge, UK). OVA-specific
IgG tracking was performed with the serial dilution method for analysis by ELISA; the
titers were read as the UV absorbance signals, which twice exceeded the background value.

2.9. Statistical Analysis

The IgG antibodies are presented as geometric mean titers with 95% confidence inter-
vals; the significance among the groups was determined by Tukey’s one-way ANOVA tests
to perform comparisons, followed by post hoc tests, and a p-value < 0.05 was considered to
indicate a statistically significant difference. The physicochemical characteristics and T cell
responses are expressed as the mean ± standard deviation (SD).

3. Results and Discussion
3.1. Synthesis and Characterization of HACH

Cholesterol, a natural molecule that stabilizes cell membranes as well as liposome
carriers, was used to confer an amphiphilic property to HA [35]; the cholesterol molecule
represents the hydrophobic part of HACH conjugates and the synthetic procedures are
shown in Figure 1. In the first step (i), the cholesterol was modified by Glycine-Boc using
Steglish esterification to generate Boc-Gly cholesterol, and then (ii) the Boc group was
removed by TFA/DCM. As shown in Figure S1, the characteristic peaks of cholesterol
(methyl groups at 0.67, 0.86, 0.91, and 1.01 ppm) and tert-butyl group (Peak h, 1.45 ppm,
singlet, 9H) were observed in Boc-Gly cholesterol (Figure S1a) and the Boc peak at 1.45 ppm
disappeared after TFA incubation (Figure S1b), indicating a successful de-protection process
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for obtaining NH2-Gly-cholesterol. The molecular weight of NH2-Gly-cholesterol was also
confirmed by mass spectroscopy.
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Figure 1. Synthetic pathway of HACH. In the first step, cholesterol was modified with Boc-Gly-OH by DCC/DMAP
esterification. In the second step, the Boc group was removed under acidic conditions by TFA to produce NH2-Gly
cholesterol. In the final step, NH2-Gly-cholesterol was conjugated to the carboxylic group of HA by DIC/Oxyma activation.
(i) Modification of cholesterol; (ii) deprotection of Boc-Gly cholesterol; (iii) conjugation of Gly cholesterol on HA.

HACH with a glycine linker was synthesized using DIC/oxyma as an amide coupling
agent to graft NH2-Gly-cholesterol onto HA in a DMSO/H2O co-solvent system (iii). After
dialysis and lyophilization, the cotton-like HACH product was obtained. It is noticed
that the characteristic peaks of cholesterol (four peaks of methyl groups at 0.67, 0.86,
0.91, and 1.01 ppm) in HACH were not observed in the 1H-NMR spectrum (Figure S1c),
this finding suggested the presence of microphase-separated structure of HACH. Fieber
et al. used self-diffusion NMR spectroscopy and relaxometry to explain this phenomenon
of the hydrophobic core. They found that the rigidity of the hydrophobic core of the
macromolecular structure would decrease the T1 and T2 relaxation times, which enabled
the NMR signal to be undetectable [36]. In HACH, it is speculated that the original
hydrophilic HA chain exhibits high flexibility and mobility, and this property is influenced
by cholesterol conjugation, resulting in an increase of mobility from the terminal side of
cholesterol groups toward the HA backbone. Therefore, the signal peaks of cholesterol
cannot be easily detected by 1H-NMR in HACH.

The theoretical carbon to nitrogen (C/N) ratio of HA alone or HACH with 100%
degree of substitution (DS) was 14 and 21.5, respectively. To determine the percentage
of DS of cholesterol of HACH, we employed EA to investigate the C/N ratio of free HA
and HACH and then calculated the DS ratio of HACH using Formula (1). As shown in
Table 1, the actual C/N of HA measured by EA was 14.0, this value was consistent with the
theoretical C/N ratio of HA and indicated the reliability of EA analysis in the determination
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of C/N ratio of HA or HA-drug conjugates. The C/N of HACH10 was 14.7 analyzed by
EA and the DS ratio was calculated as 9.1% that was closed to the estimated DS ratio of
10 %. HACH20 revealed a C/N ratio of 15.0, and DS ratio of 13.3% even though the DS
ratio of HACH was estimated at 20 % for the conjugation process. If the estimated DS ratio
was increased to 30%, the measured C/N ratio was increased to 15.6, and the DS ratio was
21.2%; however, HACH30 would become insoluble in an aqueous solution and thus could
not be utilized for further applications. Thus, HACH20 was utilized for further emulsion
and biomedical investigations.

Table 1. C/N ratio and DS% of the cholesterol on HA.

C Element (Mole%) a N Element (Mole%) a C/N b DS(%) c

HA 3.125 0.223 14.0 -

HACH10 3.314 0.226 14.7 9.2

HACH20 3.143 0.210 15.0 13.3

HACH30 3.361 0.216 15.6 21.2
a: Determined by elemental analysis. b: Molar ratio of carbon to nitrogen. c: DS = (Ry − R0)/(R100 − R0) × 100%.

3.2. Self-Assembling Properties of HACH without or with Squalene

As shown in Figure 2, the resulting HACH20 product (DS 13.3%) is cloudy and well
dispersed in an aqueous solution. In the TEM image, we found that HACH could self-
assemble to form particles that were approximately 100 nm, whereas the particle size of
HACH20 analyzed by DLS was 301.5 ± 3.2 nm. This difference in size was suggested
to be caused by hydrophilic swelling of hyaluronic acid on the surface of the HACH20
particles in aqueous conditions. It was also found that the HACH30 product with a higher
DS ratio gave rise to an unsatisfactory water-dispersibility that might be due to the high
hydrophobicity from the increased cholesterol content.
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Figure 2. Visual appearance, TEM images and particle size distribution of HACH and SQ@HACH.
The Size distribution was measured by DLS under 100-fold dilution of sample stock in water; colorful
lines represent three different measurement results.

In order to evaluate the potential of amphiphilic HACH as an emulsifier for stabilizing
the oil/water interfaces, HACH20 were mixed with 5% squalene and then passed through
a high-pressure microfluidizer. As shown in Figure 2, an isotropic emulsified formulation
(named SQ@HACH) was obtained after homogenization of the squalene/HACH20/citrate
buffer. The TEM images reveal that SQ@HACH spherical particles were composed of
some squalene droplets (bright core) surrounded by the amphiphilic HACH (dark shell).
The results of DLS of SQ@HACH show a uniform size of around 190 ± 2 nm and a
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polydispersity of 0.136 ± 0.027. Compared with the self-assembled HACH in aqueous
solution, the smaller-sized SQ@HACH particles might be a result of the hydrophobic
interactions between squalene and hydrophobic segment of HACH after passing through a
microfluidizer. It is noticed that the emulsification process predominated the particle size
of SQ@HACH (Figure S2) whereas free HA solutions with squalene immediately showed
phase separation under the same process (Figure S3), indicating that HACH20 successfully
stabilized the squalene/water interface. We also evaluated the emulsifying ability of
low DS ratio of HACH10 and found that this was insufficient to form a stable squalene
nanoemulsion in spite of its excellent water-dispersibility. Thus, squalene nanoemulsion
using 13.3% DS ratio of HACH20 was employed for the following studies.

3.3. Long-Term Storage of SQ@HACH

SQ@HACH was stored in a refrigerator at 4 ◦C and an incubator at 37 ◦C to mimic the
stability of SQ@HACH in cold chain storage and human body conditions, respectively. The
physical appearance, particle size, and polydispersity index of SQ@HACH were monitored
for at least 20 weeks. As shown in Figure 3a, the physical appearance of SQ@HACH did
not change significantly over 20 weeks when stored at 4 ◦C.
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Figure 3. The changes of visual appearances, particle size and polydispersity index (PDI) of
SQ@HACH upon storage at (a) 4 ◦C for 20 weeks and (b) 37 ◦C for 20 weeks. The diameter and PDI
of SQ@HACH (100-fold dilution) were measured by DLS. (n = 3, mean ± SD).

A significant increase in particle size of SQ@HACH from 190 nm to 200 nm was
observed during the first 2 weeks, which might be due to coalescence induced by thermo-
dynamic instability [37,38]. Then, SQ@HACH appeared to be stable in size from week 2
to week 16. After 16 weeks, the particle size slightly increased due to instability, during
which the PDI increased in a similar trend.

Upon storage at 37 ◦C, the physical appearance of SQ@HACH did not obviously
change during the first 12 weeks, but it gradually changed from a milky white emulsion
to a light-yellow emulsion after 12 weeks (Figure 3b). This gradual color change may be
assumed to be caused by the accelerated oxidation of squalene at high temperatures [39].
A significant increase in particle size was detected from approximately 190 nm to 215 nm
during the first 4 weeks. Next, the particle size was maintained in the range of 210−220 nm
between week 4 and week 16. After 16 weeks, the particle size remained at approximately
220 nm; however, the PDI slightly increased during this period. At week 20, slight emulsion
delamination occurred, and both the particle size and PDI increased.

These data reveal that SQ@HACH has good stability of 4 ◦C storage for at least
16 weeks, indicating the advantage of SQ@HACH for last-mile transportation. This feature
may be considered as a favorable storage strategy that may not only reduce the cost of cold
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chain transportation but also expand the availability of medicines (drugs or vaccines) to
areas devoid of cold chain facilities.

3.4. Histological Examination of the Injection Site

To assess the cell infiltration and absorbance of HACH and SQ@HACH at the injec-
tion site, C57BL/6 mice were divided into 4 groups including a control (0.1 mM sodium
citrate buffer, pH = 6.5), OVA alone, OVA with SQ@HACH, and OVA with a conventional
AlPO4 adjuvant; the latter was treated for comparison. Fourteen days after injection,
the immunized mice were euthanized, and the muscle tissues of the injection site were
removed for histological analysis. The H&E-stained quadriceps muscle section is shown
in Figure 4. There was no cell infiltration in the buffer control and OVA-alone groups
(Figure 4a,b). The AlPO4 adjuvant was soluble in water, and the residue could not be ob-
served in the examination; however, the infiltration of immune cells from the muscle tissue
showed that OVA with the AlPO4 adjuvant induced a greater degree of local inflammation
than SQ@HACH (Figure 4e). Similar to the OVA alone, we did not observe cell infiltration
in the OVA with SQ@HACH group (Figure 4f). The SQ@HACH particles were almost ab-
sorbed, and the residue materials were clustered into several 10–20 µm vesicles, with a few
recruited cells remaining. Overall, SQ@HACH shows tolerance following intramuscular
injection in mice, a feature that can be further used in biomedical applications.
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Figure 4. Histological analysis of the injection site in the quadriceps muscles. C57BL/6 mice were
immunized with 100 µL of (a) 10 mM sodium citrate solution, pH = 6.5, (b) OVA 50 µg, (c,e) OVA
50 µg with SQ@HACH, and (d,f) OVA 50 µg with AlPO4 (aluminum content 30 µg) at quadriceps.
The quadriceps muscle tissues were removed on day 14 and stained by H&E staining. The muscle
sections were observed by microscopy at magnification (10× and 40×). Scale bar: 1000 µm (a–d) and
50 µm (e,f). The yellow arrow indicates the vesicles of SQ@HACH.

3.5. Serum IgG Antibodies

The production of OVA-specific IgG antibodies is one of the main evaluation criteria
of vaccine efficacy for humoral immunity. To investigate the impact of SQ@HACH on B
cell-mediated IgG secretion, blood was regularly collected from the immunized mice, and
the serum was traced by an ELISA assay. As shown in Figure 5a, vaccination with OVA
and SQ@HACH induced a geometric mean titer (GMT) of 8000 at week 2, and the highest
GMT of 10,000 was titrated at week 4; beyond, this titer rapidly diminished after week 6
and showed the same GMT level as the OVA alone, but it should be noted that the humoral
immunity was induced by a single injection. These results correlate with the results of
histological analysis. SQ@HACH was quickly absorbed within a few weeks and did not
cause long-term inflammation of the injection site. On the other hand, the AlPO4 group
induced a GMT of 32,000 at week 4, and it maintained a GMT for more than 10,000 for at
least 12 weeks.
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Figure 5. The impact of adjuvants on driving OVA-specific IgG antibodies in mice (n = 6 per group) treated with OVA alone,
OVA with SQ@HACH and OVA with AlPO4 for 12 weeks. (a) IgG (b) IgG subtypes. The serum samples from immunized
mice were collected for analysis by ELISA. The IgG subtypes were further analyzed in Week 4 by ELISA. The data are
shown as the GMT ± 95% C.I. * p < 0.05.

3.6. Modulation of the Adjuvant-Mediated T Cell Activation

To investigate the effects of SQ@HACH on the subsequent signal transduction of
T cells, splenocytes from immunized mice were collected for primary culture without
or with OVA stimulation. After 24 h of incubation, mRNA expression was detected by
qPCR, and the housekeeping gene beta-actin was used as an internal control for normal-
ization. The fold induction was calculated from the ratio of the expression levels with
OVA re-stimulation to those without stimulation. The data show that immunization by
OVA adjuvanted with SQ@HACH increased the mRNA expression of IFN-γ (a Th1-type
cytokine) and IL-4 (a Th2-type cytokine) compared with the OVA immunization without
the formulation (Figure 6). These results are consistent with the mRNA expression of
the specific key transcription factors T-bet (Th1) and GATA3 (Th2). We also detected the
increased generation of IgG2a antibodies in the mice that received SQ@HACH-formulated
OVA after 4 weeks of vaccination (Figure 5b), which predominated Th1 polarization. These
findings suggest that SQ@HACH can enhance the related pathways of Th1 and Th2 cells
simultaneously during the re-stimulation of OVA. It is important to note that the splenic
cytokine secretion responses and serum IgG2a antibodies induced by OVA with AlPO4
adjuvant were the same as those induced by OVA alone, which is in agreement with the
literature [40].
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beta-actin which was used as an internal control to normalize the variability in expression levels.
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HA is known to play multifunctional roles in innate and adaptive immune responses
via different receptors on immune cells [41]. HA-decoration can enhance cellular uptake
efficiency by HA-CD44 receptor-mediated endocytosis in DCs [42,43], and it can also
enhance the antigen delivery to lymph nodes which is likely to rely on the LYVE-1 receptors
present on the endothelium of lymphatic vessels [44,45]. The above mechanisms facilitate
the potential applications of HA or HA-derivatives as vaccine adjuvant candidates.

In addition, low molecular weight (LMW) HA fragments act as damage-associated
molecular pattern molecules (DAMPs) [46,47], which are recognized by TLRs of a wide
range of immune cells, especially TLR-4 triggered DC maturation [48,49], and TLR-2
engagement on DCs promotes effector and memory T helper (Th) cell response [47,50].

Thus, we speculate the generation of LMW HA fragments from the degradation of
HACH can further activate DCs and enhance antigen recognition and antigen presentation
to Th cells. Of note, Pietà et al. also report similar results on HA-bioconjugated OVA,
and they indicate that HA also stimulates a T cell immunity, especially Th1 immune
response, and leads to the generation of an OVA-specific cytotoxic response [51]. Detailed
investigations are ongoing at our laboratory.

3.7. Evaluation of the OVA-Specific Splenic Cytotoxic T Lymphocyte Response

Cytotoxic T lymphocyte (CTL) immunity functions as the main defense against cancer
and viral infections. In order to study whether SQ@HACH generated antigen-specific
CTLs, splenocytes from immunized mice were collected and re-stimulated for 24 h with
H-2Kb OVA peptide (OVA257–264, SIINFEKL), a peptide sequence associated with the
phagocytic activity of DCs that can bind to the H-2Kb of MHC class I [52]. As shown
in Figure 7, there was no difference in CD8+ cells with OVA257–264 re-stimulation (MFI of
11,224) and those without stimulation (MFI of 11,160) in the OVA-alone group. Interestingly,
for the mice that received SQ@HACH-adjuvanted OVA, the MFI increased to 25,000 under
the stimulation of OVA257–264 peptide, which was higher than the detected level (MFI
of 16,000) in the AlPO4 group. The higher MFI value from the SQ@HACH-adjuvanted
group’s splenocytes has a higher CD8 expression cell population than other groups when
re-stimulated with OVA257–264 peptide. The upregulated CD8 expression can increase CTL
activity against viral infections, a feature also found in COVID-19 patients recently [53]. In
summary, the SQ@HACH-adjuvanted vaccine can enhance antigen-specific CTL immunity.
An antigen-specific CTL response will be activated to attack when recognizable viral
infections and cancer cells are encountered [54,55].
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re-stimulation for 24 h with H-2Kb OVA peptide (OVA257–264, SIINFEKL) (red) or with medium only (blue), respectively.
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It has been reported that HA from the extracellular matrix is transiently broken down
to LMW HA upon local inflammation during the early stage of infection [46], and LMW HA
can directly activate TLRs [47]. Among these TLRs, TLR-2 plays the key role in enhancing
effector and memory CD8 T cells response [56]. Thus, despite limited understanding of the
role of SQ@HACH in CD8 T cell response, we speculated that the degradation of HACH
could play a similar role as LMW HA to activate the proliferation of the effector CD8 T cells
and further increase the probability of producing memory CD8 T cells. In the future, we
will further explore the mechanisms in greater detail on how the SQ@HACH enhances
CTL response.

Currently, nanotechnology is already applied to the design of vaccines. The im-
portance of nanovaccines has been raised as a potent vaccine design to overcome the
disadvantages of traditional vaccines [34,57]. These nanovaccine designs allow the en-
capsulation of antigen and adjuvant together to enhance immune stimulation, protect
the antigens [58], and promote DCs maturation [59]. Furthermore, coating HA on the
nanomaterial surface can also increase the permeability of the lymphatic vessels through
lymphatic vessel endothelial receptor 1 (LYVE-1) [60], leading to the delivery of antigen
to the lymph nodes. In this study, HACH was used a surfactant for the preparation of
squalene nanoemulsion. The so-obtained SQ@HACH nanoemulsion can directly mix
with antigen to evaluate the efficacy of SQ@HACH on immune stimulation. However,
the function of antigen encapsulation has not yet been considered. Further investigations
are warranted to tune the encapsulating parameters and manufacturing process on the
design of HACH-based nanovaccines.

The above results indicate that the absorbance of SQ@HACH may reduce inflamma-
tion at the injection site. Nevertheless, SQ@HACH can accurately induce the immune
activation of adjuvant-mediated OVA-specific splenic T cells in a single shot, especially the
Th1-related CTL response. Moreover, SQ@HACH has great potential in vaccine storage and
delivery due to its favorable stability. We will further investigate the relevant mechanisms
between the SQ@HACH structural control and immune regulation in order to optimize
the vaccine formulation and test its efficacy in the treatment of immune dysfunctions and
infectious diseases.

4. Conclusions

In this study, we designed and synthesized a hyaluronic acid-glycine-cholesterol
nanocomposite, HACH, as an alternative emulsifier to the commonly used PEG-derivatives
to avoid allergy risk. The amphiphilic structure enables HACH emulsification to stabilize
the squalene/water interfaces, thus rendering uniform nanoemulsions (SQ@HACH) with
an average diameter of approximately 190–220 nm. SQ@HACH showed good stability
during storage and tolerance in vivo. As a vaccine adjuvant, SQ@HACH can enhance
T cell cytokine-related mRNA expression and bias the trends of IgG subtype titers. Under
stimulation with an OVA epitope peptide, splenocytes from mice that received SQ@HACH-
adjuvanted OVA had high CD8+ expression. Taken together, SQ@HACH has good potential
as a candidate adjuvant for the development of vaccines against infectious diseases and
cancer; moreover, the stability under mild storage condition is conducive to the distribution
of vaccines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13101569/s1, Figure S1: Structural identification: 1H NMR (CDCl3, 400 MHz)
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