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Abstract
The SARS-CoV-2 virus has been identified as a causative agent for COVID-19 pandemic. About more than 6.3 million 
fatalities have been attributed to COVID-19 worldwide to date. Finding a viable cure for the illness is urgently needed in 
light of the present pandemic. The prominence of main protease in the life cycle of virus shapes the main protease as a viable 
target for design and development of antiviral agents to combat COVID-19. The current study presents the fragment linking 
strategy to design the novel Mpro inhibitors for COVID-19. A total of 293,451 fragments from diversified libraries have been 
screened for their binding affinity towards Mpro enzyme. The best 1600 fragment hits were subjected to fragment joining 
to achieve 100 new molecules using Schrödinger software. The resulting molecules were further screened for their Mpro 
binding affinity, ADMET, and drug-likeness features. The best 13 molecules were selected, and the first 6 compounds were 
investigated for their ligand-receptor complex stability through a molecular dynamics study using GROMACS software. 
The resulting molecules have the potential to be further evaluated for COVID-19 drug discovery.
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Introduction

The ongoing global pandemic of coronavirus 2019 
(COVID-19) is caused by SARS-CoV-2. According to 
the world health organization (WHO), as of 27 July 2022, 
there have been 570,005,017 confirmed cases of COVID-
19, including 6,384,128 deaths globally [1]. During a pub-
lic health emergency, like COVID-19, the Food and Drug 
Administration (FDA) can issue emergency use authori-
zations (EUAs) to make new medications and medical 
products available without full FDA approval [2]. Many 
medications have been authorized for emergency use to 
treat COVID-19, including oral treatments like Paxlovid 
(nirmatrelvir and ritonavir) and molnupiravir [3]. In the 
past time, doctors used to prescribe existing drugs nota-
bly, antimalarials (chloroquine, hydroxychloroquine) [4], 
antibacterials (azithromycin, doxycycline) [5], antivirals 
(remdesivir, ribavirin, favipiravir, lopinavir, oseltamivir) 
[6], antiparasitic (ivermectin) [7], monoclonal antibody 

(bebtelovimab, bamlanivimab, etesavimab, tosulizumab) 
[8], corticosteroids (dexamethasone, prednisolone, methyl 
prednisolone) [9], 2-deoxy-d-glucose [10], and even con-
valescent plasma [11] as a treatment option for COVID-
19. Many phytochemicals (polyphenols—rutin, acetoside, 
procyanidins, solanine, hypericin) have also been recorded 
to be useful to combat COVID-19 [12]. As there is no other 
treatment option at an early stage of infection, the WHO 
emergency use authorization (EUA) has qualified the use of 
COVID-19 vaccines notably, Covaxin (whole inactivated 
coronavirus), Covishield (adenovirus vector), BNT162b2/
COMIRNATY (mRNA vaccine), mRNA-1273 (mRNA 
vaccine), AZD1222 Vaxzevria (adenovirus vector), Ad26.
COV2.5 (adenovirus type 26 vector), Covilo/BBIBP-CorV 
(whole inactivated coronavirus), CoronaVac (whole inac-
tivated coronavirus), Nuvaxovid, and Covovax (protein 
subunit) [13]. Despite the fact that vaccination campaigns 
have continued and have provided protection against the 
virus, it is still necessary to identify novel treatments that 
could treat the infection while also acting to prevent poten-
tial mutations. The SARS-CoV-2 viral life cycle could be 
crucial to study the various targets for COVID-19 drug 
discovery. The main protease (Mpro) is mainly involved 
in virus replication and thus is the target of choice for 
COVID-19 drug discovery.
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SARS‑CoV‑2 main protease (Mpro)

SARS-CoV-2 Mpro, a cysteine protease is an attractive 
target for the development of therapeutics because of its 
critical role in the viral life cycle and its high conserva-
tion amongst the family of coronaviruses [14]. Mpro con-
sists of three main domains with a 306 amino acids chain. 
Domain 1 consists of 8–101 residues, domain 2 of 102–184 
residues, and the domain 3 of 201–203 amino acid resi-
dues, linked to domain 2 by residues 185–200 loop. The 
substrate-binding site is present in a cleft between domains 
1 and 2 with a His41-Cys145 catalytic dyad [15]. The S1 
subsite is formed by Phe140, Leu141, Asn142, His163, 
Glu166, and His172 amino acids. Hydrophobic S2 subsite 
involves His41, Met49, Tyr54, Met165, and Asp187. The 
S4 binding subsite is made up of Met165, Leu167, Phe185, 
Gln189, and Gln192 amino acids [16].

Fragment‑based drug discovery (FBDD) principles

FBDD is an imperative strategy for drug design for 
industry and academia. In FBDD method, a group of low 
molecular weight polar fragments/compounds is screened 
against a specific target [17]. Usually, the screening 
methods are biophysical methods including X-ray crys-
tallography, nuclear magnetic resonance, differential 
scanning fluorimetry, isothermal titration calorimetry, 
and surface plasmon resonance [18]. One of the critical 
factors favoring the FBDD’s success is the smaller size 
of the fragment-like compound compared to the size of 
the drug-like compounds.

The recent advancement of computational tools and 
methods for fragment-based approaches improves the 
identification of promising fragment hits. This approach 
generally begins with target protein structure determi-
nation followed by virtual fragment library preparation, 
docking, and hit confirmation through docking and molec-
ular dynamics simulation [19]. With current technology 
advancements, a library with a huge number of frag-
ments can be easily screened, which offers a high hit rate. 
The fragments can be further grown, merged or scaffold 
hopped, or linked to develop a new molecule. Software 
like LUDI, HOOK, CAVEAT, RECORE, Schrödinger, 
CCG, AGFIS server, and many others have been developed 
for this purpose [20].

The traditional de novo drug discovery requires an 
ample amount of time and money to provide a single 
clinical candidate. Faster approaches involve the usage of 
computer-aided drug design (CADD) tools like structure-
based drug design (SBDD), ligand-based drug design 
(LBDD), and fragment-based drug design (FBDD) [21]. 

FBDD has been proven a flourishing design strategy for 
many compounds. The other computational methods may 
experience a low hit rate and narrow coverage of drug-like 
chemical space to some extent. It is widely considered 
that a chemical space of 109 diversified molecules can be 
sampled with 103 fragments [22]. Thus, the coverage of 
chemical space can be improved with FBDD approach. It 
is also easier and more convenient to modify the chemical 
structure of fragment hits. Therefore, the FBDD strategy 
becomes the complimentary choice for drug discovery and 
development.

In continuation of our research for unraveling potential 
novel therapeutics to combat COVID-19, herein we report 
the screening of diversified fragments from natural and 
synthetic categories against Mpro of SARS-CoV-2 through 
molecular docking. The top-ranked fragments were linked 
to get the novel compounds as Mpro inhibitors.

Materials and methods

Data collection and preparation

The in silico fragment-based drug design study was carried 
out using Schrödinger maestro v 12.2 (Schrödinger, LLC, 
NY, 2020) [23]. The crystal structure of SARS-CoV-2 Mpro 
was retrieved from the RCSB PDB database. The fragment 
structures were retrieved from different commercial frag-
ment screening libraries.

Preparation of protein structure

The 3D X-ray crystal structure of SARS-CoV-2 main pro-
tease (PDB ID: 6LU7) was obtained from RCSB protein 
databank [24]. Then, it was processed in protein preparation 
wizard of Schrödinger maestro using OPLS3e force field 
[25]. The structural correctness was ensured for bond orders, 
hydrogen consistency, steric clashes, and charges during pro-
tein processing. The prepared structure was then utilized for 
receptor grid generation.

Fragment libraries

A total of 293,451 fragment structures were downloaded from 
the diversified fragment databases available publicly. These 
are the fragment libraries from Life Chemicals General and 
Natural Product-Like (https://​lifec​hemic​als.​com/​scree​ning-​
libra​ries/​fragm​ent-​libra​ries), Aurora fine chemicals (https://​
auror​afine​chemi​cals.​com/​targe​ted-​libra​ry.​html), Otava 
general and natural product-like (https://​otava​chemi​cals. 
​com/​produ​cts/​fragm​ent-​libra​ries), Enamine natural product- 
like (https://​enami​ne.​net/​compo​und-​libra​ries/​fragm​ent- 
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​libra​ries), Schrodinger Glide (https://​www.​schro​dinger.​com/​
Glide), ZINC (https://​zinc15.​docki​ng.​org/), and ChemBridge 
(https://​www.​chemb​ridge.​com/​scree​ning_​libra​ries/​fragm​ent_​ 
libra​ry/). Some of the library’s fragments were not follow-
ing “Rule of 3.” So, all the fragments were first screened for 
Rule of 3 using ChemAxon tools. After applying this filter, 
the resulted number of fragments was 210,123. They were 
prepared at physiological pH conditions using the LigPrep 
module of Schrödinger suite v 12.2 (Schrödinger, LLC, NY, 
2020) where 5 conformers of each fragment were gener-
ated [26]. OPLS3e force field algorithm was applied for the 
minimization of ligand geometry. The minimum energy con-
former from each fragment was then selected for molecular 
docking.

Preparation of main protease crystal structure 
for molecular docking

PDB ID 6LU7 is an X-ray crystal structure of Mpro in a 
complex with an N3 inhibitor having a 2.16 Å resolution. 
Firstly, the covalent bond between co-crystallized ligand N3 
and amino acid residue Cys145 was cleaved. The Cys145 
and ligand molecule were rebuilt by making necessary 
changes, and the ligand-receptor complex was generated and 
refined by Protein Preparation Wizard in Schrödinger. This 
prepared complex was employed for receptor grid genera-
tion. The receptor grid was generated on the active site of 
Mpro by taking the centroid of ligand molecule N3 as a cen-
tre of the grid. The X, Y, and Z grid coordinates were −10.47, 
12.23, and 68.7, respectively [27].

Fragment screening

All the prepared fragments after applying the rule of three 
were used for docking against active site of Mpro. Glide 
module of Schrödinger v 12.2 (Schrödinger, LLC, NY, 
2020) [28] was used for molecular docking using standard 
precision (SP) mode. The validation of docking protocol 
was done by calculating the all-atom RMSD value of the 
re-docked N3 ligand with the co-crystallized ligand.

Fragment linking

The top 1600 fragments with SP docking score ≤  −7.00 were 
selected for the fragment linking. The direct joining of the 
fragments prepositioned at various regions of the Mpro bind-
ing site was carried out by the “combine fragments” tool 
from the library design module of Schrodinger to design 
novel compounds. The combine fragment tool usually joins 
the fragments by picking out the feasible bonds that can be 
formed between the fragments. The default parameters of 
the tool were selected where the maximum output of the 

newly formed structures was 100. The fragments were also 
checked for Van der Waals clashes before joining. For direct 
joining, maximum atom–atom distance from different frag-
ments was kept 1 Å, minimum fragment centroid distance 
was kept 2 Å, minimum bond angle deviation was set to 15°, 
and maximum number of fragment atoms was set to 200. All 
bonds attached to halogens or hydrogen in a fragment were 
selected for breaking and re-joining with another fragment. 
All atoms present in the newly built molecule were subse-
quently minimized. Total three rounds of fragment joining 
were carried out [29]. In the first round, pairs of fragments 
were joined, and in the subsequent round, the outputs of the 
previous round were used as inputs to join up to 4 fragments 
and so on.

Molecular docking and visualization 
of receptor‑ligand interaction

The 100 new molecules were generated after fragment link-
ing. They were first prepared using LigPrep, similarly as 
done for the fragments, and then docked within the active 
site of Mpro (6LU7) using extra precision (XP) mode of 
Glide docking module of Maestro. The same grid coordi-
nates were used here for docking of new molecules as used 
for the fragments screening. The obtained docking scores of 
the compounds were used to rank them. The ligand-receptor 
interactions within the active sites of the protein were visual-
ized using PyMOL. The docked ligand-receptor complexes 
were further analyzed by Molecular Mechanics-Generalized 
Born Surface Area (MM-GBSA)-based-free binding energy 
(ΔGbind) calculation with the help of the prime tool. The 
same docking protocol and MM-GBSA-free binding energy 
calculation were also been carried out for the approved 
SARS-CoV-2 Mpro inhibitor, Nirmaltrevir as a standard 
compound.

In silico physicochemical and pharmacokinetic 
parameter prediction

 The new molecules with predicted good binding affinities 
towards Mpro were explored for their virtual physicochem-
ical and pharmacokinetic parameters. The prediction was 
performed by the QikProp module of Maestro [30].

Molecular dynamic simulations

The molecular dynamic (MD) simulation study of the 
compounds (1-6) and Nirmatrelvir with Mpro was car-
ried out for a period of 100 ns using GROMACS 2020.1 
software [31]. The ligand-receptor complex generated in 
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the molecular docking study was used as the initial point 
for simulation. CHARMM36, an all-atom force field was 
employed to find the ligand-receptor complex stability 
[32]. Ligand topology was built by CGenFF server [33, 
34]. The ligand-receptor complex was built and solvated 
by the tip3p/SPC216 water model [35]. Neutralization of 
the solvate system having charged protein was performed 
by using Na + or Cl − ions. The energy minimization 
of the complex was carried out by the steepest descent 
method. It was followed by two sequential equilibration 
simulation phases using canonical (NVT) and isobaric-
isothermic (NPT) ensemble for 100 ns each. The produc-
tion MD simulation was carried out using NPT group, and 
long-range electrostatic interactions were identified using 
the particle mesh Ewald (PME) method [36]. The MD 
calculations were performed using the GROMACS 2020.1 
simulation package at 300 K temperature and 1 bar pres-
sure, and the resulting data were analyzed by plotting 
RMSD, RMSF, radius of gyration, and solvent accessible 
surface area (SASA).

Results and discussion

The stated fragment-based drug discovery investigation 
has been carried out in an effort to create a molecule 
that combines the properties of synthetic and natural 

compounds. The publicly available fragment libraries 
from a set of diversified synthetic chemicals and natu-
ral product like compounds were chosen for the present 
study. Figure 1 represented the schematic diagram for the 
workflow of the current work.

Fragment database screening and linking

A total of 293,451 diversified fragments have been 
retrieved from the aforementioned libraries. These 
fragments have been screened initially for the rule of 
three (Ro3) [37]. The Ro3 filter criteria were molecular 
weight: ≤ 300, number of H-bond acceptors (HBA): ≤ 3, 
number of H-bond donors (HBD): ≤ 3, clogP: ≤ 3, number 
of rotatable bonds (NRB): and ≤ 3, and total polarizable 
surface area (TPSA): ≤ 60Å. After applying this filter, 
210,123 fragments have been obtained. All the filtered 
fragments were then prepared for energy minimization 
using LigPrep module. Four low-energy conformers have 
been generated for each ligand at physiological pH using 
OPLS3e force field.

These fragments were screened using the receptor grid 
generated by retaining the co-crystallized ligand N3 as 
a centre of grid. For the validation of generated grid, the 
co-crystallized ligand (N3) of PDB 6LU7 was first drained 
out, re-built, and re-docked into the active site of the protein 
against the prepared grid. Here, the N3 molecule exhibited an 

Fig. 1   Schematic diagram of workflow
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analogous pattern of orientation and interactions, maintain-
ing the hydrogen bonding with Glu166, Gln189, and Thr190 
residues of the active site of the protein [27]. The XP dock-
ing score of N3 for Mpro was −7.93 kcal/mol. This docking 
was further analysed by considering all-atom RMSD value 
of the re-docked N3 ligand with the co-crystallized ligand, 
and it was found to be 0.095 Å, which validates the docking 
protocol.

The standard precision (SP) algorithm of Glide was 
applied to screen the fragments through molecular dock-
ing. The SP docking scores of all the fragments were in 
the range of −9.0 to −5.6 kcal/mol. The top 1600 fragments 
have been found to have high docking score ≤  −7 kcal/mol. 
These fragment hits are linked through the “combine frag-
ments panel” of Schrödinger to afford 100 new compounds. 
These new compounds are then prepared by LigPrep tool, 
keeping all the parameters same as done for the preparation 
of fragments.

Molecular docking of newly designed compounds

Newly designed compounds were docked using extra preci-
sion (XP) algorithm of Glide. The same grid was used for 
the docking of newly designed compounds as was prepared 
for fragments docking. Top-scoring 13 compounds with 
docking scores ranging from −10.71 to −9.29 kcal/mol were 
obtained (Table 1).

These compounds were also screened based on their 
ligand efficiency and Glide emodel. Ligand efficiency is an 
estimate of the binding energy per atom of a ligand to its 
receptor. It is defined as the ratio of Gibb’s free energy to 
the number of hydrogen atoms present in the compound. It 
is directly proportional to the docking score. The ligand effi-
ciencies of top-scored compounds were in the range of −0.36 
to −0.26, which suggests that these compounds have high 
binding affinity with receptor. Glide utilizes emodel to iden-
tify the best pose of ligand and then ranks these best poses 
against one another with GlideScore. The shortlisted 13 
compounds have Glide emodel values ranging from −119.14 
to −80.15 kcal/mol.

The top docked 13 compounds have better docking scores 
compared to the co-crystallized ligand N3 of PDB ID 6LU7 
(−7.93 kcal/mol). The detailed molecular interaction study 
between Mpro and N3 has been described in our earlier 
articles [12, 27]. As a control/reference, nirmatrelvir, an 
approved Mpro inhibitor, has also been taken in the pre-
sent study and the docking of it has been carried out using 
the same docking protocol before the docking of designed 
compounds. The interactions with Mpro have been shown 
in Fig. 2. Nirmatrelvir showed key interactions (H-bonding) 
with Thr25, Gly143, and Glu166, having a docking score 
of −7.19 kcal/mol.

The designed 13 compounds showed the key interactions 
with active site of main protease. The 2D and 3D ligand-
receptor interaction diagrams of the 6 top-scored compounds 
(1-6) have been shown in Figs. 3 and 4. All these compounds 
were prepared by linking of fragments using Schrödinger. 
The top 1600 best docked fragments have been selected 
for the same. These fragments were ranked from 1 to 1600 
according to their docking scores. Compound (1) was con-
stituted by the linking of rank 1 (docking score − 8.69 kcal/
mol) and rank 1000 (docking score − 7.0 kcal/mol) fragments 
by ether linkage. Compound (1) has a structural similar-
ity with natural glycosides. The aromatic ring of chromene 
of compound (1) formed π-π stacking with His41, the key 
amino acid residue of the active site of Mpro. The hydroxyl 
groups present in compound (1) exhibited H-bonding with 
Thr26, Phe140, Asn142, Gly143, and Glu166 amino acid 
residues. These amino acids are the active site residues of 
Mpro. Compound (2) was constituted by the linking of rank 
438 (docking score − 7.31 kcal/mol) and rank 999 (dock-
ing score − 7.01 kcal/mol) fragments by ethyl chain linkage. 
The oxygen of amide group in quinoxalin-2(1H)-one ring 
of compound (2) showed hydrogen bonding with Cys145 
residue of Mpro. This interaction is particularly important 
as the Cys145 amino acid residue is present in the cata-
lytic dyad and acts as a nucleophile in the proteolytic cleav-
age of the natural substrate of Mpro [38]. The nitrogen of 
amide group in quinoxalin-2(1H)-one ring of compound (2) 
formed hydrogen bond with Leu141 of Mpro. Compound 
(3) was generated by the ethyl chain linking of rank 847 
(docking score − 7.12 kcal/mol) and rank 986 (docking 
score − 7.04 kcal/mol) fragments. In compound (3), the oxy-
gen of hydroxyl group, present in fragment 1 portion showed 
hydrogen bonding with Asn142 residue of Mpro. The NH- 
group and nitrogen of the pyrazole ring showed hydrogen 
bonding with Leu141 and Gly143, Cys145, respectively. The 
nitrogens of urea group present in fragement-2 portion of 
compound (3) showed hydrogen bonding with Gln189 of 
Mpro. H-bonding between the oxygen of urea and Glu166 
residue provided stability to the ligand-receptor complex. 
The other compounds (4-13) also showed similar types of 
interactions with active site residues of the protein. The con-
stituent fragments for compounds (4-6) have been shown in 
Fig. 4.

MM‑GBSA‑free binding energy calculations

The binding energy has been considered as a more accurate 
screening parameter than any other molecular docking scor-
ing parameter. Thus, the docked ligand-receptor complexes 
were further analyzed for Molecular Mechanism-Generalized 
Born Surface Area (MM-GBSA) analysis to predict the free 
binding energy of ligand-receptor complexes [39]. The total 
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Table 1   Chemical structures and docking results of newly formed compounds

Sr. 
No. 

Comp
ound
numb
er

Structure

Dockin
g score 
(kcal/m
ol)

Glide
energy 
(kcal/mo
l)

Ligand 
Efficiency

Residue
interaction
s (H-bond, 
π-π
stacking)

1 1 

HO

HO

O

O

OH
OH

O

O
OH

OH
OH

HO

-10.719 -78.286 -0.325 

Thr26, 

His41,

Phe140, 

Asn142, 

Gly143, 

Glu166  

2 2 -10.55 -93.306 -0.31 Leu141, 

Cys145 

3 3 -10.427 -109.163 -0.298

His41,

Leu141, 

Asn142, 

Gly143, 

Cys145, 

Glu166, 

Gln189 

4 4 HO

O

OH
OH

O

O
OH

OH
OH

H2N

O

O

HO

-9.898 -80.155 -0.291
Phe140, 

His164, 

Thr190 

5 5 -9.844 -119.413 -0.266
Leu141, 

Asn142, 

Glu166 

6 6 -9.83 -114.053 -0.266

Leu141, 

Asn142, 

Gly143, 

Glu166

7 7 -9.816 -96.062 -0.289
His41,

Leu141, 

Cys145
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Table 1   (continued)

9 9 

Cl

N
HNH

N
H

N

N

O

N
O

-9.76 -104.099 -0.271

His41,

Leu141, 

Gly143, 

Glu166, 

Gln189 

10 10 

OH

H
N

H
N

S
O

N
O

NH
N

HN

-9.71 -104.292 -0.277

Leu141, 

Asn142, 

Gly143, 

Glu166, 

Gln189 

11 11 -9.695 -96.373 -0.285
Gly143, 

Glu166, 

Gln189

12 12 -9.417 -80.768 -0.294

Leu141, 

Cys145, 

Arg188, 

Gln189 

13 13 -9.294 -102.84 -0.266
Leu141, 

Asn142, 

Thr190 

14 

Nirm

atrelv

ir N

OH
N

O

F
F

F

OHN

HN
O

N

-7.192 -85.12 -0.189
Thr25, 

Gly143, 

Glu166 

8 8 -9.778 -97.815 -0.279
Leu141, 

Asn142, 

Thr190 
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free binding energy (MM-GBSA ΔGBind) was estimated as 
follows using the software:

MM−GBSA ΔGBind = GComplex − (GReceptor + GLigand)

where GComplex represents the energies of optimized ligand-
receptor complex and GReceptor and GLigand represent the 
energies of optimized receptor and optimized ligand, 
respectively.

Fig. 2   Nirmatrelvir-Mpro interaction diagram. Nirmatrelvir is depicted as white sticks, and Mpro residues are presented as atom type color sticks

Fig. 3   Ligand-receptor interaction diagram of compounds (1-3: A–C) at the active sites of Mpro protein (PDB ID: 6LU7). The two constituent 
fragments are shown on right side, ligands are depicted as white sticks, and Mpro residues are presented as atom type color sticks

2162 Structural Chemistry (2022) 33:2155–2168
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Prime MM-GBSA uses the VSGB 2.0 solvation 
model. MM-GBSA ΔGBind values of top-scored 13 com-
pounds, co-crystal, N3 and standard Mpro inhibitor, and 

nirmatrelvir have been demonstrated in Fig. 5. As pre-
dicted by the MM-GBSA protocol, compound (1) has 
the most negative binding free energy (−69.62  kcal/

Fig. 4   Ligand-receptor interaction diagram of compounds (4-6: D–F) at the active sites of Mpro protein (PDB ID: 6LU7). The two constituent 
fragments are shown on right side, ligands are depicted as white sticks, and Mpro residues are presented as atom type color sticks

Fig. 5   MM-GBSA free binding 
energy values of compounds 
1–13, N3, and Nirmatrelvir

2163Structural Chemistry (2022) 33:2155–2168
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mol), which is in agreement with the molecular docking 
results and showed the best binding affinity with Mpro. 
Compounds (9), (8), and (2) showed −68.58, −67.07, 
and −66.87 kcal/mol binding free energy, respectively, 
which also suggest better binding with the receptor. N3 
showed −64.7  kcal/mol binding free energy which is 
similar to the experimental compounds but nirmatrelvir 
showed less binding affinity (−56.23 kcal/mol) compared 
to the experimental compounds.

In silico prediction of physicochemical 
and pharmacokinetics parameters

The 13 novel compounds screened based on docking score 
and ligand efficiency were then further screened for their 
physicochemical and pharmacokinetic parameters using 
QikProp tool (Tables 2 and 3). These parameters have been 
predicted to check the drug likeliness of the obtained novel 
compounds.

Table 2   Predicted 
physicochemical parameters of 
compounds (1-13)

MW  molecular weight,  HBD  hydrogen-bond donor atoms,  HBA  hydrogen-bond acceptor 
atoms, QPlogPo/w predicted octanol/water partition coefficient, PSA polar surface area, Rotor number of 
rotatable bonds

Sr. No. Compound 
number

MW (g/mol) HBD HBA QPlogPo/w PSA Rotor

1 1 464.38 8 12 −0.79 206.6 4
2 2 471.53 2 4 3.89 109.93 7
3 3 489.59 5 4 4.64 114.68 8
4 4 477.38 8 12 −1.28 229.46 4
5 5 497.60 4 5 3.47 109.82 6
6 6 498.58 3 5 3.53 107.17 6
7 7 469.53 2 4 5.89 96.48 7
8 8 501.59 3 4 5.13 64.47 7
9 9 499.98 4 5 3.53 103.68 6
10 10 490.58 5 5 4.18 127.57 8
11 11 465.59 2 4 1.83 115.72 7
12 12 466.48 3 6 3 122.36 6
13 13 498.52 3 5 6.03 82.67 7
Range as per QikProp module of 

Schrödinger
130–725 0–6 2–20 −2 to 6.5 7–200 0–15

Table 3   Predicted 
pharmacokinetic parameters of 
compounds (1–13)

QPlogS predicted aqueous solubility, QPlogHERG, predicted IC50 value for blockage of HERG K + chan-
nels, QPPCaco caco-2 cell permeability, QPlogBB brain/blood partition coefficient

Sr. No. Compound 
number

Volume QPlogS QPlogH-
ERG

QPPCaco QPlogBB

1 1 1295.116 −5.629 −5.123 132.622 −1.36
2 2 1212.159 −2.265 −5.052 3.027 −3.602
3 3 1369.935 −5.737 −7.32 187.076 −1.747
4 4 1490.377 −6.773 −6.153 363.682 −1.213
5 5 1224.429 −1.469 −3.398 0.844 −3.738
6 6 1466.536 −5.961 −5.694 286.681 −1.318
7 7 1475.018 −6.032 −5.873 460.519 −1.12
8 8 1376.969 −6.218 −7.439 425.858 −1.396
9 9 1485.017 −7.665 −7.856 234.735 −0.241
10 10 1478.488 −7.049 −7.472 298.099 −1.401
11 11 1481.394 −6.474 −5.727 70.037 −2.052
12 12 1443.777 −3.591 −2.7 31.12 −2.024
13 13 1295.116 −5.629 −5.123 132.622 −1.36
Range as per QikProp module of 

Schrödinger
500–2000 −6.5 to 0.5 Above −5  < 25 

poor, > 500 
great

−3 to 1.2
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As per Lipinski’s rule of five [40], the most drug-like mole-
cules should possess molecular weight ≤ 500, LogP ≤ 5, num-
ber of hydrogen bond donors ≤ 5, and number of hydrogen 
bond acceptors ≤ 10. Topological polar surface area (TPSA) 
and number of rotatable bonds are the other two parameters 
introduced by Veber and co-workers [41]. Except for a very 
small number of exceptions, all the compounds, as indicated 
in Table 2, adhere to the aforementioned two principles.

As shown in Table 3, pharmacokinetic indicators of the 
compounds, such as volume, QPlogS, QPlogHERG, QPP-
Caco, and QPlogBB, were also predicted. QPlogS is an indi-
cator of aqueous solubility. QPlogHERG gives the predicted 
value for blockage of HERG K+ channels, an indicator for 
cardiotoxicity. It should be above −5. All the compounds 
complied with this parameter except compounds (5) and 
(12). QPlogBB is the predicted brain/blood barrier coef-
ficient. QPPCaco is the indicator for oral absorption of a 
compound. It estimates the alleged gut-blood barrier perme-
ability. A value of less than 25 predicts poor oral absorption. 
All the compounds exhibited better oral absorption, except 
compounds (2) and (5).

Molecular dynamics (MD)

The MD study was performed to comprehend the time-
dependent stability of the complex between the most favour-
able compounds (1–6) and Mpro. The same MD protocol 
was also run for nirmatrelvir and Mpro complex as a ref-
erence. The study was carried out over a period of 100 ns 
using GROMACS2020.1 package. The docked pose of the 
ligand in complex was contemplated as the initial frame for 
MD study, and some statistical parameters such as root mean 
square deviation of protein (RMSD-P), root mean square 
deviation of ligand (RMSD-L), root mean square fluctuation 
of protein (RMSF-P), radius of gyration, and solvent acces-
sible surface area (SASA) were determined.

The protein RMSD is measured to determine the extent 
of movement of protein or atoms while ligand is present in 
the active site and indicating the extent of stability, devia-
tion, and protein conformations during the simulation time. 
RMSD of protein Mpro in all the systems indicated that 
the simulations have equilibrated (Fig. 6A). The RMSD-P 
value for Mpro in complexation with compound (1) was in 
the range of 0.05–0.4 nm with an average of 0.28 nm for 
100 ns. The range of the RMSD values of protein in all the 
ligand–protein complexes, including reference nirmatrelvir 
complex was found to be about 0.04–0.4 nm. This signi-
fies the stability of the protein having designed compounds 
present in the active site of protein throughout the analy-
sis time. To characterize the local changes of protein chain 
further, the RMSF of each residue in each ligand–protein 
complex was also analyzed throughout the simulation time 
(Fig. 6C). The RMSF-P value describes the residual mobility 

and integrity of the protein structure. For most of the sys-
tems, the obtained RMSF-P value for the residues up to 300 
was below 0.38 nm, whereas the protein tail with residue 
number from 300 onwards displayed a fluctuation, but it was 
not participating in binding with the ligands. Thus, RMSD-P 
and RMSF-P results indicate the stability of protein dur-
ing simulation, which proves the basis for using the protein 
structure further for ligand–protein interaction studies.

The RMSD of ligands (compounds (1–6) including nir-
matrelvir) with respect to protein has been investigated 
(Fig. 6B). The RMSD-L values for all the systems were 
found in the overall range of 0.04–1.8 nm (except some fluc-
tuation found in the case of compound (6)), which implies 
the ligand-receptor complex stability without a significant 
change in orientation of the ligand in the active site during 
the analysis time.

To analyze the stability of ligand further in the binding 
pocket of protein, the surface area of the ligands accessi-
ble by the water molecules was calculated and analysed 
(Fig. 6D). The solvent accessible surface area by ligands for 
all the systems was found in the range of 13–26 nm2 which 
indicates that the ligands remained embedded in the binding 
pocket throughout the simulation time. The radius of gyra-
tion measures the compactness of ligand. The radius of gyra-
tion values for all the systems were observed in the range of 
2.17–2.32 nm (Fig. 6E), suggesting the stable ligand profile 
and thus advocating the stable binding of designed com-
pounds and nirmatrelvir as well.

To further validate the ligand-receptor interactions, two 
important energy terms have been extracted from 100 ns 
MD simulation trajectories: (A) short-range electrostatic/
coulomb energy (Coul-SR) and (B) van der Waals/hydro-
phobic Lennard–Jones energy. The average values of 
observed Coul-SR were −139.25 ± 3.4, −42.17 ± 7.9, −
126.26 ± 1.2, −148.59 ± 1.7, −44.21 ± 3.5, −40.16 ± 1.2, 
and −95.43 ± 2.5 kJ/mol for compounds (1), (2), (3), (4), 
(5), (6), and nirmatrelvir complexes, respectively; and the 
average values of observed LJ-SR were −116.13 ± 7.8, 114
.09 ± 6.6, −139.39 ± 3.3, −223.88 ± 2.6, −118.48 ± 7.5, −11
6.29 ± 1.6, and 110.84 ± 2.6 kJ/mol for compounds (1), (2), 
(3), (4), (5), (6), and nirmatrelvir complexes, respectively. 
These numbers suggested that hydrophobic contacts con-
tribute more to the complex’s stabilization than electrostatic 
interactions.

To acquire more information regarding the newly 
adopted ligand–protein conformations by compound (1) 
throughout the 100 ns MD simulation run time, the selected 
frames of the system were extracted and the conformational 
ligand–protein interactions have been visualized using 
PyMOL (Fig. 7). The interactions at 0 ns have been shown 
in Fig. 2A. During the analysis of interactions at 25, 50, 75, 
and 100 ns, no drastic fluctuation has been observed. These 
results were in accordance with RMSD-P and RMSD-L.
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Fig. 6   Stability analysis of compounds (1-6) and Nirmatrelvir with Mpro throughout 100 ns MD simulation A RMSD-P, B RMSD-L, C RMSF-
P, and D SASA and E radius of gyration plots

Fig. 7   Ligand–protein complex conformations by compound (1) through selected trajectories A at 25 ns, B at 50 ns, C at 75 ns, and D at 100 ns
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Conclusion

Fragment-based drug design has proven to be an efficacious 
tool for drug development in recent times. The present study 
attempts to design SARS-CoV-2 main protease inhibitors 
through an in silico fragment-based drug design approach. 
A huge library of diversified fragments of natural as well as 
chemical origin was used for the study. The rule of three was 
applied to the fragments for initial screening. The resulting 
fragments were screened against SARS-CoV-2 Mpro through 
molecular docking. The top-scored fragments were used for 
fragment linking to design new compounds. The 13 such mol-
ecules were secured by molecular docking against the Mpro, 
applying Lipinski’s rule of five and prediction of pharmacoki-
netic parameters. The 6 top-scored compounds, along with 
nirmatrelvir as a reference compound, were also checked for 
their ligand–protein complex stability using molecular dynam-
ics, which gave promising results. As per the present study, 
the designed compounds were found to be more effective 
Mpro inhibitors compared to the reference compound. Thus, 
we obtained potential SARS-CoV-2 main protease inhibitors 
using in silico fragment-based drug design which can be fur-
ther explored for COVID-19 drug discovery process.
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