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Abstract 

Background:  Accurate bacteria genome de novo assembly is fundamental to understand the evolution and patho-
genesis of new bacteria species. The advent and popularity of Third-Generation Sequencing (TGS) enables assembly 
of bacteria genomes at an unprecedented speed. However, most current TGS assemblers were specifically designed 
for human or other species that do not have a circular genome. Besides, the repetitive DNA fragments in many bacte-
rial genomes plus the high error rate of long sequencing data make it still very challenging to accurately assemble 
their genomes even with a relatively small genome size. Therefore, there is an urgent need for the development of an 
optimized method to address these issues.

Results:  We developed B-assembler, which is capable of assembling bacterial genomes when there are only long 
reads or a combination of short and long reads. B-assembler takes advantage of the structural resolving power of long 
reads and the accuracy of short reads if applicable. It first selects and corrects the ultra-long reads to get an initial con-
tig. Then, it collects the reads overlapping with the ends of the initial contig. This two-round assembling procedure 
along with optimized error correction enables a high-confidence and circularized genome assembly. Benchmarked 
on both synthetic and real sequencing data of several species of bacterium, the results show that both long-read-only 
and hybrid-read modes can accurately assemble circular bacterial genomes free of structural errors and have fewer 
small errors compared to other assemblers.

Conclusions:  B-assembler provides a better solution to bacterial genome assembly, which will facilitate downstream 
bacterial genome analysis.
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Background
Genome assembly is the basis and prerequisite for under-
standing the genomic and functional characterization of 
organisms. There are approximately 5 × 1030 bacteria on 

the earth, the number of which exceeds all plants and 
animals [1], and a considerable number of them play an 
important role in the human microbiome [2]. For exam-
ple, some bacteria that colonize the gastrointestinal 
tract are beneficial [3], while others are pathological and 
induce infectious diseases and antibiotic resistance [4]. 
Determining the genome sequences of bacteria is critical 
to conduct human microbiome associated health stud-
ies. However, to date, there are only a small number of 
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bacterial genomes which have been published, and most 
of the published genomes are incomplete. For example, 
90% of bacterial genomes in GenBank [5, 6] are incom-
plete. Incomplete bacteria genomes will make it chal-
lenging to conduct subsequent genomic analyses, such as 
genome structure, genome annotation, variant discovery, 
comparative genomics, etc. Thanks to Next-Generation 
Sequencing (NGS) technologies, sequencing data and 
published bacterial draft genomes have grown dramati-
cally [5]. Nevertheless, bacterial genomes can contain 
up to several dozens of repetitive sequences, which may 
be much longer than the maximum read length and the 
insert size of paired-end tags [7]. Such regions are chal-
lenging for bacterial genome assembly as they may lead 
to genome sequences with dozens of fragmented or 
wrong assemblies [8].

With the advent of third generation sequencing plat-
forms such as Pacific Biosciences (PacBio) and Oxford 
Nanopore Technologies (ONT), which can read complete 
DNA fragments of 10 kbp or longer and can cover tan-
dem repeats [8–10], there is great potential to improve 
the quality of bacterial genome assemblies. However, the 
existing DNA assemblers are far from optimal for this 
purpose for the following reasons. First, like eukaryotic 
genomes, bacterial genomes can also have long and high 
density of repetitive sequences [11, 12]. PacBio or ONT 
reads cannot fully cover these regions, which can lead to 
fragmentary or incorrect assemblies. Second, ONT or 
PacBio reads have much higher error rates (indels and 
base errors) [13] that may cause low-quality assemblies 
and lead to false annotations thereafter. Although there 
are polishing tools (i.e., pilon and Racon) [14, 15] that 
can address this problem to some extent, after polishing, 
the contigs constructed from error-prone long reads will 
still have errors [16]. Finally, most of bacterial genomes 
consist of a single DNA molecule (i.e., one chromo-
some) that is several million base pairs in size and is cir-
cular. However, existing long-read assemblers like Canu 
[17], wtdbg2 [18], and Flye [19], etc. are not specifically 
designed for bacterial genomes as they are not aware of 
the circular structures.

To our knowledge, there are few long-read assemblers 
that can generate high-quality bacterial genome assem-
blies. Unicycler [20] is one of most frequently used tools 
for bacterial genome assembly, and it has three modes of 
input: long-read-only, Illumina-only, and hybrid reads. 
Therefore, it accepts PacBio, ONT, Illumina data, or a 
combination of them. Unlike linear genome assemblers, 
Unicycler can circularize replicons without the need of 
postprocessing of assembly results. Additionally, in the 
hybrid mode, it needs as low as 10 × long read sequenc-
ing data. However, in the long-read-only mode, Unicy-
cler uses minimap and miniasm [21] to assemble the 

long reads, which will generate contigs with a similar 
error rate to raw long reads, and the contigs that it pro-
duces tend to collapse repeats or segmental duplications. 
Although Unicycler uses Racon [15] to improve the accu-
racy of contigs, it cannot alleviate the structural errors 
caused by repeat/duplication collapses. In the hybrid-
read mode, Unicycler first builds a graph with Illumina 
short reads by using the short-read assembler SPAdes 
[22], then it creates bridges with long reads in order to 
resolve the repeats in the genome. Even so, starting from 
short-read assemblies may lead to many structural errors 
due to the presence of repeats that are longer than the 
short-read lengths. Moreover, mapping long, noisy reads 
to short read assembled contigs is challenging because 
the contig lengths are relatively short, and they often 
contain structural errors. For a successful bridging, sev-
eral high-quality and bona fide alignments that can cover 
the unsolved repeats as well as a large portion of their 
flanking regions are required. Therefore, it is hard, if not 
impossible, to solve large repeats. As a result, Unicycler 
is more likely to create fragmented assemblies or wrong 
assemblies with many structural errors instead of a com-
plete genome. Thus, it is necessary to develop an alterna-
tive assembler which can address these issues.

Implementation
In order to generate higher quality assemblies, we pre-
sent a new method, B-assembler, for bacterial genome 
de novo assembly. B-assembler accepts hybrid reads 
from both long and short reads and long-read-only data. 
B-assembler consists of three main steps: constructing 
the initial genome, reassembling the boundaries of the 
genome, and forming the circular genome. B-assembler 
applies the long reads method first, and then corrects 
the long noisy reads using Racon [15] before assembly 
in order to minimize ambiguities for finding overlap-
ping sequences. It uses Flye [19] as the core assembler 
for both assembly modes. If short reads are also pro-
vided, the short reads will be used to polish long reads 
and the final assembly. Compared with other assemblers, 
B-assembler has several advantages. First, B-assembler 
can reconstruct circular bacterial genomes, while other 
genome assemblers except Unicycler cannot achieve 
this goal for bacterial genome assembly by design. Sec-
ond, it partitions the long reads of varied lengths into two 
groups: longer and shorter. By starting from the longer 
reads group, B-assembler can achieve accurate assembly 
results which are nearly free of structural errors and have 
few base errors. Lastly, compared with the other hybrid 
assemblers and hybrid-read mode of Unicycler, B-assem-
bler has a shorter runtime and requires less memory 
usage. Therefore, B-assembler can obtain high-quality 
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assemblies from long noisy reads, which are critical for 
downstream genomic analysis of microbes.

Long‑read‑only assembly
Long-read only mode accepts either ONT or Pacbio raw 
reads as input. It contains three main steps: creating the 
initial assembly, reassembling assembly ends, and merg-
ing contigs to construct a circular genome.

Initial assembly
Long reads make genome assembly easier and provide 
the possibility to resolve repeats and structural variants 
that are several kilobases in length. To eliminate the pos-
sibility of generating incomplete genome, B-assembler 
calculates the total length and coverage of all long reads 
and separate them into two subsets by their length. One 
subset ( S1 ) consists of the longest reads which have cov-
erage over 50X (see Supplementary Table  1). The other 
subset ( S2 ) contains all the remaining reads. Before con-
structing initial assembly, it aligns S2 to S1 using mini-
map2 with the parameter of ‘-ax map-ont’ or ‘-ax map-pb’. 
The alignments are then used as input to correct reads by 
Racon. By performing this step, S1 long reads with a high 
error rate will be corrected to some extent, which will 
improve the accuracy of genome assembly. After S1 cor-
rection, B-assembler applies Flye to construct an initial 
assembly ( L1).

Reassembly of the ends
Since Flye cannot resolve circular bacterial genomes 
and therefore tends to introduce errors at the two ends 
of assemblies, B-assembler reassembles the two ends to 
address this issue. First, it aligns all the long reads back 
to L1 using minimap2 and then, it extracts the reads 
aligned to the two ends. To identify error-rich regions, 
we have also plotted the error frequencies of L1 from sev-
eral nanopore sequencing data and found that the errors 
mainly gathered in the first and last 20% of L1 (data not 
shown). Therefore, only reads that were mapped to the 
first and last 20% of L1 are retained, which are called 
end-reads. In addition, only the end-reads that have high 
mapping quality ( ≥ 20) are used for reassembly. Then the 
end-reads are assembled into a secondary assembly. Let 
the secondary assembly be L2 . Before merging L1 and L2 , 
L2 will be polished to mitigate base errors rate. Therefore, 
L2 goes through two correction processes with mapped 
reads using Racon.

Generating the circular genome
Most bacteria have a genome that consists of a single 
DNA molecule  (i.e., one chromosome)  that is several 
million base pairs in size and is "circular"  (doesn’t have 
telomeres like eukaryotic chromosomes). B-assembler 

performs several additional steps instead of directly 
merging two rounds of assemblies to achieve a circular 
genome. Basically, it removes the overlapping sequences 
and joins the unique sequence to form a circular genome. 
The details of the process are as follows: B-assembler 
applies minimap2 to align L1 and L2 with ‘-cx asm20’ 
parameter to identify overlapping and unique sequences. 
It then discards 40% of overlapped L2 sequences (20% 
of each side) and keeps the middle part (60% of length) 
of L2 . The discarded sequences will be substituted by 
the overlapping sequences of L1 . Therefore, the final 
whole genome sequence consists of 60% of the L2 (mid-
dle part), 40% of the overlapped sequences, and the 
unique sequences of the L1 . Let overlapped and unique 
sequences in L1 be O1 and U1 , respectively, overlapped 
and unique sequences in L2 be O2 and U2 , and new 
merged assembly be A , then:

Recognition of the start position and performing the final 
correction
The starting position of the assembled circular sequence 
can be located at any site if not considering the bacterial 
genome structures. To lay out the circular genome start-
ing from the conventional starting point, dnaA, a gene is 
found in most bacteria and usually close to the origin of 
replication [23], B-assembler uses TBLASTN to search 
for the dnaA alleles. If hits are found, the sequence will 
be shifted based on the best hit so that the genome 
begins with the dnaA gene and on the forward strand. If 
no such matches are found, the sequence will keep the 
default starting point.

As a final step, B-assembler uses minimap2 to map the 
reads to the final assembly and uses Flye’s ‘–polish-target’ 
function to polish the assembly for long-read-only mode.

Hybrid assembly
The method of hybrid-read mode contains the three 
key steps of the long-read-only mode, including 1) ini-
tial assembly, 2) reassembly using the end-reads, and 3) 
merging the initial and reassembled contigs into a com-
plete, circular genome. The difference between long-
read-only and hybrid modes is that since the Illumina 
reads have higher accuracy, B-assembler takes advan-
tage of short reads instead of long reads for polish-
ing and therefore can achieve more accurate assembly 
results. It uses short reads for the following two steps: 
1) Before initial assembly, B-assembler uses bwa mem 
[24] to align short reads to all long reads. The align-
ments are then used for correction by Racon with ‘-e 
0.1 -m 10 -q 30’. Then the corrected long reads are the 
input for the key three steps. 2) At the final step, it uses 

A = (L2− L2 ∗ 40%+U2)+ (U1+ O1 ∗ 40%)
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short reads to polish the circular contig. By comparing 
the performances of several existed short-read polish-
ing tools apollo (v2.4.0) [25], racon (v1.4.20) [15] pilon 
(v1.23) [14] and NextPolish (v1.3.1) [26] (see Supple-
mentary Table  2), we selected pilon for the final pol-
ishing in hybrid mode. It uses bwa mem to map short 
reads back to circular contigs, and pilon with –fix all 
to polish. The polishing procedure repeats three times 
to achieve a whole genome sequence with the minimal 
errors.

Benchmarked datasets
For Simulation data, we simulated both long and short 
reads from one mycoplasma species M. arginini [27]. It 
has been detected in both healthy and diseased animal 
hosts (mouse, goat, monkey, etc.) and is generally consid-
ered a colonizer in animals [28, 29]. Even though the size 
of the M. arginini genome is small (678,592 bp), it con-
tains pervasive tandem repeats, which create a challenge 
for effective genome assembly. The reference genome 
used for the simulation was the strain HAZ 145_1 [27] 
downloaded from the NCBI database. ONT reads were 
simulated using NanoSim (v2.4-beta) [30], an ONT read 
simulator designed to generate artificial long reads. The 
total number of simulated ONT reads was 20,798 and 
covers 300X of the genome, and the length was set in 
the range of 0.1-130kbp with a mean of 10kbp. We also 
generated a synthetic paired-end short reads dataset for 
the same species using ART version 2.5.8 [31]. The simu-
lated short reads mimic those from an Illumina Miseq v3: 
2 × 250 bp pair-end reads, 300 bp mean insert size, 10 bp 
insert size standard deviation, and 250X read depth.

For Nanopore sequencing data, the real sequences 
were from two clinical isolates of mycoplasma species, 
M. arginini (strain 51,226) and M. amphoriforme (strain 
69,156). For M. arginini, both high-coverage ONT long 
reads (208X) and Illumina short reads (7900 X) were 
obtained. For M. amphoriforme, only ~ 364 X ONT 
long reads were sequenced. All the ONT reads were 
sequenced by a MinIon sequencer. ONT library was pre-
pared using a Rapid Sequencing Kit (SQK-RAD004) and 
run on a MinION Flow Cell (R9.4). Illumina reads were 
sequenced by Illumina MiSeq platform in the UAB Heflin 
Genomic Core.

For PacBio sequencing data, we downloaded 14 bacte-
rial strains [32] which included both Gram-positive and 
-negative species from the National Collection of Type 
Cultures (NCTC) 3000 project on the basis of there being 
high-quality reference genome sequences of the same 
strains available for comparison (see Additional file  1 
Table  S5 for species and reference genome accession 
numbers).

Benchmarked tools
As a comparison, these data were also run on several 
other popular assemblers, including wtdbg2 (v2.5) 
[18], Flye (v2.7.1) [19], Canu (v1.8) [17], apollo (v2.4.0) 
[25], racon (v1.4.20) [15] pilon (v1.23) [14], NextPolish 
(v1.3.1) [26], Unicycler (v0.4.8) [20] long-read-mode, 
and Unicycler hybrid-mode. All the algorithms were 
run under the default settings or recommended set-
tings based on their manuals. All the tools were tested 
on Cheaha, the High-Performance Computer Server 
of the University of Alabama. The server is × 86-64bit 
based Linux system. All the tasks were submitted via 
Slurm job scheduling system with 4 CPUs and a total of 
60 GB memory.

Assembly evaluation
For the genomes with a complete reference sequence 
(simulation data and PacBio sequencing data), we applied 
QUAST (v4.3) [33] to calculate the assembly statis-
tics for all the tested algorithms, including number of 
contigs, maximum contig length, genome fraction, GC 
content, number of misassemblies, number of local mis-
assemblies, duplication ratio, number of mismatches per 
100kbp, and number of indels per 100kbp. We also used 
Mauve [34] to visualize the alignments between individ-
ual assembly vs. the reference.

For the real nanopore data, we inspected read align-
ments with respect to the contigs to assess the assem-
blies’ structural accuracy. Since the bacterial genomes 
are haploid, the supplementary alignments cluster in 
one region are unexpected, indicating a potential struc-
tural assembly error. By aligning the nanopore reads back 
to the assembly using minimap2, the Supplementary 
alignments were extracted using samtools. We defined 
a supplementary cluster as more than 10 supplementary 
alignments enriched in the same region. We included the 
metrics of total number of supplementary alignments 
and supplementary clusters for the benchmarked tools 
tested on the real ONT data.

Since the isolated M. arginini strain has both ONT and 
Illumina MiSeq data, these data were subjected to hybrid 
assemblies for B-assembler and Unicylcer. All the other 
real sequencing data were subjected to long-read-only de 
novo assembly.

Experimental validation
To further evaluate the assembly results, 76 low-com-
plexity regions of the M. arginini genome were selected 
for PCR amplification and Sanger sequencing valida-
tion. Minimap2 was used to map the PCR sequences to 
the assembled contigs. The mapping rate, single base pair 
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mismatches, and indels were calculated to indicate the 
assembly accuracy.

Results
Workflow of B‑assembler
B-assembler is designed for ONT/Pacbio long-read only 
or hybrid reads (ONT/PacBio and Illumina) assembly 
(Fig. 1). In long-read only mode, it first selects the long-
est reads that cover ~ 50X (Additional file  1 Note 1 and 
Additional file 1 Table S1) of the genome and corrects the 
selected long reads by the remaining reads to produce 
an initial assembly. The two ends of the initial assembly 
undergo reassembly by a subset of reads that map to this 
region, and the contig generated by these reads replaces 
the two ends of initial assembly. When a join (merging of 
the two ends) is made, the complete and circular assem-
bly is completed. Finally, B-assembler rearranges the start 
position of the merged assembly to the dnaA gene and 
applies a post-correction step that uses high-depth long 
reads to polish the circular draft assembly. In the hybrid-
read mode, the key steps including assembling the cor-
rected longest reads, reassembling the end reads, and 
forming the circular assembly are the same as the long-
read only mode. In addition to this, it combines accurate 
short reads instead of long reads for correction processes 
(i.e., correcting all long reads and polishing final merged 

assembly). The hybrid mode provides a more optimized 
strategy for accurate bacterial genome assembly.

Performance of B‑assembler’s long‑read‑only mode 
on simulated ONT datasets
To evaluate the performance of B-assembler and make 
a comprehensive comparison with other assemblers, 
we first simulated long and short reads from a bacte-
rial strain, M. arginini [27]. A total of 20,798 Nanopore 
reads were simulated at a depth of 300X using nanosim 
[30]. The read lengths range from 0.1kbp to 130kbp with 
a mean of 10kbp. Illumina 2 × 250 bp paired-end Miseq 
reads that covered ~ 250X of the genome were simulated 
using ART [31], with a mean insert size of 300  bp and 
10  bp standard deviation. (Additional file  1 Note 2 and 
Additional file 1 Fig S1). In addition to B-assembler, we 
included long-read assemblers (wtdbg2, Flye, Canu) and 
hybrid assemblers (Unicycler, hybridSPAdes, haslr and 
lathe) for the comparison. We used the default parame-
ters or recommended settings for all the tested tools. The 
performances of B-assembler and other assemblers were 
evaluated by QUAST assembly metrics [33].

For the long-read-only ONT dataset, QUAST statistics 
such as number of contigs, max contig length, genome 
fraction, etc. were recorded for all the benchmarked 
algorithms (Table 1). The full statistics were summarized 
in Additional file  1 Table  S2. Although the M. arginini 

Fig. 1    The workflow of B-assembler. B-assembler has two modes: long-read-only assembly and hybrid reads assembly
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genome contains pervasive low-complexity sequences, 
all the assemblers can generate a single contig that closes 
to the reference size (678,592 bp) implying the advance-
ment of these long-read assemblers. All assemblers (also 
shown in Additional file 1 Fig S2) except wtdbg2 had no 
misassemblies that represent large-scale structural errors 
(> 1000  bp) and no local misassemblies that are small-
scale structural errors (> 85  bp and < 1000  bp). Wtdbg2 
produced 1 misassembly and 4 local misassemblies. This 
is likely due to its homopolymer-compressed binning 
approach, which is less sensitive in repetitive regions, but 
wtdbg2 was the fastest algorithm and consumed the least 
memory.

The reference genome has a GC content of 26.38%. 
Only B-assembler could achieve the exact GC value for 
the long-read only data. Although the genome fraction 
(percentage of aligned bases in the reference genome) of 
B-assembler ranked in the middle (98.446 vs. 99.839 of 
Unicycler’s long-read mode), the duplication ratio (the 
total number of aligned bases in the assembly divided 
by the total number of aligned bases in the reference 
genome) is 1. This implies, as stated in QUAST docu-
mentation, that the higher genome fraction of Unicycler 
and wtdbg2 may be due to contigs that mapped to multi-
ple locations and thus counted multiple times.

The base accuracy was evaluated using number of 
mismatches and number of indels per 100kbp. Both 
B-assembler and Flye have the lowest number of mis-
matches (0.9 and 0.89, respectively). In contrast, Unicy-
cler’s long-read-only mode and wtdbg2 have mismatches 
as high as 65.47 and 217.3 per 100kbp. B-assembler long-
read-only mode uses Flye’s polishing module for the final 
polishing and therefore achieved almost the same sub-
stitution accuracy. While Unicycler’s used Racon and 
wtdbg2 introduced partial order alignment [35] to pol-
ish the assemblies, it seems there is still room to further 

improve the base accuracy. Interestingly, B-assembler 
had no indel errors, while Flye and the other assem-
blers high indel errors. This implies that the two-round 
genome assembly strategy works better than considering 
all reads as a whole to alleviate the indel errors.

Since only Unicycler and B-assembler are the circular-
aware bacteria assemblers, it is not surprising to see that 
only these two software products can correctly identify 
the starting position of the assembled genome (Addi-
tional file 1 Fig S2).

In terms of runtime and peak memory usage, Canu 
spent over 68-fold time and ~ fourfold memory com-
pared to B-assembler. Unicycler adopted miniasm [21] 
as its long-read assembly engine and it was faster and 
consumed less memory usage than B-assembler. How-
ever, as shown in Table 1, the assembly from Unicycler’s 
long-read-only mode contained too many errors. Inter-
estingly, although B-assembler pipeline used Flye as the 
core assembly engine, B-assembler was faster and con-
sumed less memory than Flye. Again, this may be due to 
B-assembler’s two-round assembly strategy which con-
sider assembling subset reads instead of all reads, while 
Flye loaded all the reads at once to the main memory.

Considering all the evaluated factors, B-assembler sur-
passed the other benchmarked tools with the simulated 
long-read dataset and constructed the most accurate 
genome sequence.

Performance of B‑assembler’s hybrid‑read mode 
on simulated datasets
By comparing several short reads polishing tools (apollo 
(v2.4.0) [25], racon (v1.4.20) [15] pilon (v1.23) [14] and 
NextPolish (v1.3.1) [26]) (See Additional file 1 Table S3), 
we selected pilon in B-assembler hybrid-read mode.

We compared B-assembler with Unicycler and other 
three hybrid assemblers (hybridSPAdes (v 3.15.2) [22], 

Table 1  Evaluation of assembly on simulated sequences

# Local mis Local misasemblies, Cov % assembled genome fraction, # SNVs number of mismatches per 100kbp, # Indels number of Indels per 100kbp, L Long-read-only 
mode, H Hybrid mode

Asm # ctg Largest contig Cov % # Local mis # SNV # Indels Time(min) Memory(G)

B-assembler L 1 668,045 98.446 0 0.9 0 56 8.9

wtdbg2 1 658,000 96.842 1 217.3 216.08 11 1.7

Flye 1 701,022 98.444 0 0.89 74.01 724 30.1

Canu 1 676,819 98.455 0 1.62 44.26 3,848 37.2

Unicycler L 1 680,945 99.839 0 65.47 225.6 70 3.5

B-assembler H 1 676,353 99.67 0 0 0 66 11.7

Unicycler H 1 677,975 99.809 0 7.48 5.15 1634 14.8

hybridSPAdes 2 433,245 99.947 1 6.78 0.88 42 16

haslr 1 613,987 90.47 0 1.79 13.36 4 1.3

lathe 1 673,506 95.49 1 12.48 26.75 85 6.7
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HASLR (v 0.8a1) [36] and lathe [37]) on the simulated 
ONT reads and Illumina reads. Except hybridSPAdes, 
B-assembler, Unicycler hybrid mode, haslr, and lathe all 
generated one complete contig. In.

addition, hybridSPAdes and lathe had one misassem-
bly. For the base accuracy, B-assembler performed best 
since it can eliminate all mismatches and indels, while 
the other hybrid assemblers all induced some levels of 
mismatches or indels per 100kbp. Although HASLR was 
the fastest and consumed the least main memory, it can 
only cover 90.47% of the genome. The running time and 
memory usage of B-assembler was much lower than Uni-
cycler. Therefore, B-assembler outperformed all the other 
hybrid assemblers overall.

In addition, to evaluate the resource usage from each 
component in the workflow, we stratified and bench-
marked each key component of B-assembler pipeline 
and recorded the performance of each step. As shown in 
Additional file 1 Table S4, the numbers of mismatch and 
indel errors dropped as the pipeline ran. Thanks to the 
two-round assembly strategy and optimized parameters 
for the assembly and the error correction, a substantial 
drop was observed from the initial assembly to the sec-
ond round of assembly to form and rearrange the circular 
genome.

Performance of B‑assembler’s long‑read‑only mode on real 
ONT datasets
To evaluate the performance of B-assembler on the 
real long-read-only dataset, we deep sequenced an M. 
amphoriforme strain isolated from an infected patient 
and generated 108  k reads covering ~ 305X of the 
genome, with over 94% of the reads are longer than 10kbp 

(Additional file  1 Fig S1). As a comparison, we also ran 
wtdbg2, Flye, Canu, and Unicycler long-read-only on this 
dataset (Table 2). Since this strain diverged significantly 
from the published genome [38] by resequencing analysis 
(data not shown), we cannot use QUAST to evaluate the 
assembly qualities. We introduced two metrics: number 
of supplementary alignments and number of supplemen-
tary clusters. They indicate that there is alignment ambi-
guity due to structural errors based on the fact that we do 
not expect to see supplementary alignments or clusters 
in error-free assemblies.

As shown in Table 2, all the assemblers produced one 
complete contig from M.amphoriforme’s ONT sequenc-
ing data. However, B-assembler outperformed the other 
assemblers by generating a minimum number of sup-
plementary alignments which were scattered all over 
the assembly and did not aggregate, while wtdbg2, and 
Unicycler at least one supplementary alignment cluster. 
In addition, B-assembler had a more uniform depth dis-
tribution when aligning the raw reads back to the assem-
bled genome sequence (Additional file  1 Fig S3), while 
wtdbg2, Canu, and Unicycler dropped at two ends, and 
these depths were not consistent with the middle regions 
(Additional file 1 Fig S3). This suggests that it is challeng-
ing to forming a circular genome for these assemblers. 
This demonstrates that B-assembler outperforms the 
other tools for long-read-only real ONT data  de novo  
assembly.

Performance of B‑assembler’s hybrid‑read mode on real 
datasets
In order to demonstrate the performance of B-assembler 
in hybrid-read assembly, we isolated an M. arginini strain 

Table 2  Evaluation of assembly on ONT sequences

# ctg number of assembled contigs, Suppl. A number of Supplementary Alignments, Suppl. C number of Supplementary alignment Clusters, M.R. Mapping Rate, 
B-assembler L., Unicycler L the long-read modes of B-assembler and Unicycler, B-assembler H. and Unicycler H. the hybrid-read modes of B-assembler and Unicycler

Genome Asm # ctg Length Supl. A Supl. C M.R Time (min) Memory (G) # Mapped 
PCR

Indels SNV

M.arginini B-assembler L 1 681,050 703 0 88.62 88 11.5 68 35 16

B-assembler H 1 685,432 689 0 88.65 1294 23.8 70 7 16

wtdbg2 1 660,247 2,806 12 86.92 7 2.1 57 84 156

Flye 3 700,499 958 1 87.93 29 11.1 64 36 60

Canu 1 793,572 873 1 87.89 2,883 15.7 65 39 41

Unicycler L 2 755,568 759 2 87.91 73 10.6 66 42 99

Unicycler H 61 407,877 8,646 10 76.43 1410 24.5 68 12 50

M.amphoriforme B-assembler L 1 1,047,044 1,290 0 98.95 86 15.4 / / /

wtdbg2 1 1,014,839 3,089 7 98.74 10 3.2 / / /

Flye 1 1,052,944 2,218 1 98.7 254 9.1 / / /

Canu 1 1,066,644 1,719 0 98.92 2,933 28.8 / / /

Unicycler L 1 1,066,967 2,122 1 98.81 97 17.9 / / /
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and deep sequenced on both Illumina MiSeq and Oxford 
MinION platforms. A total of 20,978 ONT reads (208X) 
and 2.8 M 150 bp × 2 paired-end Illumina reads (7900X) 
were generated. Over 78% of ONT reads are longer than 
10kbp. We ran B-assembler and Unicycler on the hybrid 
data and all the other benchmarked algorithms on the 
long reads data.

As shown in Table  2, similar to the M. amphoriforme 
genome assembly, B-assembler got the least number of 
supplementary alignments and no supplementary clus-
ters, while all the other tools generated at least 1 sup-
plementary cluster and more supplementary alignments. 
This suggests that this genome contains regions hard 
to assemble for the other assemblers. The fact that Flye 
and Unicycler generated more than 1 contig as shown in 
Additional file 1 Fig S4 also supports this.

Besides B-assembler, Unicycler is a popular tool that 
supports hybrid data. B-assembler hybrid-read-mode 
generated one complete contig, while Unicycler yielded 
61 contigs, the longest of which is 407,877  bp, much 
smaller than the majority, which average around 700kbp. 
In addition, there are 10 supplementary clusters and 
only 76.43% of the raw reads can be mapped to Unicy-
cler’s hybrid assemblies. It is evident that the Unicycler’s 
hybrid-read mode is far from optimal in this case.

To further evaluate the accuracy of B-assembler, we 
used PCR amplification on 76 selected low-complexity 
locations and performed Sanger sequencing to get the 
sequences of these PCR amplifications. We mapped 
the amplicon sequences to individual assembly using 
minimap2. The mappable PCR sequences were defined 
as those with over 90% of their sequences that can be 

aligned to the assemblies and with a mapping quality of 
60. We also calculated the differences (indels and mis-
matches) between the PCR amplicons and the contigs. 
For the total aligned PCR sequences, B-assembler had 
the minimum number of mismatches and indels. We fur-
ther checked the locations of the errors and found that 
they tended to cluster at the ends of the PCR sequences, 
where Sanger sequencing may be inaccurate. This sug-
gests that B-assembler can achieve a more accurate 
genome assembly which is critical for downstream analy-
sis such as gene annotation. Therefore, the performance 
of B-assembler on M. arginini is better than other assem-
blers by generating a circular genome free of structural 
errors and with minimal base errors.

Performance of B‑assembler’s Long‑read‑only mode 
on PacBio sequence
PacBio sequencing data has a different error profile 
compared to Nanopore sequencing data. All the bench-
marked assemblers can be applied to PacBio data. There-
fore, we downloaded 14 bacterial PacBio sequencing data 
from the National Collection of Type Cultures (NCTC) 
3000 project [39] and ran all the assemblers on this data-
set. The NCTC also provided assembled references for 
these strains that were generated both automatically and 
manually. Thus, we used QUAST to evaluate the per-
formance of these assemblers on this dataset. Detailed 
QUAST assembly metrics can be found in Additional 
file 1 Table S4.

Compared to the other assemblers, B-assembler 
achieved the least number of contigs (Table  3) and the 
N50s are also very close to the references (Additional 

Table 3  Selected QUAST statistics on the PacBio data

# ctg number of assembled contigs, dup. duplication ratio, mis. misassemblies larger than 1kbp

species ID ref B-assembler Canu Unicycler Flye

#ctg # ctg dup mis # ctg dup mis # ctg dup mis # ctg dup mis

NCTC13251 1 1 1.004 16 1 1.006 16 1 1.006 16 1 1.004 16
NCTC13349 2 2 1.001 0 2 1.001 0 2 1.001 0 2 1.001 0
NCTC13360 9 9 1.001 8 15 1.038 20 11 1.016 13 10 1.014 10

NCTC13307 11 10 1.001 6 11 1.013 2 41 1.007 7 11 1.036 13

NCTC3610 19 108 1 3 204 1.032 20 297 1.054 5 120 1.005 6

NCTC10005 3 4 1.002 10 10 1.023 19 4 1.006 15 7 1.019 23

NCTC13348 2 14 1.002 1 19 1.015 11 25 1.004 3 6 1.02 7

NCTC13616 1 1 1 2 4 1.006 1 1 1.002 1 1 1 0
NCTC13277 1 1 1 2 3 1.004 2 1 1.001 0 1 1 0
NCTC11192 2 1 1.002 1 8 1.006 3 5 1.003 5 2 1.002 3

NCTC13626 2 1 1 2 4 1.006 2 3 1.001 0 1 1 0
NCTC10963 4 1 1.001 1 2 1.004 2 2 1.001 2 2 1.001 2

NCTC12419 1 1 1.001 2 1 1.003 0 1 1.001 0 1 1 0
NCTC10833 3 2 1.05 4 4 1.01 4 7 1.025 3 6 1.051 8
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file 1 Table S4). This suggests that B-assembler tends to 
generate complete genomes. Although overall B-assem-
bler can get the minimum number of contigs, we did 
observe that species NCTC3610 and NCTC13348 pro-
duced more contigs than expected. This may be due to 
relatively poor data quality, and, as shown in the NCTC 
website, they are still pending, which means the genomes 
are yet to be assembled. B-assembler also demonstrated 
the best overall performance in resolving genome dupli-
cation sequences (“dup.” in Table 3). In addition, B-assem-
bler also ranked in the first place in terms of generating 
the least number of misassemblies (“mis.” in Table 3).

We also evaluated the accuracy of the assemblies 
based on QUAST’s metrics of number of mismatches 
per 100kbp and number of indels per 100kbp by com-
paring with the references. As shown in Fig. 2, the bac-
terial genome assembler, Unicycler, had the highest 
number of indels and mismatches, while Flye, Canu, and 
B-assembler were very close. These results indicate that 
B-assembler is also capable of assembling PacBio bacte-
rial genomes with less base errors.

Discussion
In this work, we present a new software package, 
B-assembler, for circular bacterial genome de novo 
assembly. B-assembler adopts a two-round assembly 
strategy, where the initial assembly is to build up the draft 
genome and reassembly ensures the formation of the cir-
cular genome. This strategy as well as its error correction 
modules guarantee an accurate genome assembly result. 
B-assembler supports both long-read-only and hybrid de 
novo assembly.

Benchmarked on simulation data, real sequencing data, 
and data from different long-read and hybrid platforms, 

B-assembler outperformed the other assemblers in terms 
of resolving structural errors, reducing base errors and 
indel errors, and generating a circularized genome at the 
same time. This is extremely critical to both basic and 
clinical research in the microbiological field.

B-assembler’s primary use is in cases where a researcher 
wishes to complete a bacterial assembly with a high qual-
ity in a short time. To facilitate this, future development 
of B-assembler will focus on speeding up the process by 
employing multithreading techniques. This will allow 
the user to efficiently get the assembly results. We will 
also extensively test alternative approaches in order to 
improve the accuracy for the hybrid dataset.

Conclusions
B-assembler performed well on both short-read-only 
mode and hybrid-read mode, producing complete con-
tigs than other assemblers. Perhaps more importantly, 
B-assembler produced fewer misassemblies than other 
assemblers. As Next-generation sequencing becomes 
more common, so will complete genome assemblies, ena-
bling new research into genome structure. High-quality 
assemblies free of structural errors, such as those pro-
duced by B-assembler, will be critical to research in this 
field.

Availability and requirements
Project name: B-assembler:  a circular bacterial genome 
assembler;

Project home page:  https://​github.​com/​Chong​Lab/B-​
assem​bler;

Operating system(s): Linux;
Programming language: python, shell;

Fig. 2  Indels and mismatches produced by the benchmarked assemblers on the 14 NCTC PacBio samples. The number of indels and mismatches 
were added per 100kbp

https://github.com/ChongLab/B-assembler
https://github.com/ChongLab/B-assembler
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Other requirements: python 3.0 or higher, and snake-
make (see GitHub page);

License: MIT license;
Any restrictions to use by non-academics:  terms 

stated in MIT License.
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Pacific Biosciences; ONT: Oxford Nanopore Technologies; M. arginini: Myco-
plasma arginini; M. amphoriforme: Mycoplasma amphoriforme; GC: Guanine-
cytosine; NCTC​: National Collection of Type Cultures.
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