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Glioblastoma Multiforme (GBM) is the most common and aggressive form of intracranial
tumors with poor prognosis. In recent years, tumor immunotherapy has been an attractive
strategy for a variety of tumors. Currently, most immunotherapies take advantage of the
adaptive anti-tumor immunity, such as cytotoxic T cells. However, the predominant
accumulation of tumor-associated microglia/macrophages (TAMs) results in limited
success of these strategies in the glioblastoma. To improve the immunotherapeutic
efficacy for GBM, it is detrimental to understand the role of TAM in glioblastoma
immunosuppressive microenvironment. In this review, we will discuss the roles of CD47-
SIRPa axis in TAMs infiltration and activities and the promising effects of targeting this axis
on the activation of both innate and adaptive antitumor immunity in glioblastoma.

Keywords: glioblastoma, immune checkpoint, CD47-SIRPa, tumor-associated macrophages/microglia,
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INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is
characterized by invasive growth and frequent recurrence. Despite of advances in surgical
resection, radiotherapy, and chemotherapy, the median survival time of patients is only 12 to 15
months; the 3-year survival rate is approximately 10% (1, 2). Great progress has been made in the
development of immunotherapy for extracranial tumors. However, most clinical trials of
immunotherapy for GBM have shown only a moderate response and no significant improvement
in over survival (OS) (3).

Currently, immunotherapy for GBM includes immune checkpoint blockade therapy, vaccination
therapy, oncolytic virus therapy, and CAR-T therapy (4–6), which mainly take advantage of the
adaptive anti-tumor immunity (Figure 1). Accumulating evidence suggests that the GBM
microenvironment is characterized by high myeloid cell content, relatively few tumor-infiltrating
lymphocytes (TILs) (7, 8)and T cell dysfunction (9). In contrast, tumor-associated microglia/
macrophages (TAMs) account for 30% to 40% in GBM (10, 11). Approximately 85% of them are
bone marrow-derived infiltrating macrophages/monocytes while the remaining fractions are locally
resident microglia (12, 13), which engage in reciprocal interactions with GBM and adaptive immune
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cell to mediate tumor immune escape (14–16), promote tumor
growth and progression (17–21). Therefore, reeducating,
reactivating, and reconstructing the TAMs functions in GBM
immunosuppressive microenvironment makes them superior
again is a promising field.

The strategies targeting TAMs fall into three main groups: 1)
inhibiting recruitment of the bone marrow-derived infiltrating
macrophages/monocytes (22–24); 2) promoting phagocytosis of
tumor cells by TAMs and restoring its innate antitumor
immunity (25, 26); 3) reprogramming TAMs to antitumor
macrophages/microglial either directly through tumor cell
killing or by reactivating adaptive antitumor immunity (27–
30). The CD47-SIRPa Axis is currently the most widely studied
innate immune checkpoint (31). Interestingly, the accumulating
data shows that target the CD47- SIRPa axis bridging innate and
adaptive antitumor immunity (15, 32). Targeting the CD47-
SIRPa axis activates both innate and adaptive antitumor
immunity (33), which is promising for GBM therapies. This
review will discuss in more detail about the structure and
regulation of innate immune checkpoint CD47-SIRPa and
their functions in the immune-suppressive microenvironment
and therapeutic potential in GBM. We would like to raise
awareness of immune parameters in clinical stratification
schemes and encourage discussions and improvements about
innate anti-tumor immunity-oriented immunotherapies.
Frontiers in Immunology | www.frontiersin.org 2
STRUCTURE OF CD47-SIRPa

The CD47 gene is located on chromosome 3q13 and encodes an
integrin-associated protein. CD47 is an important “self-labeling”
molecule in the immunoglobulin superfamily that contains an
immunoglobulin variable-like amino-terminal domain, five
transmembrane domains, and one carboxy-terminal intracellular
tail (34, 35). Signal regulatory proteins (SIRPs) are inhibitory
immune receptors encoded by a cluster of genes on chromosome
20p13, including SIRPa, SIRPb1, SIRPg, SIRPb2, and SIRPd (36).
SIRPa binds to CD47 with high-affinity (37). Structurally, the
extracellular domain of SIRPa consists of three immunoglobulins
(Ig)-like domains (the NH2-terminal V-like domain and two C1
domains), a single transmembrane segment, and the intracellular
segment containing four tyrosine residues that form two typical
immune-receptor tyrosine-based inhibition motifs (ITIMs). When
CD47 expressed on the surface of GBM cells binds to the NH2-
terminal V-like domain of SIRPa onmyeloid cells, phosphorylation
of the tyrosine residue in the ITIM motif results in the recruitment
and activation of tyrosine phosphatase SHP1/SHP2. This process
affects the levels of downstream de-phosphorylated molecules and
inhibits the phagocytosis of GBM cells by macrophages (38). Hence
CD47 serves as a critical “do not eat me” signal. However, the
signaling mechanisms upstream and downstream of the CD47-
SIRPa axis are incompletely understood.
FIGURE 1 | Cellular and molecular mechanisms of GBM immunotherapy. GBM cells overexpress PDL1, CD47, and other immunosuppressive molecules and bind
the ligands present on cytotoxic T lymphocytes (CTLs) and macrophage, and thereby inhibit the innate and adaptive immune function, leading to the immune escape
of GBM. Targeting immune checkpoint molecules such as PDL1, CD47, and CTLA4 can activate both innate and adaptive anti-tumor immunity. The mechanism of
oncolytic virus therapy is mainly via the creation of viruses that can selectively infect GBM cells, defeat GBM cells, and enhance adaptive anti-tumor immune
responses by the dendritic cell and CTL. Several tumor-related antigens (e.g., IL-13Ra2, EGFRvIII) are expressed on the surface of GBM cells and are used as
specific targets for (CAR) T cell therapy to achieve a precise treatment objective. The vaccination strategy mainly mediates the activation of CTLs by antigen-
presenting cells, thus killing GBM cells.
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EXPRESSION AND REGULATION OF
CD47-SIRPa AXIS

CD47 has been found to be highly expressed in GBM cells,
especially glioblastoma stem cells (39). Its expression levels are
positively correlated with glioma grade and are associated with
worse clinical outcomes (39–41). Hence It has been regarded as a
critical biomarker for glioblastoma (42). Amounting studies have
demonstrated that MYC (43), PKM2-b-catenin-BRG1-TCF4
complex (44), NF-Kb (45), and NRF1 (46) may bind at the
promoter of CD47 to regulate its transcription. SIRPa is
expressed on myeloid cells, including macrophages, dendritic
cells (DCs), neutrophils, and nerve cells (neurons, microglia)
(36). Interestingly, SIRPg is expressed on human activated T cells
and also binds to CD47, albeit with a lower affinity than SIRPa
(31), which may also play a pivotal role in the adaptive antitumor
immunity. More comprehensive research into the dynamic
control of the CD47-SIRP axis will be greatly helpful for us to
understand its functions and optimize its targeting strategies.
THE FUNCTIONS OF THE CD47-SIRPa
AXIS IN GLIOBLASTOMA

The exact functions of CD47 in GBM are still in debate. The
increased expression of CD47 were found to promote the
proliferation and invasion of GBM cells while it did not affect
the proliferation ability of normal astrocytes (47, 48). However,
some other studies found that CD47 could enhance the invasion
ability of GBM cells through the PI3K/AKT pathway but had no
effect on proliferation (49). Moreover, CD47 positive GBM cells
possessed many characteristics that associate with cancer stem
cells, which implies worse clinical outcomes (50). Accumulating
evidence suggests that CD47 binds SIRPa on macrophages,
neutrophils, and dendritic cells, subsequently inhibiting the
cytotoxicity of macrophages and neutrophils, limiting the
antigen-presenting function of dendritic cells, and inhibiting
both innate and adaptive immune functions (38, 50, 51).
THE SIGNIFICANCE OF TARGETING
CD47-SIRPa AXIS IN THE GBM
MICROENVIRONMENT

Targeting the innate immune checkpoint CD47-SIRPa axis
enhances the phagocytosis rate, resulting in a significant
survival benefit even in the absence of peripheral macrophages
(52). Therefore, when studying the effects of CD47-SIRPa
immunological checkpoint inhibitors on the phagocytic
function of macrophages in vitro, their impact on microglia
function must be considered. Targeting the innate immunity
checkpoint CD47-SIRPa axis exerts anti-GBM efficacy mainly
through the following four pathways (Figure 2).

In the first pathway, it leads to enhanced tumor cell
phagocytosis by both M1 and M2 macrophage subtypes and
Frontiers in Immunology | www.frontiersin.org 3
shifts the phenotype of macrophages toward the M1 subtype
in vivo (53). And the phagocytic potential of M1 was similar to
that of M2 in vitro. Phagocytosis by M1 increased in a CD47-
dependent manner by the neutralizing antibody and siRNA
against CD47 but not in M2 (54). In line with previous studies,
Zhu et al. suggest that surgical resection combined with anti-CD47
immunotherapy was shown to promote the recruitment of
macrophages and promote phagocytosis of glioblastoma (25).
Li et al. come to a similar conclusion that humanized
CD47 antibody HU5F9-G4 inhibits CD47 expression, enhanced
tumor cell phagocytosis by macrophage, improves the survival
time of animals, and has nontoxic effects on neurons and other
tissues in a xenograft model derived from the malignant brain
tumor (50).

In the second pathway, it enhances the antigen presentation
ability of DC to generate potent T-cell priming and adaptive
antitumor immune responses (32, 33). Christina et al. suggest
that anti-CD47 treatment alone has limited anti-tumor effects
and is inefficient in inducing changes within the tumor immune
microenvironment or eradicating murine GBMs in immune-
competent hosts. Instead, combined TMZ and CD47 blockade
activates the cGAS-STING pathway, increases T-cell priming,
and thereby activates both innate and adaptive immune
responses in vivo. Hence the combination treatment is further
augmented by adjuvant PD-1 blockade (33). In addition,
radiotherapy was demonstrated to enhance the anti-CD47
therapeutic effects (55).

In the third pathway, glioblastoma cells may be eliminated via
traditional antibody Fc-dependent mechanisms, including
neutrophil cell-mediated antibody-dependent cellular
cytotoxicity (ADCC) and macrophage-mediated antibody-
dependent cellular phagocytosis (ADCP) (56, 57). Recent
studies have demonstrated that neutrophil ADCC toward
cancer cells occurs through a mechanism called trogocytosis,
which can be further improved by targeting CD47-SIRPa
interactions (58). The bispecific antibodies targeting the
membrane-proximal epitope of MSLN improve ADCC activity
by augmenting FcgR-IIIA activation and enhanced ADCP via a
more efficient blockade of the CD47/SIRPa axis (59).

In the fourth pathway, it can induce apoptosis of tumor cells
directly (60). It has been shown that CD47 antibody-induced
apoptosis of cancer cells is due to neither ADCC nor CDC.
Instead, such antitumor activity by bivalent scFv is presumably
attributable to cell death caused by the ligation of CD47 (61, 62).
And tumor cells may be eliminated through direct induction of
apoptosis by a novel pathway involving regulation of cAMP
levels by heterotrimeric Gi with subsequent effects mediated by
PKA (63, 64). However, its specific functions and mechanism in
GBM require further studies.

Collectively, targeting the immune checkpoint complex
CD47-SIRPa has been shown as a promising anti-tumor
strategy that may remodel the GBM microenvironment, restore
innate and adaptive immunity functions, and improve the
prognosis of patients with GBM. Notably, these promising
strategies still need considerable refinement before becoming
the standard clinical treatment options for GBM.
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IMMUNOLOGICAL CHECKPOINT
INHIBITORS TARGETING CD47-SIRPa AXIS

Currently, inhibitors targeting CD47-SIRPa immunological
checkpoints are in preclinical and clinical study phases. These
inhibitors include 1) monoclonal antibodies (CD47 monoclonal
antibody Hu5F9-G4, human IgG4 subclass; SIRPa monoclonal
antibody FSI-189), which are mainly to block the anti-
phagocytosis signal and reactive macrophages to attack and
destroy tumor cells (65, 66); 2) recombinant fusion proteins (TTI-
621, SIRPa-Fc fusion protein, human IgG1 subclass; TTI-622,
SIRPa-Fc fusion protein, human IgG4 subclass), which are
composed of the N-terminal V domain of human SIRPa and the
human IgG Fc region. The N-terminal V domain of human SIRPa
bind human CD47 on tumor cells and prevent it from delivering
inhibitory signals to macrophages. At the same time, The IgG Fc
region of SIRPaFc can bind to the high-affinity receptor FcgRI
(CD64) as well as to the low-affinity receptors FcgRII (CD32) and
FcgRIII (CD16) on macrophages to further enhance macrophage-
mediated ADCP, tumor antigen presentation, and effective anti-
tumor activity. Lower affinities for normal red blood cells and
reduced side effects are important advantages of recombinant fusion
protein therapies (67); 3) bispecific antibodies (NI-1701, anti-CD19/
Frontiers in Immunology | www.frontiersin.org 4
anti-CD47 bispecific antibody; NI-1801, anti-CD47/mesothelin
bispecific antibody); VEGFR1D2-SIRPaD1. NI-1701 has three
arms. The targeting arm binds CD19, a cell-surface antigen
expressed by B-cell-origin tumors. The effector’s arm destroys the
CD47-mediated anti-phagocytosis signal. The Fc arm of the
antibody can recruit macrophages and other innate immune killer
cells. NI-1801 destroy mesothelin-positive solid tumors through
the innate immune system; VEGFR1D2-SIRPaD1 consists of the
second extracellular domain of VEGFR1 (VEGFR1D2) and the first
extracellular domain of SIRPa (SIRPaD1), which exerted potent
anti-tumor effects via suppressing VEGF-induced angiogenesis and
activating macrophage-mediated phagocytosis (68–70). Among the
immunological checkpoint inhibitors, Hu5F9-G4, TTI-621, and
TTI-622 are undergoing Phase I clinical trials, although the
complete data have not been published (71).
SAFETY ASSESSMENT AND FUTURE
PERSPECTIVES

The main concern of CD47 inhibitors is the risk of hematological
toxicity such as anemia, thrombocytopenia, and leukopenia,
A

B D

C

FIGURE 2 | The potential mechanism of CD47-SIRPa inhibition in GBM. Targeting the CD47-SIRPa axis may exert anti-GBM effects through the following four
pathways: (A) Eliminate GBM cells through traditional antibody Fc-dependent mechanisms, including ADCP, ADCC, and CDC. (B) it leads to enhanced tumor cell
phagocytosis by macrophage through disrupting the binding of CD47 to SIRPa. (C) Promote apoptosis of GBM cells. (D) Restore dendritic cells' function to present
antigen to CD4+ and CD8+T cells, thereby stimulating an anti-tumor adaptive immune response.
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given the high expression of CD47 on normal red blood cells and
platelets (72, 73). Preclinical studies show that CD47 inhibitors
in mice are well-tolerated, with no obvious signs of toxicity (50,
74). However, Arch Oncology and Celgene discontinued a
clinical trial of the CD47 inhibitors because of possible off-
target effects such as anemia (75). One of the most important
issues is to reduce or avoid potential toxicity while preserving
anti-tumor effects.

The toxicity of anti-CD47/SIRPa antibodies appears to be Fc-
dependent. It may be desirable to block the SIRPa-CD47
interaction by antibodies devoid of the Fc portion or optimize
the structure of the Fc portion. Meanwhile, targeting tumor cells
for FcR-mediated phagocytosis using intact antibodies (31). For
example, the macrophage checkpoint inhibitor 5F9 combined
with rituximab showed promising activity in patients with
aggressive and indolent lymphoma, with no clinically
significant toxicity (65). SIRPa expression in normal cells is
much narrower than CD47 and its targeting may result in more
limited toxicity, such as recombinant fusion proteins TTI-621
and ALX148 and high-affinity monomeric SIRPa with lower
affinities for normal red blood cells (67, 76, 77), which is also an
ideal strategy. Red blood cells act as a “sink” binding to anti-
CD47 antibodies and reduce the effective therapeutic dose.
Hence, optimized initiation dose and maintenance dose to
achieve an effective therapeutic blockade of CD47/SIRPa Axis
is pivotal. For example, a non-human primate study revealed that
the effector function competent mAb IgG1 C47B222-(CHO)
showed antitumor activity in vitro and in vivo while decreased
red blood cells (RBC), hematocrit and hemoglobin by >40% at
1 mg/kg (78). However, toxicokinetic studies suggest that
alternative treatment regimens for Hu5F9-G4 (a low initiation
dose and a higher maintenance dose) may contribute to
achieving therapeutic efficacy with lower toxicity (71).
Frontiers in Immunology | www.frontiersin.org 5
CONCLUSIONS

Preclinical studies have found that targeting the immunological
checkpoint complex CD47-SIRPa can inhibit the development of
glioblastoma, enhance the function of phagocytic cells, restore the
function of dendritic cells and T lymphocytes, and exert anti-tumor
effects by improving innate and adaptive immune responses.
However, there are still a series of biosafety problems such as
anemia that remain to be solved. Besides, it is incompletely
understood how CD47-SIRPa blockade works at the molecular
level. Further understanding of the mechanism of CD47-SIRPa
inhibitors will help to improve the efficacy and reduce the side
effects. Ongoing clinical trials will further clarify their efficacies as
single agents or in combination therapies. Careful observations of
cytotoxic T cell response, T cell exhaustion, immune gene
expression signatures in GBM subtypes, immune suppression
(predominant immunosuppressive cells such as TAMs) may aid
in identifying patients suitable for this therapy, avoiding potential
toxicities and designing optimal combination therapies.
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