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Abstract: We report the synthesis, characterization, and photopatterning of high-k inorganic
nanoparticles that are covered with highly fluorinated carboxylic acid and, as a result, are solution-
processable in fluorous liquids. Barium titanate (BTO) nanoparticles, 7–8 nm in diameter, were
prepared under solvothermal conditions and were surface-modified with perfluoroalkyl ether-type
carboxylic acid molecules via ligand-exchange reactions. Thin films with a high dielectric constant
(9.27 at 1 kHz) were achieved by spin-coating homogeneous solutions of BTO nanoparticles in a
fluorous solvent (HFE-7500). Additionally, electron-beam lithography and photolithography were
applied to the thin films of BTO nanoparticles, yielding BTO patterns with scales of 300 nm and
5 µm, respectively. Thus, an approach for a chemically non-damaging solution process of inorganic
materials for device implementation was successfully demonstrated.
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1. Introduction

Designing suitable dielectric materials is deemed essential for various applications, including
transistors, passive capacitors, power-storage devices, and actuators. In addition to the dielectric constant,
various aspects of gate dielectrics that bridge the active semiconductor layer and gate electrodes in
organic field-effect transistors (OFETs) play a crucial role in determining the overall operation and
performance of OFETs [1,2]. Notably, the limited voltage range of the power supply available in typical
OFET applications (e.g., wearable sensors) necessitates new gate dielectrics with enhanced dielectric
constants (k), which would allow OFETs to operate at low voltages.

Metal oxides and silicon nitrides, fabricated using plasma-enhanced chemical vapor deposition [3]
and sputtering [4], have been studied as gate dielectrics in OFETs. While the common tools for oxide
fabrication often require an expensive, complex vacuum process and/or elevated temperatures, methods
for fabricating high-k dielectrics amenable to the solution-processing protocol are highly desirable for
OFET gate dielectrics considering inexpensive, low-end applications of OFETs. Solution-based processes,
such as spin-coating, spraying, and printing, are employed to deposit self-assembled monolayers [5],
inorganic oxides [6], and polymer thin films [7–9]. However, polymers typically have dielectric constants
far lower than those of inorganic materials [10]. Additionally, the gate leakage problem and pinhole
formation usually set the lower limit for the film thickness of polymer gate dielectrics, making it difficult
to realize the large gate capacitance required for low-voltage OFET operation [9,11].

Nanocomposites that consist of inorganic nanoparticles and organic hosts have been studied for
the purpose of achieving a high gate dielectric constant and processability [12]. Often, the surface
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modification of inorganic particles that involves ligand or polymer attachment at the particle surface is
implemented to endow them with a high affinity to a matrix [13,14], and the resulting good dispersion
makes it feasible to fabricate dielectric thin films using various solution-processing methods. Thin-film
composites that consist of high-k ceramic nanoparticles, such as BaTiO3 (BTO) and TiO2, have been
characterized and implemented as gate dielectric materials in OFETs [6,15,16]. The dielectric constants
of composites exhibit significant dependence on the dielectric constants and loading fractions of the
ceramic constituents in the composites. However, various studies have revealed that the effective
dielectric constants of nanocomposites are influenced by the homogeneity of the dispersion in the
composites, which depends on factors such as filler size/shape and ligand chemistry [17,18].

Electronic devices generally consist of stacked layers with distinct functionalities fabricated via
multiple processing steps, and the integrity of one layer may be compromised depending on its
compatibility with the rest of the processing steps. For example, in many cases, a layer of organic
semiconductor material tends to be damaged upon subsequent solution processing steps. Chemical
orthogonality afforded by fluorous material chemistry allows the fabrication of multiply stacked layer
structures without undermining the intended functionality of the established organic materials [19].
High-k nanocomposites with such chemical orthogonality can be realized by encapsulating nanoparticles
with fluorous organic shells [20]. In 2017, we modified the surface of BTO nanoparticles (diameter of
approximately 80–100 nm) with fluorine-containing moieties, achieved good dispersion in fluorous
solvents, and fabricated dielectric layers of k = 21.5 (at 1 kHz) [21]. While this value is higher than
what is achievable with general polymer dielectrics, one method to further reinforce the dielectric
properties of composite layers involves the bimodal mixing of particles of disparate sizes, which allows
an even higher filler packing density [22]. Considering the complex size dependence of the BTO particle
structure and the dielectric constant [22–24], in this study, we investigated small BTO particles prior
to mixing with larger BTO particles (80–100 nm). BTO nanoparticles (7–8 nm) were synthesized and
surface-modified with fluorous ligands, as shown in Scheme 1. Their dispersions in fluorous solvents
were prepared successfully, characterized, and used to fabricate thin-film dielectric layers via simple
spin-coating. The direct photopatterning of BTO thin films was achieved via electron-beam (e-beam)
lithography and photolithography.
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Scheme 1. Synthesis of decanoic acid-capped barium titanate (BTO-DA) and perfluoro-3,6,9-
trioxatridecanoic acid-capped barium titanate (BTO-PECA) via the solvothermal method and the
ligand-exchange reaction.

2. Materials and Methods

2.1. Synthesis of Decanoic Acid-Capped BTO Nanoparticles (BTO-DA)

Among the various chemical methods for synthesizing nanoparticles (e.g., sol-gel [25], hydrolysis of
metallic precursors [26]), the nonhydrolytic synthesis of BTO nanoparticles with surface capping ligands
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was employed in this study [27]. BTO nanoparticles were prepared as described by Chen et al. [27].
Benzyl alcohol (Sigma–Aldrich, St. Louis, MO, USA) (20 mL) was added to 0.74 g of metallic Ba
(Strem, Newburyport, MA, USA) in a round-bottom flask. The mixture was stirred at 80 ◦C until the
metallic Ba was clearly dissolved and the solution became transparent, with a pale yellow color. Then,
titanium (IV) isopropoxide (1.53 g, Sigma–Aldrich, St. Louis, MO, USA) was syringe-injected into the
solution at room temperature, followed by stirring at 30–50 ◦C until the formation of white precipitates.
The precipitates were added to ligand solutions that consisted of oleylamine and a 2.5-fold excess of
decanoic acid (TCI, Tokyo, Japan). The reaction proceeded at 320 ◦C and was terminated after 24 h [28].
The resulting BTO-DA particles were recovered via centrifugation (4000 rpm, 5 min) after adding
polar solvents (e.g., ethanol, acetone). The particles were washed for several cycles via re-dispersion in
toluene followed by precipitation to remove any organic residue. Approximately 0.31 g of BTO-DA
was obtained as a light brown powder. The crystal structure of the nanoparticles was examined using
X-ray diffraction (XRD) analysis (XPert-PRO MRD, Philips, Amsterdam, The Netherlands). The size of
the nanoparticles in the solution was estimated using dynamic light scattering (DLS) (ELS-Z, Otsuka,
Hirakata, Japan), and real-space images of the nanoparticles were obtained using a transmission
electron microscope (TEM) (CM200, Philips, Amsterdam, The Netherlands).

2.2. Ligand-Exchange Reaction of BTO-DA to BTO-PECA (Perfluoro-3,6,9-trioxatridecanoic Acid-Capped
BTO Nanoparticles)

While the preparation of nanoparticles capped with fluorous moieties has been achieved through
various methods [29–31], in this study, BTO nanoparticles with highly fluorinated ligands were obtained
using ligand-exchange reactions [32,33]. To impart solubility to the synthesized BTO nanoparticles
(BTO-DA) in a fluorous solvent, perfluoro-3,6,9-trioxatridecanoic acid (PECA) (Fluorochem, Hadfield,
UK)—a perfluoroalkyl ether-type ligand functionalized with a carboxylic acid group at the end of the
chain—was used to substitute the organic capping ligand surrounding the inorganic nanoparticles.
Highly concentrated dispersions of nanoparticles are often recommended for colloidal processing,
and one of the methods for attaining a high concentration involves minimizing the thickness of the
organic layers surrounding the ceramic nanoparticles [34]. Accordingly, we used PECA, which has
a relatively low molecular weight, as a colloid stabilizer. BTO-DA (0.31 g) and PECA (0.93 g) were
added to 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl hexane (HFE-7500, 3M, St. Paul,
MN, USA) (5 mL), which is a fluorous solvent, followed by stirring at 130 ◦C for 24 h. The reaction
mixture gradually became transparent as the highly fluorinated ligands were bound to the particle
surface. After the reaction was complete, the temperature was lowered to room temperature, and
the solution was filtered using a syringe filter (Nylon, 0.45 µm). An excess amount of acetone was
then poured into the filtered solution to precipitate the BTO particles surrounded by the fluorous
ligand molecules (BTO-PECA), and the final samples were collected via centrifugation. The washing
process was repeated several times using acetone, and 0.28 g of BTO-PECA was obtained after vacuum
drying. Fourier-transform infrared (FT-IR) spectroscopy (VERTEX 80 V, Bruker, MA, USA) was
performed to probe the binding of the ligands to the nanoparticle surface. Thermogravimetric analysis
(TGA, STA409PC, Netzsch, Selb, Germany) was performed to monitor the change in the weight of the
nanoparticles with temperature increments (10 ◦C/min).

2.3. Layer Preparation for Dielectric-Constant Measurement

Cr-coated glass substrates were cleaned with acetone, methanol, and deionized water for 5 min
each using ultrasonication. Then, the substrates were cleaned via ultraviolet (UV)–ozone treatment.
The BTO insulator layer on the Cr layer of the substrates was fabricated by spin-coating BTO dispersions
(5 wt./vol.%; BTO-DA in toluene, BTO-PECA in HFE-7500) at 1500 rpm for 1 min. The coated samples
were baked and annealed sequentially at 70 and 100 ◦C for 30 min each. The thickness of the films
was measured using a KLA-Tencor surface profiler. Al electrodes (thickness 100 nm) were then
thermally evaporated onto the insulator layer through a shadow mask, resulting in the formation of
metal–insulator–metal (MIM) structures. The capacitance of the MIM device was measured using an
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LCR meter (ZM2353, NF Corp., Yokohama, Japan), and the relationship Ci = ε0k/d (ε0 represents the
permittivity of vacuum, k is the dielectric constant, and d represents the film thickness) was used to
determine the dielectric constant.

2.4. Pattern Fabrication Using Electron-Beam (E-Beam) Lithography and Photolithography

The thin films made of BTO-PECA nanoparticles were patterned via e-beam lithography.
A BTO-PECA dispersion in HFE-7500 (0.05 g/mL) was spin-coated on a Si wafer at 500 rpm, and the
substrate was baked at 95 ◦C for 2 min. The resulting 109 nm thick, solvent-free thin film was subjected
to e-beam lithography at an acceleration voltage of 80 keV and a beam current of 0.5 nA using an
e-beam exposure tool (NanoBeam NB3, Nanobeam Ltd., Cambridge, UK). E-beams were irradiated
to produce 300 nm wide line arrays with controlled periods (600, 800, and 1000 nm). The beam
dose was varied systematically from 500 to 3800 µC/cm2. The exposed substrate was developed in
methoxy-nonafluorobutane (HFE-7100, 3M, St. Paul, MN, USA) for 1 min.

Photolithographic patterning of the BTO-PECA nanoparticles was performed by embedding
them in an acid-crosslinkable, highly fluorinated polymer binder and a photoacid generator (PAG). The
binder polymer was poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl methacrylate-r-glycidyl
methacrylate) [P(FDMA-r-GMA)], which was synthesized via the free-radical polymerization
method [35]. First, radical inhibitors added to FDMA (Fuxin Hengtong, Fuxin, China) and GMA
(Sigma–Aldrich, St. Louis, MO, USA) were removed by passing through a short plug of Al2O3 powder
(Sigma–Aldrich, St. Louis, MO, USA). The FDMA (4.00 g) and GMA (0.75 g) were dissolved in
benzotrifluoride (6 mL, Sigma–Aldrich, St. Louis, MO, USA), to which 2,2’-azobisisobutyronitrile
(0.048 g, AIBN, Junsei Chemical, Tokyo, Japan) was added. The polymerization mixture in a Schlenk
tube was subjected to three freeze–pump–thaw cycles in a N2 atmosphere. The sealed tube was heated
to 72 ◦C, with stirring for 8 h. The reaction mixture was cooled to room temperature and poured
into n-hexane (Daejung, Siheung-si, South Korea). The resulting polymer powder was recovered via
filtration, washed with a copious amount of n-hexane, and finally dried under a reduced pressure to
obtain 3.83 g of P(FDMA-r-GMA) as a white solid.

A dispersion of BTO-PECA nanoparticles (0.10 g) was prepared by adding them to a solution of
P(FDMA-r-GMA) (0.30 g) and a PAG (0.015 g, Irgacure® CGI-1907, BASF, Ludwigshafen, Germany)
in HFE-7500 (2 mL). It was then spin-coated onto a pre-washed Si wafer at 1500 rpm. The coated
substrate was baked at 80 ◦C for 5 min and exposed to 4.0 J/cm2 of 365 nm UV light through a
photomask. The exposed wafer was baked again at 90 ◦C for 5 min and developed in HFE-7500 for 15 s,
sequentially. The UV irradiation was performed using a spot exposure-type UV light-emitting diode
curing system that emitted 365 nm single-wavelength light (UV LED, SMT UV Technology, Bucheon-si,
South Korea). The thicknesses of the fabricated films and patterns after development were measured
using a stylus-type thickness profiler (Alpha-Step D-300, KLA-Tencor, Milpitas, CA, USA). The thin
films and micropatterns were examined using scanning electron microscopy (SEM) (S4300SE, Hitachi,
Tokyo, Japan) after Pt deposition on top of the samples.

3. Results and Discussion

3.1. Structural and Morphological Properties of BTO Nanoparticles

The XRD patterns of the BTO nanoparticles (BTO-DA, BTO-PECA) (Figure 1) are consistent
with crystalline BTO without the formation of major byproducts such as BaCO3 and TiO2 that are
commonly used as precursors in solid-state reactions to synthesize BTO. The representative peak
splitting at 2θ = 45◦ [i.e., (002), (200)] indicates a tetragonal polymorph [36], but the corresponding
peak shown in Figure 1 is apparently too diffuse to make a distinction, presumably owing to the small
particle size [37]. On some occasions, broad XRD profiles have been attributed to the coexistence of
cubic and tetragonal phases [38]. The average particle sizes of BTO-DA and BTO-PECA estimated
using the Scherrer equation were 3.7 and 5.2 nm, respectively [39]. The similar profiles between
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BTO-DA and BTO-PECA suggest that the particles retained their crystal structures through the
ligand-exchange reaction. In previous studies, the tetragonal phase of bulk BTO perovskite structures
was formed at room temperature, and the cubic phase was stable above the Curie temperature of
130 ◦C. Notably, Uchino et al. [23] studied the dependence of the crystal structure of BTO on the particle
size and observed the transition from tetragonal symmetry to cubic symmetry as the particle size
decreased below the critical value of 120 nm. While a broad range of the critical particle size—below
which the cubic phase is stable—has been reported, it is common to observe cubic symmetry in BTO
nanopowders [36,39].
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Figure 1. Powder XRD patterns of BTO nanoparticles (BTO-DA and BTO-PECA) compared to the
pattern of cubic BTO (JCPDS NO. 31-174).

Transmission electron microscopy (TEM) was implemented to obtain real-space images of the BTO
nanoparticles. While numerous attempts to obtain nonisotropic (elliptical, triangular, rod) nanoparticles
with controlled dimensions have been made [40], the TEM micrographs of BTO-DA and BTO-PECA
in Figure 2 show that the BTO nanoparticles were well-dispersed and characterized by mostly spherical
morphologies with average particle diameters of 7.8 nm [27]. The aspect ratios of BTO-DA and
BTO-PECA in the TEM images were 1.05 (±0.11) and 1.04 (±0.04), respectively. According to the
micrographs, the particle sizes hardly changed after the ligand-exchange reaction. A particle-size
analysis revealed that the particle sizes for BTO-DA in n-hexane and BTO-PECA in HFE-7500 were
monomodal, and cumulative histograms indicated that the particle-size range of 0–30 nm accounted
for >90% of the nanoparticles (Figure 2c,f). The small shift in the particle size distributions of BTO-DA
and BTO-PECA, observed in Figure 2, may be caused by a small degree of agglomeration, but the
BTO-PECA solution maintained this homogeneous dispersed state and was solution-processable for
thin-film fabrication, as shown later in the paper.Materials 2019, 12, x FOR PEER REVIEW 6 of 13 
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3.2. Characterization of BTO Nanoparticle Ligands

The surface anchoring of the ligand molecules onto the BTO nanoparticles was examined
using FT-IR spectroscopy. Figure 3 shows the spectra of the pristine ligands (DA, PECA) and
surface-modified nanoparticles (BTO-DA and BTO-PECA). Absorption peaks at 2954, 2923, and
2852 cm−1, which are characteristic of alkyl chain stretching of the DA ligand, were clearly observed for
BTO-DA [41]. For BTO-PECA, these peaks were suppressed (but not completely), and absorption peaks
of perfluoroalkyl chain stretching at 1307, 1188, and 1110 cm−1 emerged. These changes indicate that
an effective ligand-exchange reaction, which introduced PECA onto BTO-DA, was accomplished [20].
The chemical binding of carboxylic acid-functionalized ligands onto metal-oxide surfaces accompanies
the conversion of the acid group to the carboxylate form. Therefore, the shift in the characteristic FT-IR
absorption peaks suggests the ligand binding on the nanoparticle surfaces [30]. As shown in Figure 3c,
the stretching peak at 1695 cm−1 corresponding to the carboxylic acid group of the DA ligand was not
visible for BTO-DA. However, BTO-DA exhibited an absorption peak at 1542 cm−1, attributable to
carboxylates [42]. Similar displacement of an absorption peak was observed when a comparison was
made between the PECA ligand and BTO-PECA (Figure 3c); the PECA ligand exhibited a stretching
peak at 1780 cm−1, whereas the BTO-PECA exhibited a carboxylate peak at 1676 cm−1. These unique
shifts suggest that the carboxylic acid-functionalized ligands were chemically attached to the surface of
the BTO nanoparticles via thermal ligand-exchange reactions.

The degree of incorporation of the PECA ligands onto BTO-PECA was investigated using TGA.
It is well known that the extent of ligand attachment significantly affects the dispersion characteristics
of nanoparticles in a solvent [29,43]. A homogenous dispersion becomes unstable when the coverage of
the ligand is insufficient. Therefore, one of the issues with surface modification via ligand association
is the reverse, thermally activated ligand dissociation. This reaction leads to the aggregation of the
nanoparticles, causing the specimen to lose its distinctive, beneficial characteristics originating from
the homogeneous dispersion [44]. According to the TGA results (Figure 4), the onset of significant
weight loss occurred above 250 ◦C, indicative of the robust surface coverage of the nanoparticles by
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DA and PECA ligands. The weight fraction of the attached ligands was quantified based on the TGA
weight loss of BTO-DA and BTO-PECA at high temperatures, presumably pertaining to random
decompositions of the organic ligands [29]. The weight loss of 19 wt.% observed for BTO-DA translates
to the binding of approximately 6 DA ligands per unit area on the nanoparticle surface, assuming
unimodal spherical nanoparticles with an average diameter of 7.8 nm (Figure 2). The weight loss
(29 wt.%, Figure 4) for BTO-PECA originated from the decomposition of PECA and unexchanged DA.
Assuming a one-to-one substitution of PECA ligands for DA through the ligand-exchange reaction, the
calculation based on the weight loss suggests that as much as 65% of the DA was replaced with PECA.
This is consistent with the remnant DA peaks observed in the FT-IR results for BTO-PECA (Figure 3).
Although the prolonged reaction time enhances the efficiency of the ligand-exchange reactions, it is
anticipated that the steric interactions caused by the bulky PECA compared to DA would delimit the
highest attainable efficiency.
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The surface-modified BTO-PECA exhibited good solubility in the fluorous solvent, which is
required for thin-film fabrication using fluorous solution processing. Figure 5 shows vials of BTO-DA
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and BTO-PECA in n-hexane and HFE-7500, respectively. The chemistry and miscibility of ligands
on nanoparticle surfaces control the preferential localization of particles within the domains of the
matrix [45]. While the BTO-DA was well-dispersed in n-hexane—an organic solvent compatible with
decanoic acid—the macrophase separation observed for BTO-DA in HFE-7500 signals unfavorable
interaction between the nanoparticles and the fluorous solvent. By contrast, the homogeneous state of
the BTO-PECA in HFE-7500 indicated dispersion of the nanoparticles in the fluorous solvent, suggestive
of effective surface mediation attained via ligand exchange [20]. The homogeneity/heterogeneity of
these samples did not change over several months of observation.
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Figure 5. Photographs of vials containing BTO-DA and BTO-PECA in organic and fluorous solvents
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3.3. Dielectric Constant of BTO-PECA Films

An MIM structure was fabricated to investigate the dielectric properties of the highly fluorinated
inorganic dielectric materials. The solution of BTO-PECA in HFE-7500 was spin-coated onto Cr glass
to form a 250 nm thick film, which exhibited a dielectric constant of k = 9.27 at 1 kHz (Figure 6). This
value exceeds those of the fluorinated polymers generally used for capacitors (k = 1.9–2.8) [10]. Barium
strontium titanate nanoparticles that have a comparable size to BTO-PECA (5–8 nm) and are covered
by oleic acid molecules have a similar dielectric constant (k = 5–6 at 100 Hz) [15]. Notably, these
dielectric-constant values for BTO particles in the nanometer regime (<10 nm) are significantly lower
than those of BTO composites prepared with larger BTO particles [20–22,30,46]. This trend agrees
with previous reports on the grain-size dependence of BTO dielectric constants [24,47]. The thickness
dependence of the dielectric constant of BTO films has been investigated in the past, and the smaller
dielectric constants for the thinner films were attributed mainly to the grain size effect [47,48]. The grain
size of the BTO-PECA thin films was determined by the nanoparticle size and was expected to be
independent of the film thickness.Materials 2019, 12, x FOR PEER REVIEW 9 of 13 
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The Jayasundere–Smith model, one of analytical theories for the 0–3 composite system, accounts
for the particle–particle dipolar interaction and is anticipated to be more accurate even at higher filler
loading compared to the Kerner model [49]. This model was employed to estimate the dielectric
constant of BTO nanoparticles without ligands (k = 32.7). This value is significantly higher than that
of the ligand-substituted counterparts and comparable to the values attained for BTO particles of
similar sizes [50]. Here, the volume fractions of inorganic BTO and the substituting ligands were
estimated based on the TGA results. Densities of 1.8 and 6.02 g/cm3 were used for the ligands and BTO,
respectively. The representative dielectric constant for fluorinated polymers (k = 2) was assumed for
the ligands. Ligands immobilized onto a rigid filler surface behave differently from those in unbound
states and constitute an “interphase region” with unique dielectric characteristics [51]. Considering the
nanoscale sizes of the BTO particles studied here, the effect of this interphase region was anticipated to
be significant, in agreement with the prediction by Li and coworkers [52]. Therefore, elucidation of
dielectric-constant contributions from each phase of the composites would require a detailed analysis
accounting for the “interphase” effects, as well as other attributes of the fillers (e.g., spatial distribution
and orientation), which is beyond the scope of this paper.

3.4. Lithographic Patterning of BTO-PECA

Two lithographic techniques were implemented independently to generate thin-film patterns of
BTO-PECA: E-beam lithography and photopatterning with UV exposure. Figure 7a shows SEM images
of negative-tone line patterns obtained via e-beam writing. The developed image consists of alternating
regions of 300 nm wide lines and spaces (space widths: 700, 500, and 300 nm). The reduced solubility
of BTO-PECA upon e-beam irradiation is mainly attributed to two competitive mechanisms [53]. C–F
bond cleavage on PECA induced by high-energy irradiation generated free-radical species, which
coupled with each other, forming intermolecular crosslinks. It is also plausible that the PECA ligands
dissociated from BTO nanoparticles as a result of electronic excitation of the carboxylate group of
the PECA ligands, reducing the compatibility of the nanoparticles with the fluorous developing
solvent. In this paper, we only present the results obtained at an e-beam exposure dose of 3000 µC/cm2

(Figure 7a). The magnified image on the right side of Figure 7a reveals the rough edges of the line
patterns, which we believe can be addressed in the future by optimizing the processing conditions.

To fabricate micropatterned structures of high-k BTO-PECA via UV irradiation, the inorganic
nanoparticles were embedded into thin films composed of a crosslinkable binder and a PAG. A random
copolymer prepared with FDMA and GMA, i.e., P(FDMA-r-GMA), functioned as a binder as
it can form an insoluble polymer network efficiently via acid-catalyzed ring-opening reactions.
As a PAG, CGI-1907 was employed, because it could be dissolved in HFE-7500 and liberates strong
nonafluorobutane sulfonic acid, whereby the ring-opening reactions are triggered. A homogeneous
mixture of BTO-PECA, P(FDMA-r-GMA), and CGI-1907 in HFE-7500 was spin-coated on a Si wafer
to form a 700 nm thick film, and the coated substrate was exposed to 365 nm UV light through a
photomask. After a baking step at 90 ◦C, the substrate was successfully developed in HFE-7500 to
produce negative-tone, 5 µm-scale features, as shown in Figure 7b. Notably, the thermal treatments
with lower temperatures tended to improve the quality of the resulting patterns. This dependence on
the thermal treatment conditions was speculated to be caused by the presence of epoxy-containing
glycidyl methacrylate (GMA) components in the polymer binders. GMAs were prone to ring-open
and go through a series of reactions at elevated temperatures, potentially causing even the unexposed
regions to lose the solubility during the forthcoming development process.
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with UV exposure.

4. Conclusions

The solution processability of 7–8 nm barium titanate (BTO) nanoparticles in fluorous solvents
was achieved via the modification of the particle surface with the highly fluorinated PECA ligand. Thin
films were fabricated by spin-coating the BTO-PECA dispersion in HFE-7500 and were characterized by
a dielectric constant as high as 10.0 at 1 kHz and photopatterning feasibility. Under e-beam lithographic
conditions, the BTO-PECA films were tailored to produce features with a size of 300 nm without
any binder material. Under photopatterning with UV exposure, the nanoparticles embedded into
crosslinkable binder films formed 5 µm-scale features via UV-triggered, acid-catalyzed ring-opening
reactions. The pattern quality including resolution and line edge roughness may further be improved
by more detailed investigations on the relationships between the lithographic process variables.
The concept of photopatternable functional nanomaterials that are attainable via fluorous solution
processing would be potentially useful in solution-processed organic electronic devices. In future
research, the nanoparticles examined in this study should be mixed with larger BTO particles to prepare
a bimodal distribution of ligand-stabilized particles. This approach is expected to enhance the packing
density, as the smaller particles would fill the voids between the larger particles, yielding thin films
with high dielectric constants.
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