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MicroRNAs (miRNAs) are small noncoding conserved RNAs containing 19 to 24
nucleotides that are regulators of post-translational modifications and are involved in
the majority of biological processes such as immune homeostasis, T helper cell
differentiation, central and peripheral tolerance, and immune cell development.
Autoimmune diseases are characterized by immune system dysregulation, which
ultimately leads to destructive responses to self-antigens. A large body of literature
suggests that autoimmune diseases and immune dysregulation are associated with
different miRNA expression changes in the target cells and tissues of adaptive or innate
immunity. miR-155 is identified as a critical modulator of immune responses. Recently
conducted studies on the expression profile of miR-155 suggest that the altered
expression and function of miR-155 can mediate vulnerability to autoimmune diseases
and cause significant dysfunction of the immune system.
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INTRODUCTION

Understanding miRNAs’ role opened a new aspect of discovering disease pathogenesis and
conferred a targeted therapy for a diverse spectrum of diseases. miRNAs are small noncoding
conserved RNAs, with a length of 19 to 24 nucleotides and regulators of post-translational
modifications (1, 2). Specific animal and human studies discovered various roles of miRNAs and
their mechanism of action. It is known that mature miRNAs interact with definite messenger RNAs
(mRNAs) to repress gene expression. Usually, the target mRNA is identified by the ‘seed’ region of
miRNAs, which consist of 2–7 nucleotides (3). In the case of complementary base pairing matching
or semi matching, the induction of endonuclease cleavage occurs, which causes the degradation of
mRNAmolecule (Figure 1). However, in incomplete base-pair matching, mRNA translation will be
suppressed (4, 5).

miRNAs can modulate 90% of protein-coding genes in several biological processes, such as
proliferation, apoptosis, differentiation, immune cell lineage commitment, and maintenance of the
immune system homeostasis (6). Some abnormalities in the immune system and the development
of autoimmune diseases are highly related to the alteration of miRNAs’ transcription (7, 8). Studies
indicated that these small molecules could be used as a biomarker to diagnose and monitor various
org May 2021 | Volume 12 | Article 6693821
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autoimmune diseases. Moreover, targeting specific miRNAs
could be another approach for autoimmunity treatment.
However, it should be considered that each miRNA may have
vast different mRNA targets. Therefore, the complicated
interaction between specific miRNAs and the intact targeted
genes has not been completely verified. Comprehensive genome
studies indicated several single nucleotide polymorphisms
(SNPs) in miRNAs and the expected miRNA target sites (9).
In some cases, the alteration of miRNA function is induced by
SNPs, possibly participating in disease development. miR-155
has been shown to target essential molecules involved in
regulating the immune system. miR-155 is involved in different
signaling pathways, including MAPK, insulin, Wnt, MAPK/
Nuclear factor-kB (NFkb), which highlights the importance of
miR-155 in the different immune responses by targeting broad
pathways (10). Several data have revealed that miR-155 may
modulate immune cells, including dendritic cells (DCs), B cells,
and T cells (11–13).

The precise discovery of immune regulation mechanisms by
miRNAs has shed light on autoimmune diseases’ pathogenesis
and helped us develop new therapeutic strategies against those
diseases. This review article attempted to discuss the implications
of miR-155 involvement in modulating the immune system and
Frontiers in Immunology | www.frontiersin.org 2
its contribution to autoimmune disease development by
addressing both human and animal models.
miR-155

B Cells
miR-155 was first identified as a tissue-specific miRNA in an
adult mouse (14, 15). one of the critical targets of miR-155 is the
B cell integrating cluster (BIC), which is located on chromosome
21 (14, 16). Besides, mice with a mutation in miR-155 were
diagnosed with B and T cell defects and antigen-presenting cell
(APC) abnormal function. miR-155 deficient mice were
identified with the reduced number of B cells’ germinal center.
However, its overexpression results in an increased number of
germinal center B cells (17, 18).

miR-155 may affect B cell maturation and isotype switching
(19). The verexpression of miR-155 may cause pre-B cell
lymphoma, and it seems that miR-155 may play an essential
role in B cell function, and antagomiR-155 slowed pre-B cell
tumors’ growth in vivo (20). It is important to mention that in
miR-155 knockout animals, antibody production is reduced, and
also, the number of germinal centers was decreased (17, 21).
FIGURE 1 | The microRNA processing pathway. It is postulated that the miRNA processing pathway is linear and universal to all mammalian miRNAs. This process
includes the production of the primary miRNA transcript (pri-miRNA) by RNA polymerase II or III and cleavage of the pri-miRNA by the microprocessor complex
Drosha–DGCR8 (Pasha) in the nucleus (A). The resulting precursor hairpin, the pre-miRNA, is exported from the nucleus by Exportin-5–Ran-GTP. In the cytoplasm,
the RNase Dicer in complex along with RNA-binding cofactor of Dicer complexes known as transactivation response element RNA-binding protein (TRBP) cleaves
the pre-miRNA hairpin to its mature length (B). The mature miRNA’s functional strand is loaded together with Argonaute (Ago2) proteins into the RNA-induced
silencing complex (RISC), where it guides RISC to silence target mRNAs through mRNA cleavage, translational repression, or deadenylation, whereas the passenger
strand is degraded (C).
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Additionally, the lack of miR-155 in B cells could reduce the
secretion of IgG1 antibodies (Abs) and germinal center and
extrafollicular response (19). By evaluating the gene expression
profile of activated B cells, it has been observed that miR-155
controls the broad spectrum of genes with various functions,
which are considered as the possible miR-155 target. For
instance, the overexpression of the transcription factor Pu.1 in
wild type B cells causes less IgG1 production, showing that Pu.1
is not regulated, which is the miR-155 deficient hallmark (19).

T Cells
The process of T cell activation is controlled to provide a proper
response toward infections and prevent autoimmune diseases. In
miR-155 deficient mice, Th2 cells are the dominant phenotype,
which causes c-Maf upregulation. C-Maf is a target for miR-155
and a potent transcription factor for IL-4 promoters. However,
the Overexpression of this miRNA promotes the Th1 phenotype
(17, 22). IFNgRa in CD4+ cells is a known target for miR-155
inhibit Th1 differentiation in miR155-/- CD4+ cells. Besides, miR-
155 deficient mice cannot polarize Th cells into Th17 follicular
Th (FTH) cells (23–25).

Liu et al. reported that the miR-155-Peli1-c-Rel triad plays a
significant role in TFH cells’ function and generation. Reduced
proliferation of TFH cells, specifically at the late stages of
differentiation and decreased expression of CD40 ligand
(CD40L) on antigenic-specific CD4+ T cells, results from miR-
155 deficiency (24). c-Rel is a protein regulated by miR-155 and
Peli1 and essential in several B and T cell functions. c-Rel
deficiency causes cellular proliferation defects in response to
different stimuli (26). Plus, c-Rel deficient mice had several
defects in germinal center response and antibody class
switching. Upon T cell activation, this triad (miR-155-Peli1-c-
Rel) is robustly induced by TCR and costimulatory molecules’
engagement. miR-155 modulates the expression level of Peli1 so
that the Peli-1 allows the optimal level expression of c-Rel (26–
28). The improper expression level of c-Rel has consequences.
The lower level of c-Rel expression causes decreased germinal
center response, diminished antibody production, and B and T
lymphocyte activation defects. However, autoimmune diseases
and lymphomas are the results of c-Rel Overexpression (26).
Lack of miR-155 results in Othe overexpression of Peli1 in CD4+
T cells, which decreased the accumulation of c-Rel consecutively.
This process finally led to the compromised expression of CD40L
on CD4+ T cells and impaired proliferation of antigen-specific
CD4+ T cells at the late TFH cell differentiation stage (24).

Dendritic Cells (DC)
miR-155 expression is induced during immune cells’ activation,
suggesting that this miRNA has a pivotal role in the immune
system. miR-155-/- results in immune-compromised mice.
Upregulation of miR-155 is observed during DCs’ activation,
and it has been reported that miR-155 is an essential factor for
DC maturation. Mature DCs from miR-155 deficient mice
exhibited functional and phenotypic defects. These defects in
DCs are such as typical DCs morphology, decreased in the
upregulation of costimulatory molecules, especially CD40 and
Frontiers in Immunology | www.frontiersin.org 3
CD86, robust decreased ability for antigen-specific CD4+ T cell
activation and proliferation (17).

c-Fos is a transcription factor whose expression is negatively
correlated with miR-155. During human Mo-DC and several
subtypes of mice DC activation and maturation, the miR-155
expression level is increased; however, the c-Fos mRNA level is
downregulated. Moreover, in miR-155 deficient mice, the c-Fos
expression level is increased. c-Fos is a direct target for miR-155
since c-Fos mRNA has two binding sites in its 3’UTR. Therefore,
it is concluded that during DC maturation, c-Fos expression is
targeted and silenced by miR-155 mediated mechanism.
However, it is not clear whether this mechanism is specific to
DC (29–32).

Macrophages
In response to tissue environment, different types of
macrophages can be polarized. For instance, in bacterial
infection, Th1, ILC1-derived IFNg, and Toll-like receptor
ligand (TLRL) induce proinflammatory macrophages (M1) that
protect the immune system and can results in chronic
inflammation. On the other hand, IL-10, transforming growth
factor beta (TGF-b), glucocorticoids polarize the alternative
macrophages (M2) which mediate the immune system
resolution and restore the hemostasis. Different components,
including miR-155 modulate macrophages polarization. Upon
TLR/IFN-g, miR-155 is induced in monocyte and macrophages.
miR-155 defienct mice were reported witg decreased
proinflammatory cytokines upon LPS stimulation. miR-155
blocks the polarization of M2 macrophages. By targeting
different pathways, miR-155 inhibits STAT-6-driven
antiinflammtory macrophage phenotype. Besides, miR-155
supresses TGF-b signaling pathway molecule Smad2 and
prevents the development of repairment (33).
miR-155 AND AUTOIMMUNE DISEASE

In autoimmune diseases (AD), immunological tolerance is
disrupted, and the immune system cannot distinguish self from
non-self (34). Alteration of miR-155 was detected in human and
animal models of various autoimmune diseases, including
rheumatoid arthritis (RA), multiple sclerosis (MS), systemic
sclerosis (SSc), systemic lupus erythematosus (SLE), and so on.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a multiorgan
autoimmune disease that causes inflammation in the
connective tissues (35). The worldwide incidence of SLE is
higher in females and reproductive ages (36). In SLE, it has
been shown that sex hormones, genetics, and environmental
factors are involved in the dysregulation of the innate and
adaptive immune system that can influence the disease
onset (37).

In the animal model of SLE (Pristane; PIL), deletion of miR-
155 decreased the number of helper T (Th) 17 cells (38). Further
studies indicated the reduction of IFN-g-producing Th1 cells in
May 2021 | Volume 12 | Article 669382
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miR-155 deficient pristane-induced lupus (PIL)-/- mice
compared to PIL+/+ mice (39). Surprisingly, in contrast to
other studies that detected a moderate amount of IL-4
producing cells in miR-155-/- mice, Leiss et al. discovered less
IL-4 producing lymphocytes in miR-155-/- PIL animals than in
wild type PILmice (39). Thymic development is interrupted in the
PILmice, and theTregcells are arrested andhowever, inmiR-155-/-

mice, the number of CD4+FOXP3+ Treg cells is reduced, but the
tolerance is maintained due to the presence of peripheral tolerance
(Figure 2) (40–42).

As mentioned already, miR-155 can regulate B cell function
and, therefore, miR-155 can participate in autoantibody
production in SLE. Several studies have indicated reducing
autoantibody production in miR-155 knocked out MRL-lpr
lupus-prone mice with amelioration in the kidney
inflammation (43). Moreover, studies revealed protection
against pulmonary hemorrhage in miR-155 deficient and PIL
mice. Besides, administration of miR-155 antagomir alleviates
pulmonary hemorrhage induced by pristane (44). Lashine et al.
pointed out that overexpression of miR-155 led to higher
expression of interleukin (IL)-2 in peripheral blood
mononuclear cells (PBMCs) based on suppression of negative
regulator of this cytokine, namely protein phosphatase two
catalytic subunit alpha (PP2Ac). Overexpression of miR-155
could be a possible explanation for increased expression of
IL-2 by less expression of its regulator (PP2Ac) in juvenile SLE
disease (45).
Frontiers in Immunology | www.frontiersin.org 4
Sphingosine-1-phosphate receptor 1 (S1PR1) is another
target of miR-155, and it was reported to be decreased at
transcriptional and translational levels in SLE patients. S1PR1
plays a role in the pathogenesis of SLE. Knocking out the miR-
155 in Faslpr/lpr mice ameliorated the disease symptoms, and
reduced the serum level of immunoglobulin (Ig) G, IgM, and
diminish the immune complex deposition in the kidneys of
treated mice (Figure 2) (46). However, a controversial result
was obtained from different studies based on different targets of
miR-155 in SLE; Overexpression of S1PR1 was detected in the
miR-155-/- Faslpr/lpr mice, whereas microarray analysis indicated
the reduction of S1PR1 in SLE patients (46, 47). S1PR1 gene
expression might be associated with SLE pathogenesis and
considered as a therapeutic option in SLE treatment. Since the
role of S1PR1 in disease-related mechanisms has not been fully
understood, more investigation concerning the role of this gene
in the pathogenesis of SLE is required.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic inflammatory
autoimmune disease that affects more than 1% of the world
population and causes severe disability in patients (21, 48). This
disease’s clinical manifestations include synovial inflammation
and hyperplasia, autoantibody production, cartilage, and bone
destruction, including skeletal, cardiovascular, pulmonary
disorders. Genetic, epigenetic, and environmental factors
together play a role in the induction of disease. However, RA
FIGURE 2 | The effect miR-155-/- in animal models of systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In MS the absence of miR-155 results in
decreased number of Th1, Th17 and also decrement procution of IL-17, IL-6, TNF-a, and IFN-g. In SLE, lack of miR-155 causes a marked reduction in Th1, Th17,
Treg, B cells, and plasma cells.
May 2021 | Volume 12 | Article 669382

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pashangzadeh et al. miR-155 and Autoimmune Diseases
pathogenesis’s exact mechanism has not yet been fully
understood (21, 49).

Several studies have evaluated miRNAs in RA to find a new
biomarker for RA or establish a new therapeutic strategy.
Stanczyk et al. indicated the progressive effect of miR-155 in
RA development (50, 51). The increment of miR-155 has been
reported in different cell types or tissues of RA, such as synovial
tissue (51–53), CD68+ synovial macrophages (50, 52–54), RA
synovial fluids (RASFs) (51, 55), synovial fluid CD14+ cells (51,
54), PBMCs (56–58), and whole blood of RA patients (58).
However, the level of miR-155 was reduced in the sera of RA
patients (52, 59, 60).

It is shown that miR-155 can affect the different types of
cytokines in RA. For instance, the pleiotropic cytokine, namely
the tumor necrosis factor a (TNF-a), is produced by various
cells, such as monocytes, macrophages, B cells, T cells, and
fibroblasts. TNF-a is highly increased in RA that causes bone
distraction, pain, and inflammation (50, 61). It was shown that
an elevated level of miR-155 correlates with the upregulation of
TNF-a and IL-1b and downregulation of SOCS in RA (50, 62).
Spoerl et al. discovered that inhibition of miR-155 was associated
with suppression of osteoclasts and increased numbers of
osteoblasts (Figure 3) (14, 63). Further, Wu et al. reported that
TNF-a could cause the Overexpression of miR-155, and
Frontiers in Immunology | www.frontiersin.org 5
knocking down the miR-155 could reduce the TNFa-
mediated inhibition of bone morphogenic protein 2 (BMP-2).
Furthermore, miR-155 can modulate TNF-a regulated
osteogenic differentiation by targeting SOCS1 (14, 64).

Overexpression of miR-155a could also change the expression
level of other cytokines and chemokines such as IL-1b, IL-6, IL-8,
TNF-a, chemokine ligand (CCL) 3, CCL4, CCL5, CCL8 and
downregulate the synthesis of IL-10 and C-C chemokine
receptor type 2 (CCR2) in synovial fluid of RA patients (21,
54). In addition, miR-155 is required for the homeostasis of IL-
17 producing cells (Figure 2) (50, 52, 54, 56).

It is also proposed that miR-155 is required for homeostasis
and function of Treg cells and IL-17 producing cells (50, 52, 54,
56). Another study evaluated the role of miR-155 in the collagen-
induced arthritis (CIA) mouse model, which showed that the
CIA could not develop arthritis in miR-155-/- mice (50, 65).
Autoreactive B and T cells play a crucial role in CIA, and the
absence of miR-155 prevented the generation of pathogenic
autoreactive B and T cells in CIA, which was associated with a
significant reduction of local bone destruction and antigenic-
specific Th17 cells suppression (65, 66). Therefore, based on the
inhibition of autoreactive B and T cells and less bone destruction
in miR-155 deficient mice, miR-155 might be considered a
potential target for RA treatment.
FIGURE 3 | miR-155 might have an important role in RA development. This miRNA activates Osteoclasts activation, Th17 cells, macrophages, and inflammatory
cytokines, and blocks osteoblast production, and inhibitory cytokines, including IL-10. In addition, MMP production (especially MMP-1 and MMP-3) are decreaced
through downregulation of IKBKE.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pashangzadeh et al. miR-155 and Autoimmune Diseases
Already it was mentioned that miR-155 is detected in synovial
fluid of RA patients, and its Overexpression was detected in
synovial membrane and macrophages of synovial fluid in RA
patients. Simultaneously the elevation of miR-155 was associated
with the reduction of the Src homology 2‐containing inositol
phosphatase‐1 (SHIP‐1) expression, which is an inhibitor of
inflammation (Figure 3).

One of the important targets of miR-155 is the inhibitor of
nuclear factor kinase subunit epsilon (IKBKE) (21, 67). IKBKE
can induce matrix metalloproteinase (MMP) expression and
causes joint damage in arthritis (21, 68). MMPs, especially
MMP3, have been shown to be involved in the proliferation
and invasion of RA-FLS (Fibroblast like synovium) (21, 69).
Therefore, miR-155 may limit the production of MMPs through
the downregulation of IKBKE and reduced the invasion of FLS
through MMPs (Figure 3) (21). To sum up, miR-155a plays a
different role in RA progression, which could be used as a target
in RA therapy.

This result might indicate the role of M1 macrophages in the
process of RA pathogenesis (51, 70). Besides, Kurowska Stolarska
et al. revealed that miR-155 expression level is upregulated in
synovial macrophages and monpcytes of patients diagnosed with
RA. This Overexpression promotes proinflammatory cytokiens
production (54).

Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central
nervous system (CNS), and its prevalence in young women is
higher than in men (71, 72). Scientists detected the upregulation
of mir155 n paraffin and frozen sections of white matter lesions
from MS patients (73). Moreover, Noorbakhsh et al. discovered
the elevation of miR-155 in the cerebral white matter of
relapsing-remitting, primary progressive, and secondary
progressive MS patients (74). In addition, the Overexpression
of miR-155 was found in various cells of the immune and
nervous system, including myeloid-derived macrophages,
microglia, T and B cells, and astrocytes, besides resident brain
cells (73, 75). Furthermore, Overexpression of miR-155 was
discovered in a neurovascular unit of active lesions from MS
brain samples (76–78). Interestingly, the combination of miR-
155, miR-146a, and miR-142-3p increment had a predictive
value for diagnosing 88% of MS cases (78). The Overexpression
of miR-155 was associated with the overproduction of IL-17,
IFN-g, TNF, and IL-6 in sera of patients diagnosed with MS,
suggesting that the elevation of miR-155 may occur only during
inflammation (Figure 2) (75, 79).

A cohort study in the Egyptian population found that the TT
genotype and the T allele in miR-155 polymorphism (rs767649
A> T) were related to the higher prevalence of MS in women, but
not in men. The genotype of miR-155 rs767649 AT/TT was
associated with secondary progressive MS (80).

Experimental Autoimmune Encephalomyelitis (EAE)
Experimental autoimmune encephalomyelitis (EAE) is an
animal model of MS. An emulsified myelin basic protein
(MBP) or myelin oligodendrocyte glycoprotein (MOG) with
Frontiers in Immunology | www.frontiersin.org 6
Freund’s adjuvant and pertussis toxin were used to develop
this animal model of the disease. DCs actively present MBP or
MOG to CD4+ T cells in lymph nodes that causes infiltration of
CD4+ Th1 and Th17 cells, B cells, CD8+ T cells, and innate
immune cells to the CNS and leading to tissue damage (81). The
function of miR-155 was identified in miR-155 knockout mice,
which were shown to be tremendously resistant to develop
MOG35-55 peptide-induced EAE. The onset of disease in miR-
155−/− mice was delayed, and the disease severity and paralysis
were reduced in comparison to wild-type mice were observed
(12, 82). The analysis of brain histology from miR-155-/- EAE
mice revealed less inflammation and less demyelination (12, 82).
The absence of miR-155 in the EAE model caused a reduction of
Th1 and Th17 in the spleen, lymph nodes, and the CNS (12, 83).
In an ex vivo study, the miR-155 knocked out mice showed less
production of IFN-g and IL-17 upon stimulation with antigen,
demonstrating the functional defect in Th1 and Th17 cells. In
another adoptive study, transfer of miR-155+/+ CD4+ T cells into
Recombination activating gene 1 (RAG1)−/− mice led to EAE
progression and increased disease severity in comparison to mice
receiving miR-155−/− CD4+ T cells (12). Moreover, Jiang et al.
suggested that antigen-specific CD4+ T cells in EAE could
increase miR-155 production upon contact with MBP (84).
Additionally, the role of miR-155 in driving Th1 and Th17
responses were revealed when a locked nucleic acid (LNA)-
miR-155 oligonucleotide (herein called “antagomir”) was
delivered before or during EAE induction in mice (79, 82).
The administration of miR-155 antagomir reduced the IFN-g
and IL-17 production in antigen-specific CD4+ T cells in mice
CNS (82). Administration of miR-155 in EAE mice enormously
increased the severity of inflammation, demyelination in the spinal
cord, number of Th1 and Th17 cells. Furthermore, increased IL-17
and IFN-g production was observed in the spleen, lymph nodes,
andCNS ofmice (79). Taken together, all the above studies suggest
that the Overexpression of miR-155 in EAE increases the
functionality of antigen-specific Th1/Th17 cells.

O’Connell and colleagues showed that miR-155 targets the
negative regulator of Th17 differentiation, namely transcription
factor Ets1 (85). Moreover, they indicated the elevation of Ets1
and lack of Th17-related cytokines in miR-155−/− mice. In other
words, the axis of Ets1/miR-155 is required for normal Th17
expansion and cytokine production in EAE (85). Furthermore,
Escobar et al. performed transcriptome analysis and indicated
that miR-155 could regulate the chromatin structure and
epigenetic changes in Th17 cells (23). Besides, they identified
that RNA binding protein Jarid2 was increased in miR-155-/-

mice, which can reprogram the epigenome of Th17 cells via
H3K27 methylation that causes IL-22 gene silencing. This
cytokine is necessary for Th17 differentiation (23). In the
absence of miR-155, Th17 differentiation and cytokine
expression were interrupted, but it could be resorted by
deletion of Jarid2 (23). Another study demonstrated the role of
miR-155 in cell migration through heme oxygenase-1 (HO-1)
repression. EAE was restored in miR-155-/- mice by HO-1
inhibitor ZnPP injection (86). Mycko et al. discovered the
increased expression of miR-155-3p in CD4+ T cells isolated
May 2021 | Volume 12 | Article 669382
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from CNS at the peak of EAE, whereas miR-155-5p is not highly
expressed at this time point (87). In fact, they showed that miR-
155-3p could drive the Overexpression of RORa and IL-17 in
comparison to miR-155-5p, which could particularly upregulate
the Th17 differentiation (87). Taken together, miR-155 might be
responsible for cytokine expression in Th1 and Th17 and also
cell migration in animal models of EAE.

In order to reduce the symptoms of MS disease,
immunomodulatory drugs that suppress the recruitment of
immune cells to the CNS are widely in use. Medications
mainly act on the immune system as immunosuppressant
drugs (natalizumab, fingolimod, mitoxantrone), which are able
to lessen the activity of the immune cells [like IFN-b, glatiramer
acetate, dimethyl fumarate (DMF)] or suppress cell proliferation
(like teriflunomide, alemtuzumab, ocrelizumab) (88). Whereas
miR-155 is elevated in MS patients and in EAE, it is noteworthy
to study the role of the aforementioned drugs on miR-155
expression. IFN-b and glatiramer acetate did not affect the
expression of miR-155, but they declined other miRNAs
expression (78, 89). Nevertheless, glatiramer acetate decreased
miR-155 expression in urine-isolated exosomes in EAE (90).
DMF showed a reduction of Th1/Th17 subsets, an elevation of
Th2 subsets, and a shift from M1 toward M2 macrophages (91,
92). DMF can prevent microglia and astrocyte inflammation in
vitro and EAE animal models (93, 94). The patients who received
DMF showed a reduction of miR-155 expression in monocytes
(95). Natalizumab could decrease the expression of miR-155 in
PBMCs and monocytes of MS patients, which may lead to
downregulation of IL-17, IFN-g, and TNF (76, 95). Fingolimod
can remarkably reduce miR-155 expression in humanmonocytes
(76). Overall, we suggest that treatment with several popular
drugs would decrease the expression of miR-155, which could be
considered as a target for MS therapy.

Systemic Sclerosis
Systemic sclerosis (SSc) is an autoimmune disease characterized
by excessive deposition of the extracellular matrix, vasculopathy
of small vessels, and autoantibodies production (96). This
disease’s manifestations vary in different patients; however,
skin thickening and different internal organs’ involvement are
the main manifestations (97). Interstitial lung disease (ILD) is
known to be the leading cause of mortality in SSc patients (98–
100). The prevalence of ILD is high in SSc patients, and
approximately 15–30% of patients will develop severe lung
fibrosis (101, 102).

Elton et al. showed that dysregulated miR-155 in ILD was
strongly associated with progressive lung disease. In addition,
this specific miRNA is highly expressed in activated monocytes/
macrophages from SSc patients (103). Moreover, the expression
of miR-155 is highly correlated with the expression of profibrotic
genes, such as secreted phosphoprotein 1/osteopontin (SPP1)
and periostin (POSTN). Furthermore, the expression of miR-
155a is increased in PBMC of SSc patients with ILD (104).
Interestingly, lung fibrosis was observed to be less developed in
miR-155-/- mice and the survival of mice was higher than miR-
155+/+ mice (104).
Frontiers in Immunology | www.frontiersin.org 7
Yan et al. indicated the inhibition of alternatively activated
macrophages (M2) in the lungs of miR-155-/- mice (105). The
inhibition of miR-155 through the antagomiR-155 resulted in
less skin thickness in the bleomycin-induced SSc animal model
(105). Moreover, intratracheal administration of bleomycin
increased the expression of miR-155 in the lungs of mice,
which directly correlated with lung fibrosis (106). Taken
together, the increment of miR-155 is involved in lung fibrosis
in SSc patients.

Behçet’s Disease
Behçet’s disease (BD) is an autoinflammatory disease that affects
several organs and causes uveitis, oral aphthae, skin lesions, and
genital ulcers (107, 108). In a studydonebyZhou et al., the decreased
expression of miR-155 was found in PBMC, DCs, and CD4+ T cells
of BD patients. Also, induced Overexpression of miR-155 in DCs
inhibited the expression of IL-1b, IL-6 and promoted the IL-10
expression, and Overexpression of miR-155 in CD4+ T cells
inhibited the expression of IL-17, which would suggest that miR-
155 is a negative regulator of inflammatory cytokines in BD (109).

Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disease mediated by
activation of T cells and macrophages and the production of
inflammatory cytokines that further activate the immune system
and cause insulitis, and b cell damage results in beta-cell damage
and reduction of insulin production (110, 111). Garcia-Diaz et al.
reported the elevation of miR-155 and reduction of miR-146a in
PBMCs of T1D patients (112). However, controversial data were
achieved from the investigation of Assmann et al., which
indicated the protective role of miR-155 and miR-146a in TID
Based on linkage analysis of miR-155 rs767649 and miR-146a
rs2910164 polymorphisms. They concluded that these
polymorphisms could reduce miRNA expressions, which led to
the activation of nuclear factor (NF)-kB and higher production
of inflammatory cytokines in the pancreas (113).

Primary Immune Thrombocytopenia
Primary immune thrombocytopenia (ITP) is an autoimmune
disease mediated by autoantibodies against platelets’ surface
antigen (gpIIb-IIIa) which activates opsonization and
phagocytosis. The disease is manifested by bleeding and
reduction of platelet count (114). Studies indicated the higher
expression of miR-155 in PBMCs of ITP patients positively
correlated with the reduction of platelet count. Also, decreased
SOCS1, IL-4, IL-10, and TGF-b in mRNA levels were detected.
Furthermore, the increment of IL-17A in plasma of ITP patients
correlated with miR-155 Overexpression. Therefore, these data
suggest that miR-155 might be involved in the pathogenesis of
ITP by modulating cytokines and targeting SOCS1 (115).

In contrast, different experiments revealed that the number of
Treg lymphocytes number in the peripheral blood of patients
diagnosed with ITP is significantly lower compared to healthy
individuals, and the inhibitory function of these cells is
significantly attenuated. It was reported that several miRNAs,
including miR-155–5p, might play a major role in regulating the
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growth and function of Treg cells (116). several results indicated
that miR-155-deficient mice have fewer Treg cells in the thymus
and periphery due to growth defects. However, an elevated level
of miR-155 could play a role in increasing the inhibitory function
of Treg cells (40). These findings suggest that miR-155 is
involved in the development and function of Treg cells.
Further, miR-155 has been significantly reduced in Treg cells,
which may cause Treg dysfunction and the pathogenesis of
ITP (116).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic inflammatory
disease of the intestinal tract with unknown etiology. However,
genetic and environmental factors play a role in the pathogenesis
of the disease (117–119). The infiltration of various cells,
including Th cells, macrophages, and neutrophils to the
mucosal part and release of inflammatory mediators cause
inflammation and changes the intestine’s architectural
structure in IBD. In the experimental model of IBD, it was
observed that CD4 cells, especially Th1 cells, have a high capacity
in the disease induction and damaging the intestine (120–122).
In addition, in patients and animal models of colitis, the systemic
level of TNF-a, IFN-g, IL-6, and IL-12 is significantly increased,
which might be responsible for inflammatory status in IBD (123–
126). Singh et al. discovered fewer symptoms (minor change in
body weight and no diarrhea or blood in feces), decreased
numbers of Th1/17 cells, macrophages, and DCs as well as the
reduced amount of inflammatory cytokines such as TNF-a,
IFN-g, IL-6, and IL-12 in miR-155 deficient animal model of
IBD. Moreover, miR-155 might have a crucial role in the
devolvement of dextran sulfate sodium (DSS)-induced colitis
in mice (127).

Sjogren’s Syndrome
Sjogren’s syndrome (SS) is an autoimmune disease characterized
by dysregulation of salivary, lachrymal of eyes, and mouth
glands, which results in dryness of eyes (keratoconjunctivitis)
and mouth (xerostomia) (128–136). The exact disease
pathogenesis is unknown; however, the presence of type I IFN,
B cell-activating factor (BAFF), and IL-12 indicate an interaction
between innate and adaptive immune responses in SS
pathogenesis. Moreover, the involvement of the activated Th1,
Th17, and Natural killer (NK) cells was discovered in this disease
(131, 134). Downregulation of miR-155 was detected in PBMCs
from patients with SS that correlated with visual analog scale
(VAS) score for dry eyes, indicating the involvement of miR-155
in the pathogenesis of SS (137). Interestingly, Le Dantec et al.
discovered the Overexpression of miR-155 in Foxp3 positive
infiltrating cells in these patients’ salivary gland and epithelial
cells an ameliorating role of miR-155 in SS (138).

Guillain–Barré Syndrome
Guillian–Barré syndrome (GBS) is a rare and acute autoimmune
disease caused in response to primarily viral and bacterial
infection. The infiltration of inflammatory cells and their
responses attack peripheral nerves and results in demyelination
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of neurons, and provokes polyneuropathy (139). The disease is
characterized by extremities’ weakness, paralysis of eye muscles,
and the absence of tendon reflexes (140). Wang et al. detected the
downregulation of miR-155 in PBMCs of GBS patients.
Moreover, by silencing miR-155, they detected the elevation of
Th1 cytokines in vitro. Therefore, they proposed a protective role
of miR-155 in GBS (141).

Ankylosing Spondylitis
Ankylosing spondylitis (AS) is a chronic autoimmune disease
that mainly affects the spine and sacroiliac joints (142). The
disease is known by immoderate bone formation, with
syndesmophytes as the typical lesion (143, 144). Qian et al.
observed the elevation of miR-155 in the serum of AS patients.
Moreover, they suggest that this upregulation can be used as a
biomarker for disease prognosis (145).

Vitiligo
Vitiligo is an acquired autoimmune disease with an unknown
etiology. Vitiligo is characterized by the demolishment of
melanocytes (146). It has been proposed that genetic and
environmental factors can play a role in the disease
etiopathogenesis. The physical symptoms are usually rare,
except for depigmented macules on the skin (147, 148). The
dysfunctionality of melanocyte, keratinocyte, and alteration of
keratinocytes in depigmented skin can play a major role in the
disease manifestations (149). Šahmatov et al. observed the
elevated level of miR-155 in stratum basale (where melanocytes
and proliferating keratinocytes are located) as well as in stratum
spinosum of the epidermis of patients with vitiligo. Moreover, the
Overexpression of miR-155 was associated with Overexpression
of inflammatory cytokines, such as TNF-a, IFN-a, IFN-g, and
IL-1b in melanocytes and keratinocytes. Overexpression of
miR-155 resulted in inhibition of the melanocyte differentiation
and melanogenesis genes, such as tyrosinase-related protein
1 (TYRP1), tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein epsilon (YWHAE), syndecan
binding protein (SDCBP), and sex-determining region Y-Box 10
(SOX10) in melanocytes, and YWHAE in keratinocytes.
Furthermore, Overexpression of miR-155 could alter the
expression of SOCS1, interferon regulatory factor 1 (IRF1), and
interferon-induced transmembrane protein 1 (IFITM1) in
melanocytes and keratinocytes (150). Hence, it was suggested
that miR-155 played a major role in the pathogenesis of Vitiligo.

Grave’s Disease
Grave’s disease (GD) is an organ-specific autoimmune disease
represented by diffuse goiter and hyperthyroidism. GD is
diagnosed by high levels of free triiodothyronine (FT3), free
thyroxine (FT4), and the presence of thyroid-specific
autoantibodies like anti-thyroglobulin antibody (TGAb), anti-
thyroperoxidase antibody (TPOAb), and anti-thyrotropin
receptor antibody (TRAb). Treg cells play a pivotal role in the
development of the disease (151, 152). Some studies indicated
that GD patients had a lower expression level of Foxp3 and
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decreased CD4+CD25+ Treg cells (153–156). Still, the exact
mechanism of Treg cell dysfunctions is obscure (157). Zheng
et al. claimed that miR-155 had a vital role in GD development
by modulating Treg cells. Moreover, the level of miR-155 in sera
of GD patients was lower than in healthy controls. The miR-155
serum level reduction was more notable in women (157). Since
Foxp3 is a target of miR-155 (40, 158), decrement of miR-155
could impair Treg cell development in GD patients (157).

Graves’ Ophthalmopathy
Graves’ ophthalmopathy, also known as thyroid eye disease
(TED), dysthyroid/thyroid-associated orbitopathy (TAO), Graves’
orbitopathy (GO), is an autoimmune disease of the orbit and
periorbital tissues. Graves’ ophthalmopathy is caused by an
inflammation in the orbital connective tissue due to increment of
inflammatory cytokines, especially IL-6, elevated orbital volume due
to overproduction of glycosaminoglycan, and enhanced
adipogenesis (159, 160). However, the exact mechanism
underlying the pathogenesis of the disease is still obscure (161).
Various studies have implied the CD4 cells as major culprits in
disease pathogenesis. Also, current studies focused on the role of
miRNAs in disease pathogenesis. Histochemical examination of the
patient’s orbit revealed the infiltration of lymphocytes. Furthermore,
fibroblasts play an important role in Graves’ ophthalmopathy
occurrence and development (162, 163). Li et al. reported
increased expression of miR-155 in CD4+ cells and fibroblasts
from TED patients. Overexpression of miR-155 caused ocular
inflammation in target cells (CD4+ cells & ocular fibroblasts) (164).

Psoriasis
Psoriasis is an autoimmune disease mediated by T cells and
causes skin inflammation. The disease is characterized by scaly
debris and invasive erythema, along with different degrees of
itching (165). Xu et al. detected significant upregulation of miR-
155 in tissues of psoriasis patients. They proposed that
verexpression of miR-155 promoted T cell proliferation and
eliminated the apoptosis through phosphatase and tension
homolog (PTEN) signaling pathway (166).

Alatas et al. discovered that expressions of miR-155-5p along
with other miRNAs significantly increased in patients diagnosed
with psoriasis compared with the control group. However,
disease severity was not correlated with miRNAs (167).

Stimulation of TNF-a enhances miR-155 expression
independently of dosing, and miR-155 suppressor significantly
reverses TNF-a-induced inhibition at the GATA3 protein level
and enhances the production of CXCL8 and IL-6. miR-155 can
inhibit the GATA3 expression by targeting 3’UTR, while GATA3
can induce IL-37 transcription by targeting its promoter region.
Overexpression of miR-155 decreases IL-37 protein and
enhances the production of CXCL8. GATA3 Overexpression
may significantly reduce the miR-155 overexpression effects.
Unlike GATA3, the expression of miR-155 significantly
increased in the tissues of psoriasis lesions and is negatively
associated with IL-37 and GATA3. Briefly, the miR-155/GATA3/
IL-37 axis regulates the production of CXCL8 and IL-6 by
stimulating TNF-a to affect the progression of psoriasis.
However, miR-155/GATA3/IL-37 may be an available option
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for psoriasis treatment, which requires additional clinical
studies (168).

Myasthenia Gravis
Myasthenia Gravis (MG) is an antibody-mediated autoimmune
disease. These antibodies are against neuromuscular junction
(NMJ) proteins and cause neuromuscular transmission
impairment. Clinical manifestations range from extensive
weakness and ocular symptoms to failure in the respiratory
system (169). Overexpression of miR-155 was shown in
PBMCs from MG patients. Knocking out the miR-155 in the
experimental myasthenia gravis (EAMG) model resulted in
decreased autoantibodies against acetylcholine receptors as well
as the disease severity. Therefore, it was suggested that miR-155
might primarily affect the B cells in MG patients (170, 171).

Idiopathic Inflammatory Myopathies
The idiopathic inflammatory myopathies (IIMs) are rare
autoimmune disorders characterized by skeletal muscle
inflammation. Patients are often become weak and are disabled
with poor quality of life (170). Five miRNAs, including miR-155,
have been found to be upregulated across ten primary muscle
disorders, including IIMs (172).
CONCLUDING REMARKS

The present review was conducted to discuss the available data
associated with miR-155 expression and function alterations in
the immune system from human autoimmune disease as well as
related animal models. miR-155 exerts a significant impact on
the homeostasis and development of the immune system. The
aberrant function and expression of miR-155 have been related
to several human and animal models of autoimmune disease,
suggesting that the appropriate regulation of miR-155 may
confer a key approach in preventing autoimmune diseases.
Nonetheless, experimental and functional research is required
to verify and establish the causal relationship between the
development of autoimmune diseases and aberrantly-expressed
miR-155. In addition, mechanisms contributing to the aberrant
expression of miR-155 and the effect of other regulating factors
of miR-155 need to be clarified. Given the contribution of miR-
155 to autoimmune diseases, diagnostic and therapeutic
strategies are recommended to be taken using its great
potential for developing autoimmune diseases. Ultimately,
much attention is needed to be paid to improving technologies
required for the in vivo delivery of miRNA mimics or inhibitors
targeting miR-155 as a therapeutic purpose.
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