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Abstract
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea 
(OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncR-
NAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. 
However, whether CIH participates in the modulation of lncRNA profiles during MI is 
yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed 
by histology and echocardiography, and lncRNA and mRNA integrated microarrays 
were screened. MI mouse model showed myocardial hypertrophy, aggravated inflam-
mation and fibrosis, and compromised left ventricle function under CIH. Compared 
with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identi-
fied following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered 
at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 
778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxy-
genation and were validated by qPCR. The GO terms and KEGG pathways of genes 
varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, 
NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and 
negatively correlated with Cmbl. The current results demonstrated a causal correla-
tion between CIH and lncRNA alternations during MI, suggesting that lncRNAs might 
be responsible for MI aggravation under CIH.
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1  | INTRODUC TION

Myocardial infarction (MI) results from acute coronary artery steno-
sis and occlusion and is often complicated with arrhythmia and heart 
failure, leading to high mortality.1 The cardiac remodelling after MI 
is associated with inflammation, fibrosis and cardiomyocyte apop-
tosis.2 The lack of oxygen supply during MI causes acute, massive 
cardiac cell death within minutes.3

Obstructive sleep apnoea (OSA) is a common sleep disorder in 
the adult population and is associated with various cardiovascular 
diseases. It has been recognized as an independent risk factor for hy-
pertension, arrhythmia and heart failure, among other conditions.4,5 
Chronic intermittent hypoxia (CIH) results from the collapse of upper 
airways and is a characteristic and the primary pathogenic factor of 
OSA.6 Accumulating evidence suggested that CIH plays a major role 
in the process of MI.7-9 It also leads to enhanced infarct area via in-
creased ROS levels or modulation of endoplasmic reticulum stress in 
cardiomyocytes.10,11

Non-coding RNAs without protein-coding potential, including 
long non-coding RNAs (lncRNAs, >200 nucleotides) and microRNAs 
(miRNAs, <200 nucleotides), play critical roles in the pathophysiol-
ogy of cardiovascular diseases, including MI. However, some studies 
suggested that lncRNAs display various biological functions12 that 
include indirect regulation of gene expression. In turn, these phe-
nomena affect cellular processes via post-transcriptional regulation 
and nuclear transport.13,14 Recently, the potential molecular mecha-
nisms of lncRNAs in cardiovascular diseases have gained increasing 
attention. lncRNAs LIPCAR and UCA1 have been identified as the 
biomarkers of heart failure and acute MI, respectively.15-18

However, the effect of CIH on the expression profiles of lncRNA 
and mRNA in MI mice and whether specific lncRNAs are critical for 
MI pathogenesis remains to be elucidated. Therefore, the present 
study aimed to confirm the causal correlation between CIH and car-
diac damage after MI and explore the lncRNA expression profiles.

2  | MATERIAL S AND METHODS

2.1 | Animal model

C57BL/6J male mice, 8-week-old, were randomly divided into MI 
and sham groups. Surgical MI was induced by ligation of the left an-
terior descending coronary artery. Sham-procedure mice underwent 
the same protocol but without ligation of the coronary artery. Then, 
the mice were randomly subjected to normoxia and intermittent hy-
poxia (5% O2 at nadir, 20 cycles/h) for 4 or 8 weeks, as described pre-
viously.19 At the end of the exposure, the animals were killed after 
anaesthesia with 2% isoflurane. The hearts were collected for the 
quantitation of lncRNA and mRNA expression profiles and histol-
ogy. The research protocol was approved by the Animal Care and 
Use Committee of Capital Medical University, and the subsequent 
animal experiments were performed based on the guidelines of the 
Animal Ethics Committee of the University.

2.2 | Histology

Heart tissues were fixed with 4% paraformaldehyde, embedded in 
paraffin and sectioned, followed by staining with haematoxylin-eo-
sin (HE) to determine the severity of myocardial inflammation. The 
collagen volume at the free wall of the infarct area was assessed 
by Masson's staining (n = 6/group). For Masson's trichrome, power 
analysis shows that the sample size of 6/group has a 91%~99% 
power assuming a 5% significance level with a two-sided test.

For immunohistochemistry, the paraffin sections of the infarcted 
heart were incubated with vWF antibody (Proteintech, 66682-1) 
and CD31 antibody (BD Pharmingen™, 553370) overnight at 4°C 
to determine the capillary density and with α-smooth muscle actin 
(α-SMA) antibody (Beyotime Biotechnology, AA132) to examine the 
arteriole density. Followed by the incubation of secondary antibod-
ies at room temperature for 1 hour, the sections were stained with 
avidin-biotin complex and counterstained with haematoxylin. The 
images were captured under a microscope (Nikon), and the capillary 
and arteriolar density was calculated as the number of capillaries or 
arterioles/mm2 (n = 4-5/group). For immunohistochemistry staining, 
power analysis shows that the sample size of 4-5/group has a 100% 
power assuming a 5% significance level with a two-sided test.

2.3 | Echocardiography

The animals were anaesthetized with 2% isoflurane during echocar-
diography and examined on a VisualSonics Vevo 2100 system using a 
30 MHz-Transducer (MS-400; VisualSonics). The left ventricular wall 
thickness was analysed using M-mode images from the parasternal 
short-axis view. n = 8 for Sham + Air (4 weeks), n = 7 for Sham + 
CIH (4 weeks), n = 6 for MI + Air (4 weeks), n = 8 for MI + CIH (4 
weeks), n = 4 for MI + Air (8 weeks) and n = 4 for MI + CIH (8 weeks). 
For echocardiography, power analysis shows that the sample size of 
4~8/group has a 86%~100% power assuming a 5% significance level 
with a two-sided test.

2.4 | Western blot

Tissues were homogenized with RIPA buffer containing protease 
inhibitors (Applygen Technologies Inc), and proteins in the superna-
tants were extracted following centrifugation. The concentration of 
protein was determined by the BCA Protein Concentration Assay Kit 
(Boster). Thirty micrograms protein samples were electrophoresed 
and fractionated on 8% SDS-PAGE, and transferred onto nitrocel-
lulose membranes (Millipore). The membranes were blocked with 
5% non-fat milk in Tris-buffered saline buffer (20 mmol/L Tris, 150 
mmol/L NaCl, pH 7.6 Tween-20 0.1%) and incubated with HIF-1α 
(Abcam, ab82832) or β-actin (ZSGB-BIO, TA-09) primary antibodies 
respectively at 4°C overnight. Followed by binding with specific sec-
ondary antibodies, the protein blots were detected with enhanced 
chemiluminescence reagents. β-actin served as an endogenous 
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control. The band signal intensities were quantitatively analysed by 
Quantity One software, n = 4 for each group. For western blot, power 
analysis shows that the sample size of 4/group has a 100% power to 
detect a difference of 0.2~0.3, assuming a 5% significance level with 
a two-sided test.

2.5 | RNA preparation, microarray 
processing and analysis

Total RNA was extracted using TRIzol reagent and quantified using 
NanoDrop ND-2000. RNA integrity was assessed using Agilent 
Bioanalyzer 2100. Clariom™ D assays (Applied Biosystems) were 
employed to profile lncRNA and mRNA expression. Total RNA 
was transcribed to cDNA, synthesized into cRNA and labelled 
with cyanine-3-CTP, followed by hybridization onto the microar-
ray. Following a wash step, the arrays were scanned using Agilent 
Scanner G2505C (Agilent Technologies). A random variance model 
(RVM) t test was applied to filter the differentially expressed 
genes according to the P-value threshold. Hierarchical clustering 
was employed to analysed the differentially expressed lncRNA 
and mRNA (n = 4/group).

2.6 | Quantitative PCR (qPCR)

qPCR was performed to validate the expression of significantly al-
tered lncRNA in heart tissues from the mouse model. Total RNA 
was extracted using TRIzol reagent (Invitrogen) and purified with 
an RNeasy kit (Qiagen). Total RNA was reverse-transcribed using 
M-MLV reverse transcription kit (Promega), according to the manu-
facturer's instructions. qPCR analysis and data collection were per-
formed on the ABI 7500 Real-Time PCR System (Applied Biosystems) 
using the specific primer pairs (Table S1). GAPDH served as an en-
dogenous control for normalization of the expression of each target 
gene. 2−ΔΔCt was calculated to indicate the relative expression of the 
gene. For quantitative PCR, power analysis shows that the sample 
size of 3/group has a 91%~96% power assuming a 5% significance 
level with a two-sided test.

2.7 | Gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis

GO analysis and KEGG pathway analysis were applied to identify the 
significant functions and pathways of the differentially expressed 
mRNA. A two-sided Fisher's exact test and chi-square test were 
used to classify the GO category, and P-values were corrected for 
multiple comparisons by calculating the false discovery rate (FDR). 
Pathway analysis was conducted according to KEGG, Biocarta and 
Reactome. Two-sided Fisher's exact test and chi-square test were 
used to select the significant pathways with the threshold of signifi-
cance defined by FDR-corrected P-values.

2.8 | Gene-gene functional interaction network

An interaction network was constructed based on the data for dif-
ferentially expressed genes. The KEGG database was used to ana-
lyse the functional gene interactions, and Cytoscape software was 
used to build the network. In the network, each gene corresponded 
to a node, and the nodes were connected by an edge. The degree 
of the gene expression was defined as the number of directly linked 
genes within a network, which could assess the relative significance 
of a gene to the network. Thus, a gene that connects to a large num-
ber of adjacent genes in the network is vital for the network. In ad-
dition, the genes were also analysed for betweenness centrality, an 
indicator of the gene centrality in a specific network. The between-
ness centrality is equal to the number of shortest paths from all ver-
tices to the others that pass through a gene. Thus, the degree and 
betweenness centrality were used as two indicators to identify the 
importance of a specific gene.

2.9 | lncRNA-mRNA expression correlation network

A lncRNA-mRNA expression correlation network was built based 
on the normalized signal intensity of the specific expression in 
mRNA and lncRNA. Pearson's correlation was used to choose 
significant mRNA-lncRNA, mRNA-mRNA or lncRNA-lncRNA cor-
relation pairs, and the cut-off of the correlation value was set at 
.92. The centrality of a gene or lncRNA was detected within the 
network. While considering different networks, core genes were 
determined based on the degree differences between two group 
samples.

2.10 | Statistical analysis

Student's t test was used for data comparison between the two 
groups, and the statistical differences among the groups were evalu-
ated by one-way analysis of variance (ANOVA) or the Kruskal-Wallis 
test. P-values < .05 indicated significant difference. Data are pre-
sented as mean ± standard error of the mean (SEM).

3  | RESULTS

3.1 | CIH aggravates cardiac injury after MI

Cardiac damage is a hallmark of MI. To determine the effects of CIH 
on cardiac remodelling post-infarction, we exposed male mice with 
MI surgery to a CIH environment (5% O2 at nadir, 20 cycles/h) for 
4 and 8 weeks to mimic OSA conditions, as described previously.19 
Normoxia-exposed sham-surgery mice served as controls. To in-
vestigate whether CIH modulates the cardiac remodelling post-in-
farction, we measured heart weight (HW) and analysed the cardiac 
function by echocardiography. MI mice subjected to CIH exhibited a 
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high cardiac hypertrophy index, as indicated by the HW/bodyweight 
(BW) ratios at 4 weeks (Figure 1A). Following 8-week CIH, the HW/
BW ratios of MI mice have reached a threshold, with no difference 
between Air and CIH (Figure S2A). The analysis of heart morphology 
revealed exacerbation of pathological remodelling post-infarction 
by CIH treatment, with an increased incidence of heart rupture, ag-
gravated local inflammation and severe myocardial fibrosis in MI 
mice exposed to CIH (Figure 1B,C). Myocardial remodelling was 
further confirmed by measuring the capillary and arteriolar density. 
As shown in Figure S1A-C, both capillary (vWF and CD31 marked) 
and arteriolar (α-SMA marked) densities were significantly reduced 
in MI hearts as compared to the sham controls, and CIH exposure 
led to suppressed myocardial arteriolar density after MI. MI-induced 
cardiac dysfunction was greater in the 4-week CIH group based on 
decreased left ventricular ejection fraction (LVEF), fractional short-
ening (FS) and left ventricular anterior wall (LVAW) (Figure 1D-O), 
which was not significant following 8-week CIH (Figure S2B-M). 
MI-induced cardiac dysfunction was great in both the 8-week CIH 
and Air group, with quite low EF and FS (Figure S2D,E). Additionally, 

myocardial HIF-1α expression was measured to examine the effect 
of CIH exposure. It was observed that compared with normoxia, CIH 
was conducive to high mRNA and protein expression of HIF-1α in 
the infarcted heart (Figure S1D,E). These findings demonstrated that 
exposure to CIH worsens the heart injury post-MI.

3.2 | lncRNA and mRNA expression profiles under 
MI are affected by CIH

lncRNAs have been considered as critical players in cardiovascular 
disease by interacting with proteins and other RNAs to regulate the 
downstream gene expression. To explore the mechanism of CIH in 
worsening cardiac injury and assess how CIH modulates the expres-
sion profile of lncRNA and mRNA during MI, cardiac lncRNA and 
mRNA expression profiles were identified by Clariom™ D assays 
(mouse). The lncRNA and mRNA with P ≤ .05 (t test) and fold change 
expression ≥ 1.2 were regarded as differentially expressed between 
the groups.

F I G U R E  1   CIH modulates cardiac 
injury post-infarction. A, Experimental 
scheme for establishing the mouse model. 
A representative whole heart image for 
the quantification of cardiac hypertrophy 
burden. HW/BW indicates the heart 
weight/bodyweight. n = 11 for Sham + 
Air, n = 10 for Sham + CIH, n = 7 for MI + 
Air and n = 8 for MI + CIH. B and C, Cross 
sections of heart tissues were stained 
by HE and Masson, respectively, and 
cardiomyocyte inflammation and cardiac 
fibrosis were determined. n = 6 for each 
group. D, Cardiac function was examined 
by echocardiography, and representative 
left ventricular M-mode echocardiography 
images are shown. E-O, Quantification of 
heart rate, EF, FS, LVAWd (left ventricular 
diastolic anterior wall), LVAWs (left 
ventricular systolic anterior wall), LVPWd 
(left ventricular diastolic posterior wall), 
LVPWs (left ventricular systolic posterior 
wall), LVIDd (left ventricular internal 
diastolic diameter), LVIDs (left ventricular 
internal systolic diameter), LV Vol-d (left 
ventricular diastolic volume) and LV Vol-s 
(left ventricular systolic volume). Air 
indicates normoxia. n = 8 for Sham + Air, 
n = 7 for Sham + CIH, n = 6 for MI + Air 
and n = 8 for MI + CIH. *P < .05, **P < 
.01, ***P < .001. Data are presented as 
mean ± SEM
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After 4 weeks of CIH exposure, 644 lncRNAs and 1084 mRNAs 
were identified as differentially expressed in MI mice as compared 
to those subject to normoxia, with 366 lncRNAs increased and 
278 lncRNAs reduced, 668 mRNAs increased and 416 mRNAs 
reduced (Figure 2A,C). After an 8-week exposure time to CIH, 
1482 lncRNAs and 990 mRNAs were significantly altered, includ-
ing 1235 up-regulated and 247 down-regulated lncRNAs, and 270 
increased mRNAs and 720 decreased mRNAs (Figure 2E,G). The 
relative abundance of the lncRNAs and mRNAs affected by CIH 
under MI injury is shown in Figure 2B,D,F,H. In sham mice, 1462 
lncRNAs and 523 mRNAs were identified as significantly differ-
entially expressed after 4 weeks of CIH exposure as compared to 
those subject to normoxia (Figure S3A-D). After 8-week exposure 
to CIH, 360 lncRNAs and 265 mRNAs were altered significantly 
(Figure S3E-H). We further analysed the overlap between the 

CIH-induced differential expression of lncRNA and mRNA in Sham 
and MI conditions. There were 40 lncRNAs and 47 mRNAs altered 
by 4-week CIH in both Sham and MI conditions, 31 lncRNAs and 
40 mRNAs shift under 8 weeks CIH simultaneously in Sham and 
MI mice. We also detected 604 lncRNA and 1037 mRNA varied 
following 4 weeks CIH exclusively within a MI background, 1451 
lncRNA and 950 mRNA altered by 8 weeks CIH exclusively in MI 
mice (Figure S4). Thus, the global lncRNA and mRNA expression 
profiles of MI are markedly modified by CIH intervention. To fur-
ther explore the impact of CIH, an additional reoxygenation group 
was included, and the lncRNA and mRNA expression profiles in 
MI mice with reoxygenation after CIH were distinctly different 
from those without reoxygenation. A total of 1759 lncRNA and 
778 mRNAs with significantly altered levels were identified, in-
cluding 914 up-regulated and 845 down-regulated lncRNAs, 450 

F I G U R E  2   Specific lncRNAs 
and mRNAs regulated by CIH and 
reoxygenation under MI. A and C, 
Volcano plots showing the lncRNAs 
and mRNAs significantly regulated by 
4-week exposure to CIH. The lncRNAs 
and mRNAs with P ≤ .05 (t test) and fold 
change in expression ≥ 1.2 were regarded 
as differentially expressed between the 
groups. B and D, Heat map depicting the 
changes in lncRNAs and mRNAs in MI 
mice after exposure to CIH for 4 wk. E 
and G, Volcano plots of the significantly 
different lncRNAs and mRNAs between 
MI and MI + CIH group at 8 wk. F and 
H, Heat map of the relative abundance 
of significantly changed lncRNAs and 
mRNAs by CIH at 8 wk. I and K, The 
lncRNAs and mRNAs that varied between 
MI complicated with CIH (8 wk) and MI 
with reoxygenation (4 wk) after CIH (4 
wk) are shown in the volcano plots. J and 
L, The relative abundance of lncRNAs 
and mRNAs in I and K is shown in the 
heat map. Air indicates normoxia; Reo 
indicates reoxygenation after CIH; 4W 
indicates 4 wk; and 8W indicates 8 wk. 
The red scatters in volcano plots indicate 
genes up-regulated by CIH, blue scatters 
indicate genes down-regulated, and 
grey scatters indicate genes that are 
not different between the groups. The 
heat map scale indicates the relative 
abundance of specific genes that were 
transformed into Z scores. The value of (−
log P) was the base 10e negative logarithm 
of the P-value. n = 4/group
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mRNAs increased and 328 mRNAs reduced (Figure 2I,K). The rela-
tive abundance of these differentially expressed lncRNAs is shown 
in Figure 2J.

Interestingly, 20 lncRNAs simultaneously varied in both the MI-
CIH and MI-reoxygenation groups, irrespective of CIH duration for 
4 or 8 weeks (Figure 3A). The relative expression of these core 20 
lncRNAs is shown in Figure 3B. For example, 16 lncRNAs, includ-
ing NONMMUT032513, NONMMUT074571 and NONMMUT033183, 
were elevated in MI-CIH that recovered to control levels (MI-Air) 
post-reoxygenation, whereas two lncRNAs that decreased due to 
CIH returned to the control rates after reoxygenation. Furthermore, 
qRT-PCR confirmed that the expression of NONMMUT032513 and 
NONMMUT074571 increased significantly (Figure 3C). It is interest-
ing that NONMMUT032513 and NONMMUT074571 were not modu-
lated by CIH in sham mice, indicating an alteration exclusively in MI 
conditions (Figure S4). Hence, CIH-associated NONMMUT032513 
and NONMMUT074571 might be the key lncRNAs in the aggravation 
of MI by CIH.

3.3 | GO functional annotation and KEGG pathway 
analysis of CIH-associated mRNAs

In order to predict the potential functions of the CIH-associated 
mRNAs identified in this study, GO and KEGG pathway analyses 
were carried out. In the biological process domain, functions in-
cluding positive regulation of transcription from the RNA polymer-
ase II promoter and collagen biosynthesis were up-regulated in the 
MI-CIH group and gene functions related to the cellular response 
to interferon beta, lipid metabolism and fatty acid metabolism were 
decreased (Figure 4 and Figure S5). The analysis of cellular compo-
nent functions suggested that the extracellular exosome, extracel-
lular space and extracellular regions were enhanced by CIH during 
MI injury, whereas the functions in the cytosol and cytoplasm were 
suppressed. Within molecular functions, aberrantly expressed 
mRNAs were involved in the up-regulated GO function, including 
protein-binding and down-regulated GO function, such as hydrolase 
activity. For the KEGG pathway, CIH-altered mRNAs were involved 
in the up-regulated pathways, including Toll-like receptor and Wnt 
signalling pathways and down-regulated pathways, such as the PPAR 
signalling pathway.

Intriguingly, the analysis of the biological process gene functions 
was altered after reoxygenation showed that antigen processing 
and MHC presentation in addition to protein heterotetrameriza-
tion were enhanced, whereas steroid and cholesterol biosynthesis 
were decreased. GO terms related to cellular components, including 

increased activity in extracellular regions and nucleosomes in MI 
mice after reoxygenation and reduction in membrane functions. 
Molecular functions, including DNA binding and transcription factor 
activities, were enriched and extracellular matrix binding was defi-
cient in the reoxygenation group (Figure S6). Also, KEGG pathways 
for Th1, Th2 and Th17 cell differentiation were enriched, and steroid 
biosynthesis was reduced in the reoxygenation group.

3.4 | lncRNA-mRNA expression correlation 
network and target pathway

The correlation and co-expression network of lncRNA and mRNA 
was established to identify the possible linkage of lncRNA and down-
stream mRNA in MI-CIH heart tissue (Tables S2,S3 and Figure S7). 
For the core lncRNAs NONMMUT032513 and NONMMUT074571, 
we observed that lncRNA NONMMUT032513 is positively linked 
with zinc finger E-box binding homeobox 1 (ZEB1) and smad5, 
lncRNA NONMMUT074571 is positively correlated with ZEB1 and 
Smtn, lncRNA NONMMUT032513 is negatively associated with Cmbl 
and ADH5, and lncRNA NONMMUT074571 is negatively correlated 
with Cmbl and Pfdn6 (Figure 5A). These lncRNAs are connected 
indirectly by their corresponding target genes, leading to a compli-
cated lncRNA-mRNA interaction network that is significantly influ-
enced by CIH during the development of MI-induced heart injury.

The modifications in these CIH-regulated mRNAs are associated 
with MI aggravation and result in global changes in the activity of 
several molecular pathways, including cAMP, HIF-1 and ErbB sig-
nalling (Figure 5B). Therefore, the network and interaction of po-
tential signalling pathways indirectly regulated by lncRNA and their 
upstream regulators were constructed (Figure 5C). Among these 
lncRNAs, NONMMUT032513 and NONMMUT074571 exhibited the 
largest interaction network with cAMP signalling, followed by ErbB 
signalling and finally HIF-1 signalling. The cAMP signalling pathway 
and NONMMUT032513 and NONMMUT074571 lncRNAs are indi-
cated as the putative players most likely to contribute to heart injury 
under CIH conditions.

4  | DISCUSSION

Accumulating evidence demonstrated that OSA plays a crucial role 
in cardiovascular disease. Nevertheless, the underlying molecu-
lar mechanisms are yet unclear. In the present study, we linked MI 
and obstructive OSA in a mouse MI model under CIH conditions. 
The cardiac function of MI mice was depressed by CIH, and RNA 

F I G U R E  3   lncRNAs responsive to CIH post-infarction. A, Venn diagram showing the number of lncRNAs that are statistically altered by 
4 and 8 wk of CIH post-MI, as well as the lncRNAs regulated by reoxygenation (4 wk) after CIH (4 wk). B, The relative abundance of the 20 
overlapping lncRNAs detected by Venn diagram in lncRNA array. n = 4 for each group. C, The expression of 17 out of the 20 overlapping 
lncRNAs was validated by qPCR analysis. Murine GAPDH gene was used as the housekeeping internal control. The transcript expression 
was quantified relative to the expression level of GAPDH using the comparative cycle threshold (ΔCt) method. Air indicates normoxia; Reo 
indicates reoxygenation after CIH; 4W indicates 4 wk; and 8W indicates 8 wk. n = 3/group. *P < .05. Data are presented as mean ± SEM
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expression profiles were significantly altered. Specific lncRNAs, in-
cluding NONMMUT032513 and NONMMUT074571, were sensitive 
to CIH and reoxygenation during MI. In addition, these genes af-
fected associated mRNAs, which might further regulate the poten-
tial GO functions and KEGG pathways involved in MI. The current 
findings delineated key lncRNAs responsible for exacerbated MI and 
cardiac damage by CIH.

OSA is highly prevalent in patients suffering from cardiovas-
cular disease and is associated with increased risk of subsequent 
cardiovascular events.20-22 MI and myocardial damage, clinically 
severe conditions that increase patient morbidity and mortality,23 
have been shown to be exacerbated by OSA.24,25 One of the major 
characteristics of sleep apnoea syndrome is CIH, which plays a crit-
ical role during and after cardiac injury in driving and aggravating 
the pathophysiology of MI, including enhanced production of ROS 
in cardiomyocytes and activation of HIF-1.7-11 These reports sug-
gested a correlation between CIH and MI pathology. In this study, 
we confirmed the contribution of CIH to the outcome of MI in exper-
imental animals. Both morphological changes, such as enlarged heart 
and infarct area and cardiac dysfunction such as decreased LVEF, FS 
and LVAW, were severe when exposed to 4-week CIH after infarc-
tion. These observations were consistent with our recent findings.19 
Following 8-week CIH, the HW/BW ratios and cardiac function of 
MI mice have reached a threshold, with no difference between Air 
and CIH. On the other hand, CIH pre-exposure to MI did not exert 
any significant effect on the severity of post-MI remodelling or heart 
failure in comparison to the MI without CIH.19 Therefore, under-
standing the potential modulators mediating cardiac damage driven 
by CIH is necessary.

Currently, we are also exploring the mechanisms underlying CIH-
exacerbated post-MI remodelling and have identified the key role 
of miR-214-3p in the suppression of cardiac CTRP9 expression, a 
novel cardioprotective cardiokine, contributing to CIH-exacerbated 
cardiac remodelling.19 Recent reports highlighted the involvement of 
lncRNAs in the development of cardiovascular diseases, including hy-
pertension,26-28 atherosclerosis29,30 and atrial fibrillation.31-33 Also, 
the expression profiles of lncRNAs are affected by various factors, 
including hypoxia,34-36 energy stress37-39 and particulate matter.40,41 
Moreover, the impact of CIH on the expression profiles of lncRNAs 
and mRNAs in the heart samples of rat model has been examined 
previously.42 A total of 289 dysregulated lncRNAs were identified 
following 8 weeks of CIH, with a majority of novel lncRNAs, whose 
functions have not yet been elucidated. Herein, we showed that the 
expression of multiple lncRNAs was altered drastically after expo-
sure to CIH for 8 weeks, whereas in the MI mice, 1482 lncRNAs were 
altered following CIH treatment (1235 increased and 247 decreased). 
Thus, CIH may exert a crucial role in driving cardiac injury in the pres-
ence of MI through modulating various lncRNAs. Herein, we focused 

on key lncRNAs, such as NONMMUT032513 and NONMMUT074571, 
which were affected by CIH and restored to the baseline after reox-
ygenation. Thus, we suggested that these lncRNAs are sensitive to 
oxygen and hypoxia, and therefore may provide potential targets to 
prevent or ameliorate the adverse outcome of MI.

Further investigation based on the lncRNA-mRNA expres-
sion correlation network analysis to predict the possible mech-
anism of these lncRNAs revealed that both NONMMUT032513 
and NONMMUT074571 were significantly associated with genes 
involved in the pathology of MI. For instance, ZEB1, which is pos-
itively linked to NONMMUT032513 and NONMMUT074571 in our 
findings, has been identified as an extremely abundant protein in 
the infarct area of MI models.43 The high expression of ZEB1 pro-
motes cardiac fibrosis, stabilizes collagen and aggravates MI by 
suppressing CXCR4 and increasing the level of collagen cross-link-
ing enzymes, Col1A1 and Col3A1.44,45 Moreover, the clinical out-
come after MI is highly correlated with NF-κB, interleukin (IL)-6 
and IL-8, which are direct targets of ZEB1.46-48 Cmbl is negatively 
associated with NONMMUT032513 and NONMMUT074571, and 
implicated in converting the angiotensin II type I receptor antago-
nist, olmesartan medoxomil, to its bioactive metabolite olmesartan; 
also, it has been reported to be down-regulated in the myocardial 
heart.49,50 Therefore, it can be speculated that NONMMUT032513 
and NONMMUT074571 responding to CIH might exacerbate the 
adverse outcome of MI by modulating the expression of the cor-
responding mRNAs, such as ZEB1 and Cmbl, which suppress the 
cardiac functions.

cAMP, ErbB and HIF-1 signalling pathways are identified 
as potential targets of the core lncRNAs that are modulated by 
CIH. Both cAMP and ErbB signalling pathways were targets of 
NONMMUT032513 and NONMMUT074571. Furthermore, en-
hanced ventricular G protein-cAMP signalling has been detected 
under CIH exposure, which is associated with increased left ven-
tricular contractility and augmented adrenergic activity in the car-
diac tissue.51 In addition, the level of cAMP is also significantly 
high in the myocardial tissue of animals with chronic MI.52 Another 
study has shown that cAMP causes further ischemic myocardial 
damage in ischaemic heart failure by strengthening cell mem-
brane Ca2+ permeability and increasing myocardial oxygen con-
sumption.53 The ErbB signalling pathway is essential for cardiac 
development, and the decline in the level of ErbB plays a patho-
physiological role in the development of cardiac dysfunction, lead-
ing to dilated cardiomyopathy.54,55 The HIF-1 signalling pathway, 
which is widely understood to be a hypoxia-dependent pathway 
controlling the transcription of numerous genes involved in car-
diovascular diseases, is suggested to be the potential target of 
NONMMUT032513. Moreover, it has been proposed that OSA ac-
tivates the HIF-1 pathway at the transcriptional level in a hypoxia 

F I G U R E  4   GO and KEGG pathway analysis for the mRNAs regulated by 4-wk CIH. A-C, Data show bioinformatics analysis of the GO 
terms in biological process, cellular component and molecular function of RNAs enriched in MI with 4 wk of CIH as compared to MI mice 
with air. D-F, The GO terms that were deficient in MI with 4 wk CIH. G and H, KEGG pathways that were statistically different between MI 
with 4 wk CIH and MI with air. n = 4/group
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dose-dependent manner.56 Following MI, the activation of HIF-1 
is a leading factor in the hypoxic response and cardioprotective 
effect in the myocardium.57,58

In conclusion, the lncRNA and mRNA expression profiles were 
screened in an experimental animal model, and the potential ln-
cRNAs, critical for cardiac dysfunction following MI in response to 
CIH, were identified. The current data suggested that the hypoxia-in-
duced NONMMUT032513 and NONMMUT074571 modulate cAMP, 
HIF-1 and ErbB signalling by targeting the corresponding mRNAs, 
such as ZEB1 and Cmbl. Further studies are required to confirm and 
identify the regulatory mechanisms among NONMMUT032513 and 
NONMMUT074571, ZEB1 and Cmbl, and cAMP, HIF-1 and ErbB sig-
nalling pathways.
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