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Introduction
Diabetes mellitus

Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood 
glucose levels resulting from impaired insulin secretion/action and glucose homeosta-
sis [1]. The global prevalence of DM has markedly increased during the last few dec-
ades, from 4.7% in 1980 to about 10.5% in 2020, with the expectation to increase to 10% 
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in 2035 [1, 2]. The World Health Organization (WHO) estimated DM as the seventh 
leading cause of death in 2016, and the global health spending on DM in 2013 reached 
approximately USD 548 billion, and is expected to increase to USD 627 billion by 2035 
[1]. There are two main types of DM depending on the insulin secretory function of the 
pancreas: type 1 DM (T1DM), which is characterized by a complete lack of insulin secre-
tion and frequently occurs in children and adolescents, and type 2 DM (T2DM), which 
frequently occurs in adults and results mainly from reduced insulin secretion and func-
tion [3]. T2DM is the most common, and accounts for more than 90% of all DM cases 
worldwide. Although the condition also develops with age, if left untreated it can lead 
to damage to other vital tissue systems. Changes in lipid metabolism, blood pressure, 
and the onset of obesity are the most frequent parameters indicative of the develop-
ment of T2DM [3]. Although the factors contributing to the development of T2DM are 
well identified and characterized, these traditional risk factors alone cannot explain the 
rapidly increasing prevalence of diabetes worldwide. Thus, other factors beyond these 
conventional risk factors, such as exposure to environmental pollutants, are now being 
studied. This review highlights the impact of exposure to environmental toxins and the 
activation of the transcriptional factor, aryl hydrocarbon receptor (AhR), on glucose 
hemostasis, insulin secretion, and DM development.

Environmental pollution and AhR

The development of human activities has resulted in the production and release of 
numerous chemicals into the air, water, and soil, causing massive environmental pollu-
tion [4]. Chronic exposure of humans to a mixture of environmental chemicals and pol-
lutants, such as dioxins and other polycyclic aromatic hydrocarbons (PAHs), causes 
organ toxicity through the activation of a cytosolic transcription factor known as 
the Aryl hydrocarbon receptor (AhR). AhR regulates cell differentiation, prolifera-
tion, and cancer imitation [5–7]. Activation of AhR upon  binding to its ligand, such 
as 2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD) or 7,12-dimethybenz[a]anthracene 
(DMBA), induces the transcription of a group of xenobiotic metabolizing enzymes, 
cytochrome P4501A1 (CYP1A1), CYP1B1, and CYP1A2 [8, 9]. Mechanistically, the 
binding of environmental pollutants to the AhR activates its translocation to the nucleus 
after dissociation from its inhibitory protein, heat shock protein (HSP90). In the nucleus, 
the activated receptor interacts with a transcription factor, AhR nuclear translocator 
(ARNT), and the resulting complex then selectively binds with a specific sequence on 
CYP1A1 DNA, known as the xenobiotic responsive element (XRE) to start the tran-
scription process of CYP1A1 and CYP1B1 (Fig. 1) [10, 11].

Environmental pollution and DM

The available information suggests that the concentrations of chemicals and toxins in 
the environment, even in trace amounts, can cause severe problems for all organisms, 
including humans [12]. Environmental pollutants such as heavy metals and PAHs, are 
among the most hazardous and toxic [13]. The tissue accumulation of toxins from con-
taminated air, water, soil, and food plays a vital role in the pathogenesis of diseases. A 
systematic review has provided convincing evidence supporting the role of environmen-
tal pollutants in DM development [14]. Recent studies have reported that exposure to 
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airborne fine particular matter 2.5 (PM2.5), increases the prevalence of T2DM and the 
glycosylated hemoglobin (HbA1c) levels among both diabetic and healthy subjects [15, 
16], and  significantly decreases insulin sensitivity in obese participants [17]. A recent 
case-cohort study in Brazil involving 1605 non-diabetic participants with 4 years of fol-
low-up, revealed that those exposed to persistent organic pollutants (POPs) with more 
than a twofold increase in the AhR ligand levels, demonstrated a higher risk of develop-
ing diabetes [18].

In recent years, epidemiological studies have shown that elevated serum levels of 
several POPs are linked to metabolic syndromes including obesity [19], diabetes [20], 
hypertension [21], and inflammatory diseases [22]. AhR agonists, including beta naph-
thoflavone (β-NF), have been reported to suppress preadipocyte differentiation, down-
regulate glucose transporting activities, modulate inflammatory responses, and interfere 
with estrogen in cultured cell and animal  models. Studies have also reported a link 
between exposure to organochlorines and disrupted blood-glucose regulation and dia-
betes. In addition, Epidemiological studies on industrial workers and population groups 
in high-exposure environments have linked higher polychlorinated biphenyl (PCB) 
body burden to increased risk of altered glucose metabolism and diabetes [23]. This was 

Fig. 1 The proposed pathway for AhR-mediated glucose hemostasis and DM by environmental pollutants. 
AhR is expressed in various tissues, including the pancreas, liver, and adipose tissues, making it a crucial 
receptor in many physiological and pathological processes involved in insulin secretion and glucose 
metabolism. Mechanistically, upon binding of TCDD to AhR, the activated receptor translocates to the 
nucleus after dissociation from its inhibitory protein HSP90 and XAP2. The activated receptor interacts 
with type 2 basic helix–loop–helix/PER-ARNT-SIM (bHLH-PAS) protein, AhR nuclear translocator (ARNT). 
The resulting complex selectively binds to a specific sequence on CYP1A1 DNA. known as the xenobiotic 
responsive element (XRE), leading to transcriptional induction of specific genes involved in xenobiotic 
metabolism, such as CYP1A1 and CYP1B1. Induction of AhR downstream targets CYP1A1 and CYP1B1 directly 
or indirectly induce impaired glucose hemostasis and insulin secretion. Created by bioRender.com
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previously supported by the observations of  Longnecker et  al. who  reported that dia-
betic pregnant women exhibited higher PCB levels than non-diabetic women [24].

Similarly, other studies show dose-dependent relationships between diabetes or fast-
ing-glucose levels and PCBs [25, 26]. A cross-sectional study by Codru et  al., found a 
significant association between serum PCB and pesticide levels and diabetes in adult 
Native-American population after adjustment for age, body mass index (BMI), serum 
lipid levels, sex, and smoking [27]. Although the study lacks data that highlight the exact 
cause and effect of this observed pattern, there is emerging evidence that environmental 
exposure to persistent organochlorine compounds is associated with an elevated inci-
dence of diabetes [27].

All these studies strongly support the hypothesis that exposure to environmental pol-
lutants contributes to DM development. However, there are no reviews exploring the 
molecular mechanisms of the effect of AhR/CYP1A1 pathway modulations following 
exposure to environmental pollutants on glucose homeostasis and DM development.

The role of AHR/CYP1A1 pathway in glucose homeostasis and insulin secretion
Physiological role of AhR/CYP1A1 in glucose homeostasis and insulin secretion

The relative importance of AhR signaling within numerous molecular pathways is 
governed by evidence that points toward the role of the receptor beyond xenobiotic 
metabolism and detoxification. Several AhR knockout models have revealed many devel-
opmental defects, the most prominent being disruption of hepatic functioning [28] and 
other physiological processes such as cardiovascular physiology [29]. More specifically, 
it was reported that inactivation of the basal activity of the AhR/CYP pathway either 
genetically or chemically leads to impairment of the heart, liver, spleen, and skin tissues 
[30, 31]. AhR is a crucial receptor required by a multitude of physiological processes. 
However, there is a lack of information on the physiological role of AhR in DM [32]. To 
better understand the physiological role of the AhR/CYP1A1 pathway in glucose home-
ostasis and DM pathogenesis, it is essential to first explore the localization and expres-
sion of the AhR and its dependent genes in the glucose-regulated organs. This section 
reviews the most recent studies on the expression, function, and tissue localization of 
AhR and mediated CYP genes in the pancreas, liver, and adipose tissues.

AhR is one of the best-characterized bHLH/PAS proteins, expressed in various tis-
sues among the mammalian and non-mammalian vertebrate species [33–35]. Studies in 
rodents have shown predominant receptor localization in the lung, thymus, kidney, and 
liver, and reduced expression in the heart and spleen [36]. A study comparing the mRNA 
expression of AhR in normal pancreas and chronic pancreatitis demonstrated a 2.8-fold 
higher AhR expression in the acinar and ductal cells of chronic pancreatitis tissues than 
in normal pancreas [37]. On the other hand, Gunton et al., highlighted the reduced lev-
els of ARNT expression within pancreatic islets [38]. Furthermore, it has been found 
that expression of AhR/CYP1A1 within pancreatic β-cells may facilitate production of 
reactive intermediates [39]. Of particular interest are the CYP1A family proteins, which 
show significant expression in the pancreas itself [40, 41]. Several in vivo studies showed 
that pancreatic islets exposed to TCDD, a potent AhR/CYP1A1 inducer, reduced insu-
lin secretion [42–45]. Recently, Ibrahim and coworkers reported that transient expo-
sure of human and mouse pancreatic endocrine cell lines to TCDD causes significant 
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suppression of insulin secretion, lowers plasma insulin levels, and increases β-cell death 
[46]. These effects were accompanied by an upregulation in the pancreatic function of 
the CYP1A1 enzyme, which were diminished in cyp1a1 and cyp1a2 knockout mouse 
islets [46].

Although AhR was initially identified due to its role in TCDD-induced toxicity, AhR 
knockout in vivo mouse models have demonstrated the role of the receptor in normal 
development and physiology. Exposure to TCDD, with subsequent activation of AhR, 
disrupts insulin secretion and glucose homeostasis in an AhR-dependent manner [47]. 
For example, Thackaberry et al. and others, reported imbalanced glucose homeostasis, 
decreased plasma levels of insulin, and impaired glucose intolerance in AhR knockout 
mice [47, 48], suggesting the importance of AhR expression in the maintenance of glu-
cose and lipid homeostasis, as well as highlighting that deficiency of AhR has detrimen-
tal metabolic effects.

Gestational diabetes is marked by glucose intolerance and insulin resistance [49]. The 
onset of gestational diabetes has been shown to increase neonatal body weight, influ-
enced by the maternal genotype alone [50]. On the contrary, Thackaberry et  al. dem-
onstrated that pregnant mice lacking AhR exhibit decreased fasting plasma insulin 
levels and insulin resistance, while hyperglycemia and altered glucose tolerance were not 
observed in these mice [47]. The onset of mature-onset diabetes of the young-2 (MODY-
2), a type of gestational diabetes, is due to the disruption of a single copy of the glucoki-
nase gene, causing alterations in the sensing of glucose and decreased insulin secretion 
[47]. An interesting point to note is that although MODY-2 shares similarities with the 
AhR-null mice phenotype of pregnant mice, MODY-2 mice develop mild hyperglycemia 
under fasting conditions and glucose intolerance, but do not develop insulin resistance, 
unlike AhR-null mice [47]. These studies suggest that as AhR-null female mice age, they 
develop altered insulin regulation, indicating that AhR is vital in regulating insulin in 
pregnant and non-pregnant female mice.

Pathological role of the AhR/CYP1A1 pathway in T1DM development

Exposure of young children to environmental pollutants has been linked to the accel-
erated manifestation of T1DM [51]. AhR is widely expressed in many innate immune 
and anti-inflammatory cells [52], which has led to studies deciphering the possible role 
of AhR in the pathogenesis of T1DM. Emerging data have put forward the role of AhR 
signaling in rectifying β-cell destruction caused by disrupted immune homeostasis. The 
complex formation of AhR with many transcriptional factors, controls the expression 
of critical genes necessary for autoimmune responses during T1DM development. For 
instance, AhR activation destroys β-cells through suppression of effector T cell function 
via direct targeting of the effector T cell subsets or indirect induction of regulatory T 
cells (Treg cells) [53]. Consequently, interferon-γ (IFN-γ) and tumor necrosis factor-α 
(TNF-α) are major molecules leading to β-cell death, and T cells deficient in AhR pro-
duce more IFN-γ [54]. In addition, Maltepe et  al. showed that genes that respond to 
hypoxia and hypoglycemia are not activated in ARNT-deficient embryonic stem cells 
[55].

A review by Tiantian et  al. provides substantial evidence for the potential involve-
ment of AhR in T1DM pathogenesis [56], which has been implicated as AhR is widely 
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expressed in immune cells. AhR signaling has also been found to modulate autoimmune 
responses during T1DM development. AhR interacts with a multitude of immune cells, 
such as antigen-presenting cells (dendritic cells and macrophages), gut innate immune 
cells (Innate Lymphoid cells (ILCs), Intraepithelial lymphocytes (IELs), and T cells), and 
adaptive immune cells (Tregs, Tr1, Th1, and Th17 cells) [56]. Some vital immune cells, 
such as the dendritic cells, play a critical role in initiating autoimmune responses against 
pancreatic cells. Moreover, these cells are one of the earliest islets infiltrating leukocytes 
that are also essential in activating lymphocytes in the early insulitis stage [57].

Furthermore, a recent study by Miani et al. in non-obese diabetic (NOD) mice [58], 
shed light on the complex interaction between gut microbiota, immune cells, and pan-
creas in the development of T1DM [58]. NOD mice have been extensively used as a 
prime animal model for studying autoimmune diabetes [59]. The study highlights the 
plausible association of pancreatic endocrine cells in crosstalk with gut microbiota 
metabolites in NOD mice through the secretion of antimicrobial peptides (AMPs) that 
exert an immune-regulatory function to halt pancreatic inflammation [58]. In addition, 
AhR is notably expressed in intestinal ILCs and is mainly involved in driving the devel-
opment of gut ILC22 cells, therefore pushing toward antimicrobial function and mucosal 
epithelial cell survival and proliferation [60, 61]. Taken together, these data highlight that 
an AhR–ILCs axis is essential to maintain gut integrity, which in turn impacts T1DM 
progression via crosstalk between the gut and pancreas.

In healthy individuals, pathogenic autoimmunity is controlled by a specialized subset 
of T cells named Treg cells [62]. These cells undergo differentiation and their function 
depends on the forkhead box P3 (Foxp3) transcription factor [63, 64]. Foxp3 is an essen-
tial factor, therefore gene mutations could lead to immune dysregulation. Additionally, 
Treg cell development is also associated with  Interleukin 17 (IL-17)-producing T-cells 
(Th17) and transforming growth factor beta (TGF-β1), which induces differentiation of 
these cells [65]. Based on this, one study reported that AhR activation regulates the gen-
eration of Treg and Th17 cells in C57BL/6 mice injected with TCDD. The study further 
established that TCDD, a potent AhR activator, directly binds to the Foxp3 promoter, 
leading to Treg induction and development [66], suggesting there is a link between 
Foxp3 and Tregs type 1 regulatory T cells (Tr1 cells), and AhR [53, 67]. These studies 
demonstrate that AhR is a molecular sensor for external and internal signaling, employ-
ing numerous exogenous and endogenous ligands. These properties render it a viable 
therapeutic target, paving the way toward developing AhR-targeted immunomodulatory 
agents.

Pathological roles of AhR/CYP1A1 pathway in T2DM development

The onset of T2DM is characterized by the disruption of the insulin secretion pathway 
in the islets of Langerhans, caused by mutant genes that result in β-cell dysfunction [68] 
and insulin resistance [69]. A better understanding of the mechanism requires study-
ing the molecular basis of pancreatic islets. Kubi et  al. have shown that treatment of 
human embryonic stem cells (hESCs) with low doses of TCDD, an AhR activator, caused 
impairment of the differentiation of the pancreatic lineage and AMP-activated protein 
kinase (AMPK) pathway, leading to impaired pancreatic development and function [70]. 
In addition, it has been reported that induction of experimental diabetes in rats using 
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streptozotocin (STZ)  was associated with elevated CYP1A1 activity levels in diabetic 
rats compared with the control [71]. A study by Dabir et al. reported activation of AhR 
expression and function within aortic endothelial cells (ECs) in response to elevated glu-
cose levels. This activation of AhR induces the expression of thrombospondin-1 gene 
promoter (TSP-1), a potent antiangiogenic and proatherogenic protein that plays a role 
in the development of diabetic vascular complications [72]. It has been postulated that 
under hyperglycemic conditions, AhR complexes with specific transcriptional factors, 
early growth response (EGR-1), and activator protein-2 (AP-2), that mediate changes in 
ECs gene expression, leading to endothelial dysfunction and other vascular diseases [72]. 
Adequate glycemic control in diabetes is a key factor in managing the metabolic con-
dition to prevent the onset of other microvascular complications [73]. An association 
between diabetes complications and AhR has been reported. For example, it has been 
demonstrated that patients with diabetic nephropathy showed elevated levels of serum 
AhR [74], which is further correlated to the increased levels of reactive oxygen species 
(ROS) and DNA damage, indicating the potential role of AhR in the pathogenesis of dia-
betic nephropathy [75]. Furthermore, Park et al. showed that sera of Korean diabetic and 
prediabetic patients express higher AhR ligand TCDD levels than non-diabetics, which 
were positively associated with obesity, blood pressure, and serum triglyceride, and fast-
ing glucose levels. This was further supported in  vitro, where  co‐culturing of mouse 
myoblast C2C12 cells with sera of diabetic patients resulted in reduced intracellular ATP 
levels and elevated ROS generation compared with controls [76].

A linear correlation between serum AhR ligand activity and BMI in healthy and glu-
cose-intolerant patients reveals that AhR ligands most likely play a role in body mass 
regulation. In patients with pancreatic cancer, a direct correlation between the plasma 
level of AhR with age and BMI was observed, specifically in pancreatic cancer patients 
> 65  years old and BMI < 25  kg/m2 [77, 78]. Since age is a crucial factor in the devel-
opment of diabetes [79], it has been suggested that age and BMI could be significant 
contributing factors to elevated AhR levels. Moreover, the findings of Park et  al. and 
others that sera from glucose intolerant subjects inhibit the mitochondrial functioning 
of cultured cells, further support the possibility that circulating AhR ligands contribute 
to mitochondrial dysfunction in tissues and eventually leading to insulin resistance and 
T2DM development [76, 80]. Taken together, findings from these studies suggest that 
activation of AhR/CYP1A1 in pancreatic islets following exposure to environmental tox-
ins, such as TCDD, regulates glucose homeostasis and insulin secretion.

Pathological role of AhR/CYP1A1 in the pancreas

Mounting evidence suggests the potential role of environmental chemicals in caus-
ing β-cell injury in the endocrine pancreas  and further disrupting glucose homeo-
stasis [42, 45, 47]. A previous study in rodents demonstrated that transient exposure 
to TCDD induced long-term activation of the CYP1A1 enzyme within pancreatic 
islets compared with the liver, despite a relatively small amount of TCDD reaching 
the pancreas [46], suggesting a possible involvement of CYP1A1 in insulin secretion 
by β-cells. Further studies have investigated the pancreatic toxicity of TCDD under 
in vivo, ex vivo, and in vitro experiments. These studies showed that TCDD disrupted 
the second-phase insulin secretion from islets in an AhR-dependent manner [45, 81]. 
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The possibility that protein kinase C (PKC) pathway to regulate the second phase of 
insulin secretion is supported by the fact that TCDD enables the activation of PKC 
by translocating it from the cytoplasm to the cellular membrane [82]. Additionally, 
it is important to note that the ARNT gene is located on human chromosome 1q21. 
This region has replicated linkage to T2DM in diverse populations, indicating that 
altered insulin secretion could be due to specific ARNT variants [83]. This suggests 
that TCDD-induced insulin secretion impairment is indirectly caused by disruption 
of the PKC signaling pathway (Fig. 2).

Contrarily, studies have reported the activation of AhR as a consequence of high 
glucose levels. It has been shown that the AhR–XRE complex in the nuclear extract of 
endothelial cells is stimulated by high glucose. Furthermore, hyperglycemia has been 
found to affect the expression of endothelial proteins such as TSP-1 [84]. The link 
between TSP-1 and AhR has been further studied by Dabir et al. who report that high 
glucose level rapidly activates AhR in endothelial cells, and that AhR further controls 
the expression of the TSP-1 protein [72], triggering endothelial dysfunction and vascular 
disease. However, more studies are needed to explore further the effect of hyperglycemia 
on the AhR/CYP1A1 pathway.

Pathological role of AhR/CYP1A1 in the liver

Several studies have also shown the direct and indirect modulation of several CYP 
enzymes under diabetic conditions. Studies on AhR activation are associated mainly 
with regulating and stimulating CYP1A1, CYP1A2, and CYP1B1 in hepatocytes in 

Fig. 2 Pathological role of AhR/CYP1A1 in the pancreas: activation of AhR in the pancreatic islets upon 
exposure to ligands such as TCDD, leads to induction of CYP1A1, with subsequent generation of ROS and 
disruption of PKC and mitogen activated protein kinases (MAPK) signaling pathways, resulting in impaired 
insulin secretion and glucose intolerance within the islet. In addition, AhR–ARNT complexes formed in the 
pancreas also regulate the expression of specific genes, such as MODY-2 and Akt-2, which are critical to 
glucose metabolism and hemostasis. Created by bioRender.com
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response to compounds such as dioxins, dibenzofurans, and PCBs, reviewed in [85–87]. 
This was investigated using diabetic rats as animal models to decipher the regulatory 
influence of endocrine hormones on various organ systems. Imbalanced insulin levels 
have been found to modulate hepatic CYP1A2, CYP2A1, CYP2B1, CYP2C7, CYP3A1, 
and CYP3A2 in the hepatic microsomes of rats. Previous studies have shown that a DM-
induced increase in hepatic ethoxyresorufin O-deethylase (EROD) activity was linked to 
a rise in CYP1A2 protein [88]. This was further supported by investigations demonstrat-
ing that increased CY1A2 and CYP2B activities are attributed to hyperketonemia that 
characterizes diabetes [89].

Expression of AhR and ARNT in normal developing tissues, as well as within embry-
onic tissues has raised speculation regarding their potential to disrupt development. A 
study showed the spatial and temporal expression pattern of AhR in C57BL/6N embryos 
from gestation day (GD) 10 through GD16 within various tissues. Increasing nuclear 
localization of AhR within hepatocytes was observed with advancing developmental age, 
demonstrating uniform expression levels of the receptor across the liver, and highlight-
ing the role of this receptor in normal embryonic development [90]. In another study, 
liver mRNA profiles of wild-type and AhR-null mice showed higher levels of TGF-β in 
the liver of AhR-null mice, which contributed to fibrosis development and reduced reti-
noic acid metabolism [91, 92]. Evidence shows that retinoic acid signaling is required in 
adult mice pancreas for maintaining both β-cell function and mass [93], indicating that 
the AhR is relevant to preserving normal cell physiology.

Data from previous studies have also revealed a complex interaction between AhR/
ARNT and circadian proteins, such as circadian locomotor output cycles kaput 
(CLOCK) and brain, muscle ARNT-like protein 1 (BMAL1), also known as ARNT-like 
(ARNTL) owing to structural similarities between them. The activation of AhR causes 
the disruptive functioning of CLOCK/BAML1 in many tissues [94], which is known to 
alter glucose tolerance and essential metabolism genes [94–96]. Another study high-
lighted the association between the AhR and the peroxisome proliferator-activated 
receptor (PPAR-α), which is known to play a role in regulating glucose and lipid home-
ostasis [97], shedding light on glucose metabolism, insulin sensitivity, and circadian 
rhythm in the liver [98]. PPAR activation is known to increase the phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, causing 
hyperglycemia and insulin resistance [99]; therefore, reduced expression of this recep-
tor protein could confer a mechanism of protection against insulin resistance, reduc-
ing the risk of diabetes and its complications [100]. Importantly, AhR knockout mice 
models exhibited enhanced insulin sensitivity, improved glucose tolerance, and lower 
expression levels of PPAR [100]. Similarly, earlier studies have implicated the influence 
of PPAR-α signaling on AhR activation and circadian clock dysfunction leading to the 
onset of T2DM with insulin resistance in humans exposed to environmental toxins [99–
101] (Fig. 3). 

One study investigated the effect of AhR agonists β-NF and TCDD on PPAR-α expres-
sion and glycolysis in murine hepatoma cell lines, Hepa1c1c7, and in AhR knockout mice. 
In the treatment of AhR knockout mice with AhR agonists, enhanced insulin sensitiv-
ity decreased the expression of PPAR-α. In addition, they observed an altered circadian 
rhythm of liver genes controlling glucose and fatty acid metabolism, such as G6Pase and 
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PEPCK. In the in vitro Hepa1c1c7 cells, TCDD, and β-NF induced Cyp1a1 and PPAR-α 
expression [102]. These results were further validated by silencing Bmal1 in Hepa1c1c7 
cell line, which resulted in decreased expression of PPAR, AhR, and Cyp1a1. Further-
more, AhR silencing inhibited Bmal1, whereas Ahr and Bmal1 siRNA reduced PPAR-α 
and glucose metabolism genes. Since PPAR-α regulates BMAL1, AhR, and CYP1A1, 
PPAR-α may mediate the inhibitory effect of Bmal1 silencing on the AhR/CYP1A1 path-
way [100]. Therefore, these data reveal that hepatic activation of the PPAR-α pathway may 
represent a critical link among AhR signaling, circadian rhythms, and glucose metabo-
lism, giving further insight into underlying AhR-mediated insulin resistance.

Pathological role of AhR/CYP1A1 in adipose tissue

T2DM is characterized not only by impaired secretion of insulin but also by  insulin 
resistance among organs such as the liver, adipose tissue, and muscle majorly contribute 
to the metabolic condition [69]. Adipose tissues are targets for environmental toxicants 
in that it has been reported that AhR activators  such as  POPs and PCBs bioaccumu-
late within human and animal adipose tissues, leading to inflammation and impaired 
glucose homeostasis [103, 104]. Whereas administration of an AhR antagonist resvera-
trol prevents PCB-mediated impairment of glucose hemostasis and insulin secretion in 
mice adipose tissue [105]. Lee et al. reported that subjects with high blood POP levels 

Fig. 3 Pathological role of AhR/CYP1A1 in the liver: AhR activation effects on the liver and subsequent 
impact on the development of T2DM. Activation of AhR in the liver initiates model crosstalk between AhR, 
PPAR-α signaling, circadian clock dysfunction, and several key regulatory pathways. AhR activation results in 
a decrease in PPAR-α levels, which further impacts β-oxidation. This is accompanied by decreased expression 
levels of PEPCK and G6Pase, known for regulating hyperglycemia and insulin resistance. Moreover, since 
PPAR-α also exhibits circadian variation, it influences CLOCK and BMAL1 levels, altering glucose tolerance and 
disrupting the regulation of specific metabolism genes. AhR has also been shown to control the expression 
of the TSP-1 protein, an antiangiogenic and proatherogenic protein involved in development of several 
vascular diabetic complications. Since many molecular pathways are regulated by AhR activation in the liver, 
these effects may implicate a subsequent impact on the development of T2DM. Created by bioRender.com
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were prone to insulin resistance and T2DM, whereas subjects with low blood POPs had 
no such risk, despite the onset of obesity in these subjects. This highlights the complex 
interaction between AhR and obesity in the pathogenesis of T2DM [104].

Numerous studies have shown that AhR is associated with the modulation of gluco-
neogenesis genes [106, 107]. Furthermore, an in vivo study demonstrated that intraperi-
toneal administration of different doses of TCDD to guinea pigs for up to 28 days caused 
a persistent reduction in the uptake of glucose by the pancreatic and adipose tissue, pos-
sibly owing to a decrease in the number of glucose transpor proteins [108]. Thus, it has 
been postulated that TCDD may directly or indirectly inhibit the transcriptional expres-
sion of glucose transporter (GLUT) genes through an AhR-dependent mechanism. 
Furthermore, the TCDD-induced reduction in the glucose transport system, which is 
known to play a vital role in supplying energy to cells and cellular metabolism, has been 
shown to exacerbate adipose tissue loss and inhibit lipogenesis and gluconeogenesis 
[108] via dysregulation of lipoprotein lipase activity in adipose tissue, insulin secretion 
in the pancreas, and glucose metabolism and glycogen fatty acid synthesis in the liver 
[109]. Taken together, these results demonstrate that TCDD exhibits inhibitory action 
on GLUT genes by its interaction with AhR.

Initial studies by Poland et al. were the first to provide evidence of a link between AhR 
activation by  TCDD and energy balance [110]. Following this, several studies demon-
strated the inhibitory action of TCDD on the synthesis of fatty acids in liver and adipose 
tissues [111, 112], gluconeogenic enzymes such as G6Pase and PEPCK [113], and adipo-
genesis [114]. In this context, it has been reported that mice expressing a high constitu-
tively active form of AhR spontaneously developed hepatic steatosis, characterized by 
high amounts of fatty acid import, suppressed fatty acid oxidation, and increased oxida-
tion and mobilization of peripheral fat storage [115]. Consistent with this, Wang et al. 
have shown that AhR deletion not only stimulated insulin sensitivity, increased energy 
and consumption, and diminished adiposity [116], but also diminished the PPAR-α sign-
aling pathway, which is known to play a vital role in modulating fatty acid oxidation and 
glucose metabolism [100]. Similarly, it has been reported that obese mice subjected to 
a diet containing the AhR antagonist α-NF, had a significant loss of body mass, reduced 
PPAR-α activity, and reversed the fatty liver disease and expression of obesity markers, 
such as stearoyl-CoA desaturase 1 and phosphoprotein 1 [117]. These studies strongly 
indicate a link between AhR and energy expenditure in experimentally induced obesity, 
and open doors to the potential of targeting AhR as an effective treatment strategy for 
obesity and related comorbidities, including DM. Figure  4 summarizes the molecular 
pathways that are regulated by AhR activation in the adipose tissue and the impact on 
glucose homeostasis and DM development. In addition, disruption of the CYP1B1 gene 
has demonstrated extensive protection against obesity and steatotic hepatitis [118]. In 
agreement with this, a study on transgenic CYP1B1 deficient mice that were fed with 
a high-fat diet (HFD) showed improved glucose intolerance with potentially lowered 
obesity compared with wild-type animals [119]. These effects of CYP1B1 on obesity and 
glucose intolerance could be attributed to the role of CYP1B1 in metabolizing steroid 
hormones and lipids that modulate metabolism, and the accumulation and distribution 
of adipose tissues [120, 121], suggesting that inhibition of CYP1B1 could be a biomarker 
in the treatment of obesity and T2DM.
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Molecular mechanisms governing the effect of AhR/CYP1A1 pathway 
on glucose hemostasis and DM development
The most important question is how the AhR/CYP1A1 pathway modulates glucose 
hemostasis and DM development. Unfortunately, there is still no clear answer to this 
question. However, the existing crosstalk between AhR/CYP1A1 and several transcrip-
tional factors and molecular pathways means the role and physiological functioning of 
various genes have been deciphered. In general, four main mechanisms are proposed: 
(1) gluconeogenesis, (2) hypoxia-inducible factor (HIF), (3) oxidative stress, and (4) 
inflammation.

Gluconeogenesis

Glucose is a well-known primary fuel that fulfills the energy needs of mammalian tis-
sues. Glucose is generated through a well-orchestrated enzymatic pathway called glu-
coneogenesis [122]. The liver is an important site for glucose storage in the form of 

Fig. 4 AhR regulates adipocyte differentiation by regulating the PPAR signaling pathway, which plays a 
vital role in modulating fatty acid oxidation and glucose metabolism. Dioxins, such as TCDD, bind to AhR, 
inducing receptor activation that evokes many biological and toxicological effects. These environmental 
toxins bioaccumulate within human and animal adipose tissues, leading to inflammation and subsequently 
impairing insulin resistance. Furthermore, the formation of AhR–ARNT complexes interferes with the 
signaling of several pathways. TCDD-induced activation of AhR further causes dysregulation of lipoprotein 
lipase activity in adipose tissue, regulating adipocyte differentiation and interfering in the PPAR-α signaling 
pathway critical in fatty acid oxidation and glucose metabolism. Additionally, a TCDD-induced increase in the 
expression of TNF-α has been shown to exacerbate the dysfunction of insulin signaling and insulin resistance. 
Created by bioRender.com
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glycogen. In addition, it also plays a role in maintaining gluconeogenesis, that is, de novo 
glucose synthesis during prolonged starvation periods. However, an increase in the rate 
of gluconeogenesis has been greatly attributed to hyperglycemia in T2DM. The pathway 
is regulated by hormone secretion, gene transcription, and post-translational modifica-
tion [123]. Hormones such as insulin, glucagon, and glucocorticoid modulate the gluco-
neogenic pathway and glucose production [123].

The involvement of the AhR pathway in gluconeogenesis was investigated in AhR 
knockout mice. This study showed that the expression of gluconeogenic genes such as 
PEPCK and G6Pase was observed in mice plasma, liver, and skeletal muscle. Further-
more, AhR knockout mice showed lower glucose levels in plasma and liver compared 
with AhR wild-type mice. However, this was contrary to elevated lactate levels, the main 
product of glycolysis, in the plasma and skeletal muscle of AhR knockout mice [124]. 
Since lactate, in association with alanine, functions as a critical substrate in the glucone-
ogenesis pathway during fasting, alanine levels were further observed and lower in AhR 
knockout mice muscle and liver. Therefore, increased levels of lactate combined with 
alanine in the plasma of AhR knockout mice could indicate glucose being catabolized by 
peripheral tissues and hence promote its utilization as a gluconeogenic precursor in the 
liver under fasting conditions for energy homeostasis [124]. Additionally, glycerol levels, 
a substrate for gluconeogenesis, were elevated in the plasma and liver of AhR knock-
out mice. These data prompted studies to reveal that the genetic expression of G6Pase 
was higher in AhR null mice to maintain blood glucose levels for energy metabolism 
under fasting conditions [124]. These results point towards the possible implications of 
disrupted glucose and fatty acid metabolism, such as the onset of T2DM and obesity-
related comorbidities [124, 125].

Hypoxia‑inducible factor (HIF)

It was previously reported that altered insulin secretion could occur due to specific 
ARNT variants [83]. ARNT, known as a hypoxia-inducible factor (HIF)-1 β, is a tran-
scription factor that plays a critical role in adaptive responses to environmental stresses, 
including dioxin exposure and hypoxia [126]. Therefore, an extensive study was per-
formed to identify the functioning of metabolic pathways under low ARNT/HIF-1β 
factor levels in β-cells. In this study, siRNA-mediated knockdown of ARNT/HIF-1β 
inhibited glucose-stimulated insulin secretion. Findings from the study support the idea 
that ARNT/HIF-1β plays a prominent role in the regulation of biphasic insulin secretion 
[127].

It is also known as a joint binding partner for AhR and HIF-α subunits, and hence 
plays a significant role in AhR and HIF crosstalk [128, 129]. HIF signaling contributes to 
tumor progression by promoting invasion/metastasis, metabolic alteration, and induc-
tion of angiogenesis [126]. ARNT is expressed in pancreatic islets and plays a role in gly-
colysis and normal angiogenesis [83, 130]. ARNT has been found to regulate the normal 
function of HIF-1α [131, 132], which is important for β-cell survival and islet transplant 
outcomes. ARNT expression in islets of humans with T2DM was found to be reduced 
[38, 132, 133]. Moreover, earlier studies reveal impaired islet transplant outcomes in 
β-cells lacking HIF-α [134]. Hence, data from these studies implicate the importance 
of ARNT in β-cells and graft function, the absence of which could impair the ability of 
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these cells to respond to physiological insults, subsequently leading to the onset of DM 
and unsuccessful islet transplant outcome [134, 135].

Animal knockout models have shown the crucial role of ARNT in impaired β-cell 
function and the pathogenesis of T2DM. Furthermore, β-cell-specific deletion of ARNT 
in mice has been found to significantly contribute to abnormalities in glucose metabo-
lism and insulin secretion, alongside multiple alterations in isolated islets’ RNA expres-
sion that are highly similar to those of human pancreatic islets [38]. These observations 
point toward ARNT playing a role as an upstream regulator of several gene expression 
changes, causing the onset of T2DM in humans. In addition, since pyruvate cycling has 
been proposed as a novel pathway in insulin release [136], 137, its key NADP+ depend-
ent malic enzyme (MEc) and pyruvate carboxylase (PC) were downregulated, suggesting 
the role of ARNT/HIF-1β in pyruvate cycling [127]. Collectively, there was a marked 
reduction in the glycolytic flux in ARNT/HIF-1β silenced β-cells, highlighting the abso-
lute importance of ARNT/HIF-1β in maintaining the glucose-responsive state of pan-
creatic β-cells and insulin release.

Oxidative stress

Several studies have recognized oxidative stress as a critical marker for developing dia-
betic complications [138–141]. Oxidative stress occurs from the unbalanced produc-
tion of free oxygen radicals and ROS that can cause DNA, RNA, and protein damage, 
in addition to cellular membrane destruction [142]. The onset of diabetes has shown 
increased levels of oxidative stress in the β-cells, a phenomenon caused by elevated pro-
duction of oxidants and an impaired antioxidant defense system. This imbalance could 
be attributed to several mechanisms, including the increased intracellular formation of 
ROS, lower ATP/ADP ratio, reduction of the mitochondrial membrane potential, and 
downregulation of expression of genes associated with energy metabolism [143–145]. 
Such effects lead to cellular and tissue damage, specifically the development of diabetic 
complications such as diabetic nephropathy and cardiomyopathy [146]. Owing to the 
high endogenous production of ROS and decreased antioxidant capacity, islets of the 
pancreas are highly susceptible to oxidative stress, making it a plausible reason for beta 
cell failure [147].

To further understand critical mechanisms governing this metabolic condition, 
numerous studies have investigated the association of oxidative stress and AhR activ-
ity, including CYP1 enzymes [148]. A previous study investigated the pathological role 
of AhR in diabetic nephropathy in in vitro and in vivo models, and revealed that AhR 
deficiency attenuates oxidative stress in both models. In addition, hyperglycemia and 
glucose intolerance induced by STZ, a well-known experimental inducer of hyperglyce-
mia, were attenuated in AhR knockout, which was associated with lower expression of 
cyclooxygenase (COX-2) in the kidneys under diabetic conditions, implicating the criti-
cal role of AhR in the pathogenesis of diabetic nephropathy [149]. Furthermore, the AhR 
antagonist, alizarin, prevented alloxan-induced DM and oxidative stress in mice [150]. 
The CYP1 enzymes are involved in the oxidative metabolism of xenobiotic agents via 
utilizing molecular oxygen for the combined oxidation of NADPH; therefore, they are a 
potential source of ROS generation [151]. This was supported by a study demonstrated 
that mice treated with TCDD had elevated levels of ROS in the liver mitochondria, a 
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prime site for energy disposition and dysfunction [152], which could lead to hepatic 
insulin resistance [152, 153].

Inflammation

A notable correlation between obesity and T2DM and chronic low-grade systemic 
inflammation, which could be responsible for the onset of insulin resistance and pro-
gression of diabetes complications, has also been demonstrated in animal models and 
patients with T2DM and obesity [154–158]. Previous studies have revealed a signifi-
cant elevation in the Th17 and Th1 subset of cells, along with a decrease in the Treg 
subgroup in patients with T2DM and obesity [154, 155]. Additionally, serum levels of 
proinflammatory cytokines, including IL-7, IL-22, and IL-6, were significantly high in 
T2DM patients, suggesting an aggravated inflammatory status. Interestingly, in diabetic 
patients, the number and function of immune cells are distorted, including innate and 
adaptive immunity [155]. Accumulating evidence also established that immune cells, 
especially T lymphocyte alterations, preceded the loss of insulin sensitivity in adipose 
tissue and contributed to the general proinflammatory drift observed in obesity and 
T2DM [155, 158].

Numerous studies over the last decade highlight the emerging role of AhR in disease 
modulation, specifically in regulating immune responses and inflammation [159]. It has 
been reported that AhR expression in the adipose tissue significantly mediates adipose 
tissue inflammation and impairment of glucose hemostasis in obese mice [160]. A recent 
study has demonstrated an increase in AhR mRNA expression levels in peripheral blood 
mononuclear cells (PBMCs) from patients with T2DM and metabolically healthy obese 
patients, which was correlated with elevated levels of the proinflammatory IL-22 and 
LI-17 levels. In this study, AhR transcripts were greatly correlated with insulin resistance 
and basal β-cell function, indicating a role of AhR-mediated inflammation in the devel-
opment of obesity and T2DM [161]. Similarly, macrophages, another set of immune 
cells, demonstrate a prominent role in T1DM initiation and progression through antigen 
presentation or producing inflammatory cytokines that destroy β-cells [162]. Hence, in 
conjunction with this, AhR, upon activation, reduces IL-6 expression in macrophages, 
diminishing uncontrolled inflammatory responses [163]. In addition, a large-scale gene 
expression analysis was conducted in  vitro in human adipose-derived stem cells and 
in vivo mice to explore the role of AhR ligands on inflammatory gene expression in adi-
pocytes. The study revealed that AhR ligands significantly induced inflammatory mark-
ers IL-8 and monocyte chemoattractant protein-1 and CYP1B1 in adipose tissues, which 
was reduced by pretreatment with α-NF, an AhR antagonist [164].

Paradoxical role of AhR/CYP1A1 pathway in DM
AhR is known for its multifaceted role in association with ligand type, tissue specificity, 
and disease models. Contrary to what was discussed earlier in this review, a few studies 
have reported the anti-diabetogenic role of the AhR/CYP1A pathway. This section high-
lights these studies and their main findings.

TCDD, the most potent agonist of AhR, is known for its immunosuppressive effects. 
However, more recently, the AhR receptor is gaining momentum for its protective role in 
various physiological mechanisms. An experimental study on a mice model was carried 
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out to determine the effect of chronic treatment with TCDD on disease development 
and  CD4+ T cells [165]. NOD mice treated with a biweekly TCDD dosing regimen over 
a 24-week experimental period exhibited complete suppression of diabetes development 
in 100% of the animals through 31 weeks. However, at 23 weeks of age, halting TCDD 
treatment initiated the onset of diabetes in 50% of mice. This means that as the body 
burden of TCDD declined to levels that could not activate AhR, Cyp1a1 gene expression 
within the liver diminished, leading to diabetes initiation within these mice [165].

Furthermore, pancreatic lymph nodes of TCDD-treated mice demonstrated an 
increased frequency of  CD4+  CD25+  Foxp3+ T-cells. This could possibly be because AhR 
in  CD4+ T cells may have increased the frequency of Treg cells, suppressing the develop-
ment of diabetes [165]. Therefore, it is imperative to understand further the mechanisms 
that govern AhR-mediated effects on Treg development and functioning. This may open 
new avenues for treating T1DM and other immune-related diseases. However, it remains 
unclear how different agonistic AhR ligands alter the receptor’s behavior. A multitude of 
factors could be attributed to this; for instance, different ligand-binding with AhR alters 
the receptor’s conformation, allowing the recruitment of unique co-activators or co-
repressors and therefore altering gene expression. This could be an important area of 
research for further study.

The hypoglycemia as one of the consequences of TCDD toxicity is supported by the 
experimental study on STZ-induced diabetic rats treated with TCDD [166, 167]. In this 
study, TCDD treatment successfully reversed hyperglycemia in the STZ-induced T2DM 
rat model [168]. However, the precise mechanism leading to these observations has not 
been fully explored. A longitudinal birth cohort study with follow-up into the adoles-
cent stage, found key links between perinatal dioxin exposure and disrupted glucose 
metabolism and insulin secretion in later stages of life [169, 170]. The outcome of these 
studies highlighted that prenatal TCDD exposure was linked to lower insulin resistance 
and β-cell challenge among female offspring but not in males [170]. This could suggest a 
gender-specific influence of dioxin exposure in the perinatal period on pancreatic devel-
opment [170]. In addition, a natural AhR agonist, Indigo, protects against HFD-induced 
insulin resistance, glucose dysregulation, and fatty liver disease in an HFD-induced ani-
mal model [171].

Conclusions
The prevalence of DM has greatly increased in the past decade and is a global public 
health concern. AhR has long been recognized as an evolutionarily conserved ligand-
activated transcription factor, best known for its role in xenobiotic metabolism. AhR 
signaling is driven by environmental signals and endogenous metabolites that are of 
critical importance for the maintenance of several functions in the body, such as hor-
mone levels, circadian clock, gastrointestinal homeostasis, and cell proliferation. In 
recent years, AhR has been shown to be an important modulator of disease, with numer-
ous studies establishing that exposure to xenobiotic AhR ligands could contribute to the 
growing incidence of metabolic conditions such as DM. Additionally, TCDD, a potent 
environmental contaminant, has a high binding affinity to AhR and is thus being used to 
extensively study the receptor-associated activation of various physiological functions in 
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Table 1 Effect of AhR/CYP1A1 pathways on various species under diabetic conditions

DM Species Treatment Effect of AhR/
CYP1A1 pathway in 
glucose hemostasis, 
insulin secretion, 
and DM

References

T1DM Mice Mice NOD-mice Pancreatic endo-
crine cells appear in 
crosstalk with gut 
microbiota via AMPs
AMPs halt pancreatic 
inflammation
AhR was expressed in 
intestinal ILCs, estab-
lishing that AhR–ILC 
axis exists to maintain 
gut integrity, which 
impacts T1DM pro-
gression

[58, 60]

C57BL/6 mice TCDD AhR activation pro-
moted Treg induction 
and development 
by binding to the 
Foxp3 + promoter

[53]

T2DM Human Pancreatic endocrine 
cell line

TCDD ↓ insulin secretion
↓ plasma insulin level
↑ β-cells death

[46]

hESC cells Low dose TCDD Impaired pancreatic 
lineage differentiation 
and AMPK pathway 
leading to impaired 
pancreatic develop-
ment and function

[70]

Aortic endothelial 
cells (ECs)

High glucose levels ↑ AhR activity leads 
to increased TSP-1, 
which is involved in 
the development 
of diabetic vascular 
complications
AhR interacts with 
Egr-1 and AP-2 → 
endothelial dysfunc-
tion and microvascu-
lar complications

[72]

Human Sera Serum TCDD levels Korean diabetic 
patients have higher 
serum AhR ligand 
TCDD levels > non-
diabetics
mitochondrial 
dysfunction leads to 
the pathogenesis of 
insulin resistance

[76, 80]

Mice Hepa-1c1c7
(cell line)

β-NF, TCDD, ↑ insulin sensitivity, 
↓ PPAR-α expression 
and altered G6Pase 
and PEPCK in AhR KO 
mice
↑ Cyp1a1 and PPAR-α 
expression

[102]



Page 18 of 26Sayed et al. Cellular & Molecular Biology Letters          (2022) 27:103 

Table 1 (continued)

DM Species Treatment Effect of AhR/
CYP1A1 pathway in 
glucose hemostasis, 
insulin secretion, 
and DM

References

Mice TCDD ↓ G6Pase & PEPCK 
enzymes
↓ adipogenesis
↑ ROS levels in the 
liver mitochondria 
leading to hepatic 
insulin resistance

[113, 114, 152,], [172]

Obese mice α-NF ↓ PPAR-α activity 
expression of obesity 
markers, stearoyl-CoA 
desaturase one and 
phosphoprotein 1

[117]

Mice AhR KO ↓ glucose levels in 
plasma and liver
↓ alanine levels 
(substrate in the 
gluconeogenesis dur-
ing fasting), muscle 
and liver
disrupted glucose 
and fatty acid 
metabolisms

[124]

Mice STZ ↓ expression of 
COX-2 in the kidneys 
under diabetic condi-
tions, thus highlight-
ing a link between 
AhR and diabetic 
nephropathy

[149]

Kunming diabetic 
mice

Alizarin ↓ glucose levels, lipid 
profile, and oxidative 
stress

[150]

C57BL/6 PCBs
α-NF, resveratrol

↑ impairment of 
glucose and insulin
↑ inflammatory 
mediators, TNF-α in 
adipose tissue
↓ glucose intolerance 
and insulin secretion

[103]
[103, 105]

Guinea pigs Guinea pigs Transient TCDD 
exposure

↓ glucose uptake in 
the pancreas and adi-
pose tissue, owing to 
the reduced number 
of glucose transport-
ing proteins on the 
plasma membrane of 
these organs
↓ GLUT genes via 
AhR-dependent 
mechanism
↓ lipogenesis & 
gluconeogenesis, 
dysregulated lipopro-
tein lipase activity, 
disrupted insulin 
production and fatty 
acid synthesis

[108, 109]
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the body. A growing body of evidence highlights that toxicant-activated AhR signaling 
disrupts fat metabolism, glucose homeostasis, and insulin secretion, thus causing meta-
bolic dysfunction. Furthermore, over-activation of the receptor has been found to pro-
mote hepatic steatosis, the onset of insulin resistance, causing glucose intolerance and 
eventually leading to diabetes. Collectively, these studies demonstrate that an intrinsic 
increase in the expression of AhR and its activity through endogenous and exogenous 
ligand factors has the potential to exert multifaceted influences on the pathophysiology 
of metabolic disorders, including DM.

In this review, we highlighted recent developments that point toward the role AhR 
may have on metabolism and, thus in the development of diabetes. Furthermore, 
understanding the integrated network of AhR and its XMEs, such as CYP1A1, in sign-
aling pathways within organs such as the liver, pancreas (β-cell), and adipose tissues 
may shed light on the possible physiological activators of AhR in DM. Paradoxically, 
other studies have demonstrated the antidiabetogenic effect of AhR/CYP1A path-
way, depending on its association with the ligand type, tissue specificity, and disease 
models. Table 1 summarizes all the studies exporting the role of AhR/CYP1 pathway 
in glucose homeostasis, insulin resistance, and diabetes development in human and 
different animal models.In conclusion, further evaluation of the mechanisms govern-
ing AhR  effect on diabetes will give further insights into understanding the disease 
and pave the way for targeted pharmaceuticals and therapeutics.
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CYP1A1  Cytochrome P450 proteins 1A1
CYP1B1  Cytochrome P450 proteins 1B1
DMBA  7,12-Dimethybenz[a]anthracene
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EROD  Ethoxy resorufin O-deethylase
G6Pase  Glucose-6-phosphatase
Hif-α  Hypoxia-inducible factor
HSP90  Heat shock protein 90
IFN-γ  Interferon-γ
DM  Diabetes mellitus
MODY-2  Mature-onset diabetes of the young-2
NPBMCs  Peripheral blood mononuclear cells
PAHs  Polycyclic aromatic hydrocarbons
PAS  Period/ARNT/single
PCBs  Polychlorinated biphenyls
PM  Particulate matter

Table 1 (continued)

DM Species Treatment Effect of AhR/
CYP1A1 pathway in 
glucose hemostasis, 
insulin secretion, 
and DM

References

Rats Sprague–Dawley Treatment with STZ ↑ DM associated with 
increased CYP1A1 
activity levels

[173]
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POPs  Persistent organic pollutants
PPAR-α  Peroxisome proliferator-activated receptor
ROS  Reactive oxygen species
STZ  Streptozotocin
T1DM  Type 1 diabetes mellitus
T2DM  Type 2 diabetes mellitus
TCDD  2,3,7,8-Tetrachlorodibenzo-p-dioxin
TNF-α  Tumor necrosis factor
TSP-1  Thrombospondin-1
XRE  Xenobiotic responsive elements
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