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Abstract

We utilized evidence for enhancer-promoter interactions from functional genomics data in order to 

build biological filters to narrow down the search space for two-way Single Nucleotide 

Polymorphism (SNP) interactions in Type 2 Diabetes (T2D) Genome Wide Association Studies 

(GWAS). This has led us to the identification of a reproducible statistically significant SNP pair 

associated with T2D. As more functional genomics data are being generated that can help identify 

potentially interacting enhancer-promoter pairs in larger collection of tissues/cells, this approach 

has implications for investigation of epistasis from GWAS in general.
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1. Introduction

In the context of GWAS, epistasis refers to SNP interactions associated with a particular 

complex trait. There are different schools of thought regarding the role of epistasis in human 

genetics. The majority of human GWAS to date have focused on detecting main effects, i.e. 

single SNP associations. This is naturally the first aspect to explore, and many would argue 

that this is the most relevant since the vast majority of SNP contributions to a given trait are 

largely additive.1 However, a different opinion is that epistasis is a non-negligible 

component of human genetic architecture, possibly accounting for the predicted ‘missing 

heritability’,2–3 based on the observations that biological systems are regulated by complex 

biomolecular networks and epistasis plays an important role in model organisms.4

Exploring epistasis in a typical GWAS is complicated by several factors. One major 

challenge arises from the large search space and subsequent limited computational and 

statistical power. Genes and regulatory elements typically form complex networks, thus 

epistatic interactions could well involve several SNPs. But, even if one wanted to focus on 

two-way interactions on genotyped SNPs, a typical GWAS involves at least half a million 

such markers, so the number of possible pairs is greater than 1011. Another difficulty is that 

different SNPs relevant to a complex trait may have different mechanisms of action so the 

choice of genetic encoding affects interaction detection (Hall et al., in preparation). Given all 

of this, it is therefore uncommon to find statistically significant epistatic interactions in a 

GWAS data set. Moreover, it is even less common for such observations to be reproduced in 

a replication data set.

In this work we illustrate an example where the combination of suitable biological filters and 

a data-driven weighted encoding approach has led us to a statistically significant pairwise 

interaction in a T2D discovery data set which we were able to go on to replicate in an 

independent data set. Statistical epistasis is different from biological epistasis5–7 so 

establishing whether or not this pair corresponds to an actual biological mechanism 

associated with T2D will require additional experimentation. However we are using this 

example to highlight a possible avenue of epistasis investigation which exploits the 

increasing availability of functional genomics data sets aimed at exploring regulatory and 

physical interactions among genomic features, such as ChIP-Seq or high-throughput 

chromatin capture data sets. Our approach is illustrated in the next section.

2. Filters and Encodings

Figure 1 outlines our workflow, which involves two main components:
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2.1. Defining biological filters based on functional genomics data

Due to the large search space, the first step in an epistasis analysis is to reduce the number of 

models (i.e. candidate interacting SNP sets) to analyze. To this end, both computational and 

biological filter approaches have been previously proposed in the literature.

Computational approaches include methods such as ReliefF and its derivatives,8–10 MDR,11 

and “greedy” approaches which first identify SNPs with main effects (significant or 

marginally significant) in a GWAS and then use models involving only these SNPs.12–13 The 

latter is certainly a reasonable approach; however it will miss potential interactions which 

involve SNPs with no main effects (i.e. it will miss what is referred to as ‘pure and strict 

epistasis’14).

Biological filters may exploit biological annotations (derived from curation of low or high-

throughput experiments) or analyses of functional genomics data sets to reduce the search 

space. For example, knowledge about the biological relevance of the Ras/MAPK pathway to 

Autism Spectrum Disorders has been used to limit the search space of SNP pairs analyzed 

for interactions to those where one of the SNPs is in a Ras/MAPK pathway gene.15 In this 

work we too use biological filters, but of a different type as described below.

We sought to exploit the increasing availability of functional genomics data sets elucidating 

genomic features with likely regulatory functions in different tissues and cell lines. This was 

motivated by the recognized importance of regulatory networks in genomic studies.16–17 The 

regulation of gene expression is complex, but a fundamental component lies in enhancers, 

i.e. non-coding regions in the genome which may affect the expression of distal genes 

through chromatin looping. We reasoned that natural candidates for two-way interactions are 

SNP pairs from interacting enhancer-promoter regions in tissues or cell lines relevant to the 

trait being studied. Based on this, we have selected appropriate interacting regions from the 

EnhancerAtlas.18 This resource provides collections of enhancer-gene interactions for 

several tissues and cell lines, derived from the integration of almost 4000 high throughput 

experimental data sets from resources including the UCSC genome browser,19 NCBI 

GEO,20 Cistrome database,21 ENCODE project data portal,22 Epigenome Roadmap data 

portal23 and eRNA.24

2.2. Using weighted encoding

When we consider a single SNP, we want to encode the biological action in the way that it 

likely functions, so if a genotype has no alternate alleles, the risk would be 0 and if it has 

two such alleles the risk would be 1. For a heterozygous genotype, coding it as recessive 

assumes it has no risk (equal to homozygous referent), coding it as dominant assumes it 

yields full risk (the same as two alternate alleles), and coding it as additive is right in 

between. Yet in biology, a heterozygous genotype may act anywhere in this range from 

recessive to dominant. This has been heavily discussed in the literature for single SNP 

associations and the consensus has been that additive encoding will capture the largest 

amount of genetic effects.25

PLATO software26 (https://ritchielab.psu.edu/files/RL_software/plato-manual-2.1.pdf) 

allows for different choices of encoding. One of them is a data-driven approach to compute 

Manduchi et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ritchielab.psu.edu/files/RL_software/plato-manual-2.1.pdf


an appropriate SNP-specific encoding weight for the heterozygous genotype. In order to 

describe the latter, we first need to define what is meant by ‘codominant’ encoding. As 

described in the PLATO software manual, in this encoding each marker uses two variables 

as a dummy encoding; the “Het” variable is 1 only when the marker is heterozygous, and the 

“Hom” variable is 1 only when the marker is homozygous alternate. In weighted encoding, 

for each marker, the result from a univariate model (with appropriate covariates) is used to 

determine an encoding from marker state to the set {0, x, 1}, where x is chosen such that the 

model with the encoded allele is identical to the codominant model. Data-driven weighted 

encoding was tested on simulated data sets spanning a comprehensive array of underlying 

interactions of genetic models, concluding that it had a better performance than the other 

encodings based on a combination of power and type I error (Hall et al., in preparation).

3. Methods

3.1. GWAS data sets

In this work we utilized three T2D GWAS data sets. As discovery data set, we used GWAS 

data generated by the Welcome Trust Case Control Consortium (WTCCC),27 precisely 

derived from the data sets EGAD00000000009 and EGAD00000000021.

As replication data sets we used two GWAS studies from the database of Genotypes and 

Phenotypes (dbGaP).28

1. The GENEVA Genes and Environment Initiatives in Type 2 Diabetes (Nurses’ 

Health Study (NHS)/Health Professionals Follow-up Study (HPFS)). Data were 

downloaded from the dbGaP web site, under phs000091.v2.p1 (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000091.v2.p1).

2. The Finland-United States Investigation of NIDDM Genetics (FUSION) Study. 

Data were downloaded from the dbGaP web site, under phs000867.v1.p1 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000867.v1.p1).

3.2. Data pre-processing

3.2.1. WTCCC data set—Quality Control (QC) followed standard recommendations.29 

PLINK 1.9 (https://www.cog-genomics.org/plink2/) was used to filter subjects based on 

ambiguous gender assignment and missing call rate (threshold=95%) and duplicated 

individuals where removed using a PI_HAT threshold of 0.8. Then SNPs were filtered based 

on missing call rate (threshold=95%), Hardy-Weinberg Equilibrium tests (HWE, p=0.00001) 

and Minor Allele Frequency (MAF, threshold=0.01). Ambiguous SNPs (A/T or G/C) were 

removed. After QC we had data for 4916 subjects (1960 cases and 2956 controls) over 

341,531 SNPs. These data were used to compute the first 10 Principal Components (PC) 

using PLINK v1.9, after Linkage Disequilibrium (LD) pruning.

Phasing was performed with SHAPEIT30 and imputation with IMPUTE231 using 1000 

Genomes phase 1 version 3 (http://www.internationalgenome.org) as reference panel. For 
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imputed SNPs with information score >0.70, genotype was assigned according to the best 

probability if this was >0.90.

3.2.2. GENEVA data set—QC was first separately applied to each of the two panels 

(NHS and HPFS) and followed standard recommendations.29 In each case PLINK 1.9 was 

used to filter subjects based on ambiguous gender assignment and missing call rate 

(threshold=95%). Then SNPs were filtered based on missing call rate (threshold=95%), 

differential missing call rates between cases and controls (p=0.00001) and MAF 

(threshold=0.05). The resulting data from the two panels were then merged and SNP 

filtering was applied again as above, finally subjects were filtered again based on missing 

call rate. This resulted in a QC-ed data set for 5485 subjects (2524 cases and 2961 controls) 

over 656,226 SNPs. The first 10 PCs were computed as for WTCCC, after LD pruning, with 

PLINK v1.9.

We did not impute this data set as it was only used to verify two SNP pairs resulting from 

the analyses in the discovery data set. If a SNP in a pair was not genotyped we used a proxy 

obtained from HaploReg,32 selecting the proxy as a genotyped SNP having the highest r2 

with the SNP in our pair. For each pair to verify, we extracted the data corresponding to that 

pair and filtered individuals with missing genotypes on those two SNPs.

3.2.3. FUSION data set—QC was performed similarly to the GENEVA data set, yielding 

a data set of 1706 subjects (919 cases and 787 controls), with over 301,195 SNPs. PCs were 

also computed as above.

3.3. Candidate pairs selection

Among the cell lines and tissues for which enhancer-gene interactions were available in 

EnhancerAtlas at the time of these analyses, HCT116 and pancreas were the most relevant to 

T2D. For each of these two biological sources we proceeded as follows to identify candidate 

SNP pairs for interaction analyses.

The files from EnhancerAtlas link enhancers to ENSEMBL (ensemblgenomes.org) 

transcripts. We identified the regions spanning from 1000bp upstream to 500bp downstream 

of the Transcription Start Site (TSS) of each transcript as its promoter region. We extracted 

all SNPs in the enhancer and resulting promoter regions using Biofilter33–34 (https://

ritchielab.psu.edu/software/biofilter-download-1). Of these SNPs, we retained those which 

were either genotyped or imputed with an information score >0.70 and a probability >0.90 

in the discovery data set.

We then performed LD pruning separately within each enhancer and within each promoter 

using a 0.8 threshold for r2. For each enhancer-gene interaction from EnhancerAtlas we then 

paired up each resulting SNP in the enhancer with each resulting SNP in the corresponding 

promoter and removed all pairs where the two SNPs had an r2>0.6. After this processing we 

had 11,395 pairs for HCT116 and 1,220 for pancreas.
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3.4. Two-way interaction analyses

We analyzed separately the HCT116 and the pancreas pair collections for interactions using 

our discovery data set. To this end we utilized the PLATO software mentioned above, with 

data-driven weighted encoding and logistic regression, adjusting for gender and the first 10 

PCs. This adjustment was applied after assessing the association between these covariates 

and the phenotype in the discovery data set. PLATO computes p-values for interactions 

based on the Likelihood Ratio Test (LRT) between the full model (logit(π) = β0 + β1X1 + 

β2X2 + β3X1×X2 + covariates) and the reduced model (logit(π) = β0 + β1X1 + β2X2 + 

covariates), where π is the probability of Y=1 for a binary outcome Y and Xi is the encoded 

genotype at SNPi i= 1,2. PLATO outputs unadjusted p-values, as well as Bonferroni and 

FDR multiple-testing adjusted p-values.

For the GENEVA replication analyses we only tested the pairs detected as significant in the 

discovery data set. Again we used PLATO to run the interaction analyses and we adjusted 

for the 10 PCs, but needed not to adjust for gender. This was determined after assessing the 

association between gender and the first 10 PCs with the phenotype in this data set.

For the FUSION replication analyses we tested the pair that was detected as significant in 

the discovery data set and the GENEVA data set, proceeding as above but adjusting for 

gender and the first 3 PCs. This was again determined after assessing the association 

between gender and the first 10 PCs with the phenotype in this data set.

4. Results

The PLATO analysis on the SNP pairs derived from the pancreas regulation data did not 

yield any significant pair. The PLATO analysis on the pairs derived from HCT116 yielded 

two pairs with FDR <10%: the pair (rs1474445, rs78495961) on chr7 (p-value=1.00394e-05; 

FDR adjusted p-value= 0 .082295) and the pair (rs8008440, rs12882535) on chr14 (p-value= 

1.44441e-05; FDR adjusted p-value=0 .082295).

We followed up only these two pairs in the GENEVA replication data set. We used 

rs7777433 as a proxy for rs78495961 (r2=0.92) and rs8007341 as a proxy for rs12882535 

(r2=0.99), since we did not have genotypes for these two SNPs in GENEVA. The first pair 

(rs1474445, rs7777433) did not have a significant p-value in GENEVA (p=0.682361), 

whereas the second pair (rs8008440, rs8007341) was significant (p-value= 0.0181457; 

Bonferroni adjusted p-value <0.04).

Finally we followed up in the FUSION data set the pair (rs8008440, rs12882535) replicated 

in the GENEVA data set. The FUSION p-value was higher in this case, but remained 

borderline significant (p=0.155562). The combined p-value across the three data sets using 

the ‘sumz’ method in the ‘metap’ R package (https://cran.r-project.org/web/packages/

metap/), with weights proportional to the square root of the sample sizes was 4.199818e-06, 

which is significant at the 0.05 level after Bonferroni correction by the number of HCT116 

SNP pairs (11,395). The regression coefficients of the full model for each data set are 

reported in Table 1.
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The two SNPs forming the pair are not in LD (r2<0.01). One SNP (rs12882535) is in the 

promoter of the OR6S1 gene while the other (rs8008440) is in a predicted EnhancerAtlas 

HCT116 enhancer (for OR6S1) located within an intron of ANG.

5. Discussion

In this work we have utilized functional genomics-based filters to identify candidate SNP 

pairs to be analyzed for epistatic interactions associated with T2D, based on GWAS data. 

This led to the two significant pairs (FDR<0.1) in our discovery data set. We followed up 

these two pairs in a replication data set and one of them (rs8008440, rs12882535) remained 

significant. It is typically difficult to replicate epistasis results at the SNP level, so this was 

encouraging. We also looked at this pair in a third data set. Here the pair did not quite reach 

significance, but its p-value remained relatively low. This third data set had half the number 

of subjects as the other two and the MAFs of the two SNPs were somewhat different (0.47 

and 0.08 in this data set versus 0.45 and 0.12 in the previous two). This may explain the 

increase in p-value, especially considering that detection of statistical epistasis is very 

sensitive to MAF.35 Overall, the meta-analysis adjusted combined p-value across the three 

data sets is significant. In both the GENEVA and FUSION data sets the regression 

coefficients of the full model correspond to an antagonistic type of interaction. However, 

considering that we used data-driven weighted encodings, comparisons of these coefficients 

across models are hard to interpret, especially when interaction terms are involved.

The pair we identified consists of a SNP in the promoter of OR6S1 and a SNP in a putative 

enhancer for this gene based on HCT116 data. OR6S1 belongs to the family of G-Protein-

Coupled Receptors (GPCRs). Besides the EnhancerAtlas evidence supporting its expression 

in HCT116, expression of OR6S1 was detected both in colon and pancreas in various 

microarray and RNAseq surveys reported by GeneCards (www.genecards.org). The presence 

and role of taste and olfactory receptors in the gut has been discussed in recent papers,36–38 

which indicate the importance of these chemosensors in detecting luminal contents and 

inducing the modulation of systemic metabolism, including glucose homeostasis. Indeed 

some GPCRs have recently received attention as new therapeutic targets for type 2 

diabetes.39

HCT116 is a human cell line derived from colonic carcinoma, which has been used in other 

studies on T2D40 and, together with pancreas, was the most relevant for T2D among the 

sources for which EnhancerAtlas provided enhancer-gene interaction data at the time of our 

download. We did not detect significant interactions among SNP pairs derived from the 

pancreas data.

The T2D statistical epistasis association that we found is consistent with the recent literature 

support for the relevance of GPCRs to T2D. Nevertheless, ascertaining whether or not this 

pair represents actual biological epistasis requires follow-up experiments. This work should 

be taken as a proof of concept. One of the limitations of our study was that albeit whole 

pancreas and HCT116 are relevant tissues/cells for T2D, they are not ideal. Having 

enhancer-promoter data from biosources such as the pancreatic beta-cell and the 

enteroendocrine L cell would improve the chance to detect epistatic pairs associated with 
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T2D. As more data become available for these particular biosources, both in the public 

domain and in our labs, we can generate richer and more specific sets of candidate pairs to 

explore. The types of relevant data include epigenetic information (e.g. open chromatin, 

enhancer and promoter histone marks) and gene expression data. We are working on a 

generalization of our workflow which incorporates relevant epigenomics data as well as 

high-throughput chromatin conformation capture data (contactomics) to identify additional 

tissue-specific active and interacting genomic regions from which to select SNP pairs 

(Manduchi E., Grant S., Moore J., in preparation).

Our intent is to exploit the availability of different types of omics data sets and to 

incorporate state of the art analysis methods into a reasonable workflow to explore a 

typically difficult-to-detect phenomenon such epistasis. Based on our results we believe that 

this type of workflow is promising and besides significantly reducing the search space it 

could yield results that are much easier to interpret. Since it is applicable to any GWAS, as 

we build on data sets which are more extensive in terms of type of functional genomics data 

and trait-specific tissues, it has the potential to unveil interactions associated to many traits, 

with a higher likelihood of being reproducible and biologically meaningful.

In this work we were interested in assessing reproducibility and hence utilized a Discovery/

Replication data set paradigm. An alternative way to take advantage of independent GWAS 

for a trait is to combine them in a meta-analysis framework, which can help increase power. 

We are investigating this approach also in the context of exploring results at different 

resolutions, besides SNP-pair level (Manduchi E., Grant S., Moore J., in preparation).
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Figure 1. 
Functional genomics data sets of different kinds, for tissues or cells relevant to the trait of 

interest, are used to identify putative active and interacting enhancer-promoter pairs. Pairs of 

SNPs harbored in these interacting regions are extracted and analyzed for epistasis in a 

discovery GWAS. Significant pairs from this analysis are then examined in one or more 

replication GWAS to identify candidates for subsequent follow-up work.
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