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Matched therapy based on next-generation sequencing is now a part of routine care to
guide the treatment of patients with advanced solid tumors. However, whether and to
what extent patients can benefit from this strategy on a large scale remains uncertain. In
the past decade, several clinical studies were performed in this field, among which only
one was a randomized trial. We reviewed the literature on this topic and summarize the
existing data about the efficacy of this treatment strategy. Currently, the evidence is
promising but not solid. Multiple ongoing trials are also summarized. We also discuss the
limitations of this treatment strategy and certain unsolved important problems, including
how to select the sample and target level, how to interpret the results, and the problem of
drug accessibility. All these issues should receive more attention in future clinical trial
design and the application of target therapy in cancer treatment.
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INTRODUCTION

Cancer control has now become more and more challenging in human society because of its
increasing incidence (both current and predicted). Thanks to the advances in molecular medical
research, strategies for cancer treatment are evolving from traditional therapies, such as surgery,
chemotherapy, and radiotherapy, toward targeted therapy. Recently, precision medicine has been
proposed as the future of cancer treatment, providing a revolutionary understanding of cancers
according to their genetic alterations instead of their primary locations. It is believed that by
targeting these “driver” genetic alterations or oncoproteins, clinicians could hit the “Achilles heel”
of cancers.

Cancer cells may have somatic genetic alterations leading to abnormal expression of mRNA
and proteins, allowing them to escape the usual controls on cellular growth. Knowledge of the
genomic landscape might help to guide the diagnosis and therapy of multiple types of cancers.
Genetic alterations in EGFR, ALK, ROS1, MET, HER2, KIT, BRAF, and germline BRCA1/BRCA2
have been shown to confer survival benefits on patients with certain solid tumors, including non-
small cell lung cancer (1, 2), breast cancer (3), and melanoma (4). Certain tumors with different
tissues of origin have been found to be similar at the molecular level, and it would seem reasonable
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to treat them using the same strategy (5). Molecular
alternations, such as BRAF mutations (6), NTRK family
fusion (7), and microsatellite instability (8), have been linked
to responses to matched agents in a variety of tumor types.
Many basket trials (a clinical trial in which patient eligibility
relies on the presence of a specific genomic alteration without
taking into account their histology) further confirm that
targeted drugs might work without regard to tumor histology
(9). Genome-driven cancer treatment is, thus, a promising
strategy, and in the near future, tumor genetic testing will be
part of the standard management of many cancers.

More and more types of cancer have been genetically profiled
(10–16), and it is attractive for both physicians and investigators
to make a treatment decision for a patient simply by testing the
genetic mutations or oncoproteins. However, various concerns
exist before such oncotarget-based therapy can be widely
accepted. For instance, the majority of genomic alterations are
biologically insignificant for cancer cell survival, and recognition
of treatment-meaningful genomic alterations is critical but also
mostly intractable (17, 18). In the market and even the
laboratory, only a few drugs or chemicals are available for
molecular profiling–based therapy. In addition, the companion
diagnostics to detect targets are complicated and require
confirmation using prospective clinical trials. Although several
pilot studies using traditional molecular profiling methods, such
as polymerase chain reaction (PCR), immunohistochemistry
(IHC), fluorescent in situ hybridization (FISH), and
microarrays demonstrate that patients could benefit from
targeted therapy (19, 20), these methods have limited coverage
of oncogenes and oncoproteins, and thus, the prognostic benefits
of molecular profiling–based therapy have been underestimated.

The next-generation sequencing (NGS) technologies permit
an unbiased analysis of cancer genomes. NGS has enabled the
rapid detection of thousands of cancer-related genes using small
quantities of DNA. Recent advances in timeliness and cost have
made NGS financially available in academic cancer centers and
commercial testing laboratories. The mutational landscape of
metastatic cancer revealed from prospective clinical sequencing
of 10,000 patients shows that about 40%–80% of patients
subjected to NGS testing had more than one molecular
alteration, and the median number of mutations per patient
was five. TP53, KRAS, and PIK3CA are the most frequently
mutated genes (21). Disappointingly, although 40% of the
patients had potentially actionable alterations, less than 25% of
them could be ultimately treated using suitable drugs (22–25).
Many patients were unable to receive matched therapies because
of poor-quality biopsies, lack of clinical trials or off-label use of
drugs, and poor clinical state and performance status.
CURRENT EVIDENCE OF PROOF OF
CONCEPT FOR MOLECULAR PROFILING–

BASED THERAPY

An early study from the Princess Margaret Hospital shows that
four of six patients responded to matched therapy (26). In a
Frontiers in Oncology | www.frontiersin.org 2
cohort at the Dartmouth-Hitchcock Medical Center, two out of
four patients experienced clinical benefit lasting more than 10
months (27). In a cohort at Johns Hopkins Medicine, 11 patients
were treated with off-label target drugs, and 13 patients were
enrolled in clinical trials with matched therapies; among them,
the median progression-free survival was 5 months (28).
Another pilot study from Korea proposed targeted therapy
based on NGS for patients with refractory solid tumors.
Although only 3 of 25 patients finally received targeted
therapy, all of them experienced a partial response (29).
Inspired by these pioneer studies, the large, prospective, single-
arm study MOSCATO-01 (NCT01566019) trial was conducted,
and the results are also encouraging (30). In this cohort, 199 of
1035 heavily treated patients were subject to targeted therapies,
and their median overall survival (OS) was 11.9 months. This
study compared the progression-free survival (PFS) of matched
therapy (PFS2) with the PFS of the most recent therapy (PFS1)
and found the PFS2:PFS1 ratio was >1.3 in 33% of the patients. A
PFS2:PFS1 >1.3 indicates a treatment benefit given that PFS
decreases over the lines of therapy in the natural course of the
disease. Another large prospective trial (ProfiLER) shows 163
patients were assigned to matched therapy, and 23 (14.3%)
patients had an objective response (22). Despite their single-
arm design, these case series and trials suggest that NGS-
based matched therapy might be promising in future
cancer management.

Several large prospective studies attempted to find out
whether targeted drugs matched with tumor molecular
alterations are superior to conventional unmatched therapy. A
retrospective study analyzed the outcome for 36 patients who
received NGS-based genomic testing and targeted therapy. The
average PFS was 22.9 weeks, and the PFS in the control group
was only 12 weeks (31). In an early trial including 407 patients,
the 103 patients who received molecular targeted agents showed
a significantly higher response rate compared with those in the
non-matched treatment group (42.6% vs. 24.3%, P = 0.009) (32).
Another observational cohort enrolling 347 patients with
advanced solid tumors also reports encourage results. Although
significantly fewer patients in the matched therapy group were
treated as first-line therapy, they had better PFS compared with
those who did not receive matched therapy (33). The results of
these trials are encouraging; however, none of them reports
improved OS by matched therapy.

Results of further studies have been released in recent years
and confirm that therapy matched to genomic variants is
associated with improved OS. Investigators from the MD
Anderson Cancer Center performed the large-volume
IMPACT trial across tumor types, which was started in
2007. Compared with patients treated with unmatched
therapy, those treated with matched therapy had a higher
response rate (11% vs. 5%, P = 0.0099), longer PFS (3.4 vs. 2.9
months, P = 0.0015), and longer OS (8.4 vs. 7.3 months, P =
0.041) (34). Notably, in the matched group, the responders had
significant longer OS compared with that of nonresponders (23.6 vs.
8.4 months, P < 0.001), and no difference was observed in the
unmatched group. The Know Your Tumor Registry Trial focused
October 2020 | Volume 10 | Article 532403

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Precision Medicine in Cancer
on pancreatic cancer, a tumor type that has limited standard
targeted therapy choices. In it, 26% patients had actionable
molecular alteration, which was inconsistent with other types of
cancer. The 46 patients who received a matched therapy had the
better OS (2.58 vs. 1.51 years, p = 0.0004) compared with those who
had unmatched therapy (35).

These data support the use of matched therapy when actionable
gene mutations are detected. However, the investigation was
observational and nonrandomized, and the outcome could be
influenced by unknown biases. For example, the majority of the
patients were assigned to nonmatched therapy because of a failure
to detect any actionablemolecular alterations. Hence, the groups of
matched therapy and conventional therapy might have a difference
in genomic background, which could affect the outcome.

The SHIVA trial (NCT01771458) was the first and also the
only completed up-to-date randomized large-scale basket trial in
this field (36). Patients with molecular alterations of three
cancer-related signaling pathways (i.e., hormone receptor,
PI3K/AKT/mTOR, and RAF/MEK pathways) were randomized
to one group using matched molecularly targeted agents
(experimental group, n=99) and another group receiving
treatment according to the physicians’ choice (control group,
n=96) (36). The median PFS was 2.3 months in the experimental
group and 2.0 months in the control group. The difference was
not statistically significant. Given that the patients enrolled were
heavily treated, the potential of benefit from matched treatment
was small, which might not be able to be detected because of
insufficient power.

In order to figure out the subgroup patients who can benefit
more frommatched therapy, the concept of a matching score was
set up. In another prospective, single-center study, the
investigators defined the matching score as the number of
matched agents over the number of gene alterations present
and found that a high matching score was independently and
significantly associated with better outcomes (37). They also
found that patients with direct matches had a longer time to
failure (TTF) and OS, and disease control [defined as stable
disease (SD) ≥6 months, partial response (PR), or compete
response (CR)] rates were higher in the indirectly matched
patients. The newly published I-PREDICT trial, which
included 149 consented and 83 treated patients with metastatic
cancers, shows that up to 30% of patients evaluable for response
achieved disease control (defined as SD ≥ 6 months) (38) and
that a similarly high matching score was an independent factor of
favored outcomes.
ONGOING TRIALS OF MOLECULAR
PROFILING–BASED THERAPY

Following the encouraging results from previous trials, many
large-volume trials are currently ongoing (39) (Tables 1 and 2).
Most of these trials are designed as basket trials and have
enrolled patients with various cancer types that share the same
genetic abnormality. The U.S. National Cancer Institute (NCI)
launched the NCI-MPACT (NCT01827384) trial in 2013 and the
Frontiers in Oncology | www.frontiersin.org 3
NCI-MATCH (NCT02465060) trial in 2015. All patients
enrolled in these trials were subjected to repeated biopsy before
therapy to obtain tumor specimens. The NCI-MPACT trial
recruited patients with advanced cancer and assigned them to
four treatment arms according to their molecular aberrations.
This trial only performs DNA sequencing for 380 unique
actionable variants in 20 genes that can be targeted by their
four predefined treatments. The NCI-MATCH trial expanded
the design of NCI-MPACT and contains up to 25 targeted
treatments across all cancer types. The tumor specimens
undergo both DNA and RNA sequencing to identify 143
genetic abnormalities. More than 6400 patients have already
been enrolled in the NCI-MATCH trial, which is estimated to
end in 2022 (43). Although NCI-MATCH is not a randomized
trial, it is considered to be the largest precision medicine cancer
trial based on the number of patients, treatment options, and
types of cancers.

The American Society of Clinical Oncology (ASCO) initiated
a clinical trial named Targeted Agent and Profiling Utilization
Registry (TAPUR; NCT02693535). The TAPUR trial is a phase
II, prospective, nonrandomized, multibasket trial that aims to
assess the efficacy of targeted anticancer therapies. In addition to
solid tumors, non-Hodgkin lymphoma and multiple myeloma
could be included. There are 17 treatment arms in the TAPUR
trial according to the molecular alterations, and all the drugs
used are commercially available. To define the molecular
alteration, genetic testing of tumor DNA and circulating tumor
DNA (ctDNA) and IHC testing of tumor protein expression are
all acceptable (44). Another phase II study, called the HETIAN64
trial (NCT03239015), was launched in 2016, which is the first
NGS-based basket trial in China. In this trial, individuals with all
types of solid tumors are recruited. If actionable molecular
alterations are found via NGS testing, patients could be
assigned to 11 treatment arms accordingly.

The IMPACT2 trial (NCT02152254) was initiated in 2014 by
the MD Anderson Cancer Center and comprises a randomized
prospective study comparing targeted therapy with standard-of-
care therapy in metastatic cancer. The molecular profiling
includes not only genomic profiling, but also immune markers,
tumor mutational burden, microsatellite instability status, and/or
transcriptomic analysis. The treatment options could be single
agents or combinations. Another ongoing randomized
controlled trial is the CUPISCO (NCT03498521) trial, which
began in 2018 and aims to compare targeted therapy with
platinum-based chemotherapy in patients with cancer of
unknown primary site. In this trial, immunotherapy with
Atezolizumab is included and is regarded as genomic
alteration–based targeted therapy. Another two ongoing
clinical studies are exploring the question of whether patients
could gain addition benefit from using a broader panel
(NCT03163732) or whole exome sequencing (NCT01774409).
The results of these clinical trials could accelerate the
implementation of precision oncology and guide the better use
of targeted drugs. More studies, especially randomized clinical
trials, are warranted in the field of precision medicine to prove
the rationale of precision medicine in cancers (45).
October 2020 | Volume 10 | Article 532403
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TABLE 1 | Current evidence for molecular profiling–based therapy.

ents ≥1 alteration Actionable
mutations

MT Non-MT Outcome

6 1179 (82.1%) 914 (63.7%) 390 247 ORR: 11% vs. 5%
PFS: 3.4 vs. 2.9 months
OS: 8.4 vs. 7.3 months

5 / 411(40%) 199 (19%) / ORR: 11%PFS1/PFS2 ≥ 1.3: 63(33%)OS: 11.9 months

/ 293 (40%) 99 96 PFS: 2.3 vs. 2.0 months
/ / 87 (25%) 93 (26.8%) SD≥6 months/PR: 34.5 vs. 16.1%PFS: 4.0 vs. 3.0

monthsPFS2/PFS1 ≥ 1.3: 45.3 vs. 19.3%
96 (58%) 74(44%) 33 (19%) 39 (23.2) SD≥6 months/PR: 42 vs. 7.1%

9 1032 699 (27%) 163 / ORR: 13%
342 (80%) 106 (25%) 103 (24%) 226 (53%) 42.6% vs. 24.3%
/ / 107 / SD≥6 months/PR/CR: 26.2%PFS1/PFS2 ratio ≥

1.5:22.4%

/ 352 (70%) 101(20%) / ORR: 15%PFS: 3months

322 (64.4%) / 122(24%) 66(13%) PFS: 2.8 vs. 2.1%

/ / 73 9#+1 SD≥6 months: 30%PFS: 3.67 vs. 1.93 monthsOS: 11.8
vs. NR

/ 41(41%) 11(11%) 17 (17%)# ORR: 36.3% vs. 0%

rapy; IHC, immunohistochemistry; FISH, fluorescent in situ hybridization; NGS, next generation sequencing; ORR, objective response rate;
controlled trial; OS, overall survival; PFS2, PFS of matched therapy; PFS1, PFS of the most recent therapy.
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Study
period

Country Sample Seq Method Pat

IMPACT (34) 2012-2013 USA Tumor DNA PCR-base seqIHC/
NGS

143

MOSCATO-01 (30) 2011-2016 USA Tumor
DNATumor
RNA

aCGH/NGS//RNA-
Seq/IHC/FISH

103

SHIVA (36) 2012-2014 France DNA NGSIHC 741
PREDICT-UCSD
(33)

2012 USA Tumor DNA NGS 347

2014-2015 USA ctDNA NGS 168
ProfiLER (22) 2013-2017 France Tumor DNA aCGH/NGS 257
NEXT-1 (32) 2013-2014 Korea DNA NGS 428
WINTHER (40) 2013-2015 USA Tumor

DNATumor
RNA

NGS 303

CoPPO (41) 2013-2017 Denmark Tumor
DNATumor
RNA

NGS 591

MD Anderson
Cancer Center (34)

2014 USA Tumor DNA NGS 500

I-PREDICT (38) 2015-2017 USA Tumor
NDActDNA

NGS/IHC 149

TARGET (42) 2017-2018 UK ctDNA NGS 100

aCGH, a comparative genomic hybridization analysis; MT, matched therapy; Non-MT, unmatched the
PFS, progression-free survival; ctDNA, circulating tumor DNA; SD, stable disease; RCT, randomized
#patients with actionable mutations received unmatched therapy.
i
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UNSOLVED QUESTIONS AND FUTURE
DIRECTION

Precision medicine uses -omics technologies and platforms to
profile genomic/transcriptomic/proteomic aberrations of
cancers, aiming to guide treatment decision making by
predicting the tumor’s response to matched agents. The
concepts and rationales of precision medicine are clear;
however, solid evidence of clinical benefits is challenging.
Current evidence shows promising results; however, the quality
of the evidence is a concern because of difficulties in the study
design. Additionally, unlike classic clinical trials, comparisons of
various precision medicine trials are difficult because many
parameters of the trials are trial-specific. The unsolved
questions and challenges are summarized in Figure 1.

Origin of the Samples for Molecular
Profiling
In the majority of trials, archival or fresh biopsy samples are
the main source of materials used for molecular profiling.
Frontiers in Oncology | www.frontiersin.org 5
However, molecular profiling in up to 30% of patients failed
because of a lack of archived tissue or poor sample quality (21).
In addition, archival samples are unable to reflect information
concerning tumor evolution and raise concerns related to
their representativeness because of significant intratumoral
heterogeneity (46, 47). Indeed, tumor heterogeneity is one of
the biggest obstacles to improving the therapeutic response rate.
Tumor heterogeneity is complex and changes dynamically,
implying that none of the patients have the same disease. Each
patient has tumor lesions with significantly distinct genetic
landscapes that evolve over time; thus, analysis of a single
lesion at a specific time provides very limited information for
clinical decision making (48). It is, thus, difficult and impractical
to capture the comprehensive genomic landscape of a patient’s
cancer accurately. Given that performing multiple and repeated
tissue biopsies is not feasible in clinical practice, liquid biopsy is
proposed as an alternative method.

DNA fragments that are released from both primary and
metastatic lesions are termed ctDNA, which is believed to
provide a landscape of tumor genomic alterations (49) and
suggests that ctDNA is an alternative or even better material for
molecular profiling of cancers. The ctDNA from most patients
with cancers displays at least one detectable altered gene, of
which TP53, EGFR, KRAS, and PIK3CA are the most
frequently detected (50). Sequencing of ctDNA reveals high
concordance with tumor biopsies for the identification of
critical driver mutations (51, 52); however, other studies
report that ctDNA provides more general genomic alterations
of cancers and has low concordance with the results from
samples of primary or metastatic lesions (53, 54). Given the
advantage of minimal invasion as a procedure and the
capability of dynamic monitoring of tumor genomic
evolution, the role of ctDNA in precision medicine has been
increasingly explored.

A pilot small-volume study shows that 42% of patients
matched to treatment that targeted alterations detected using
ctDNA sequencing achieved SD >6 months or a PR, compared
TABLE 2 | Ongoing Trials.

Study
period

Country Disease Study
design

Seq sample Method Treatment Endpoint

NCI-
MPACTNCT01827384

2013-2020 USA Advanced malignant solid tumor Basket Tumor DNA NGS Target Therapy(4
treatment arms)

ORRPFS

NCI-
MATCHNCT02465060

2015-2022 USA Advanced malignant solid
tumorLymphomaMultiple
myeloma

Basket Tumor DNARNA NGS Target Therapy(25
treatment arms)

ORR6-
months
PFS

TAPURNCT02693535 2016-2021 USA Solid tumorLymphomaMultiple
myeloma

Basket Tumor
DNActDNATumor
Protein

Genetic
testIHC

Target Therapy(17
treatment arms)

ORRSD
≥16 weeks

HETIAN64NCT03239015 2017-2020 China Solid Tumor Basket Tumor DNA NGS Target Therapy(11
treatment arms)

ORR

IMPACT2NCT02152254 2014-2020 USA Advanced malignant solid tumor RCT Tumor DNA NGS Target Therapy vs
Standard-of-Care
treatment

PFS

CUPISCONCT03498521 2018-2022 USA Cancer of unknown primary site RCT Tumor DNA NGS Target Therapy vs
Chemotherapy

PFSOSORR
Octo
ber 2020 | Volume 10 | Ar
NGS, the next generation sequencing; ORR, objective response rate; PFS, progression-free survival; ctDNA, circulating tumor DNA; SD, stable disease; RCT, randomized controlled trial;
OS, overall survival.
FIGURE 1 | Summary of unsolved questions and future directions.
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with 7.1% of the unmatched patients (55). The TARGET trial
was launched to determine whether ctDNA sequencing was
helpful for clinical decision making. For the first 100 enrolled
patients, a 641-gene ctDNA NGS panel was successfully used
in 99 of them, among whom 41 had actionable mutations.
Eleven of the 41 patients received matched therapy, and 17 of
them received unmatched therapy (42). The response rate in
the match therapy group was 36%, and the median duration of
therapy was 6 months. In comparison, none of the patients
receiving unmatched therapy recorded a tumor response.
These studies confirmed that noninvasive detection of
actionable alterations from ctDNA could be technically
feasible and clinically beneficial in patients with a variety
of cancers.

Circulating tumor cells (CTCs) also contain tumor DNA and
mimic tumor properties and are believed to be an alternative
method of liquid biopsy (56). There are no clinical trials that
tried matched therapy based on molecular alterations of CTCs
currently. The reason could partly be that it is much more
complex to extract DNA for sequencing after separating CTCs
from the blood.

Target Levels of Molecular Profiling
The rate of matched therapy remains low. In previous studies,
although about 40% of the patients were found to have
potentially actionable molecular alterations, the rate of
matched therapy was less than 25% (57), indicating that only a
small portion of the recruited patients had their treatment altered
as a result of molecular profiling. Thus, the total benefit of
genomic profiling remains unsatisfactory. Currently, most
clinical trials and relevant studies rely on molecular profiling
only at the DNA level without integrating RNA or protein
information, which would affect the number of patients who
can potentially benefit from precision medicine approaches.
RNA and protein information are important for at least two
reasons. First, they can be a complementary for identifying
genomic alterations at the DNA level (47, 58). Second, RNAs
and proteins, rather than DNAs, are the main executers of
cellular behavior, and it would be more reasonable to target
these molecules when they are aberrant (59). Therefore,
transcriptome- and proteome-based precision medicine might
not only increase the number of actionable targets, but also lead
to more direct intervention in patients.

However, whether incorporating genomic and other -omic
profiling could increase the match rate and further improve
patients’ outcomes remain unknown. The CoppO trial
(NCT02290522) enrolled 591 patients who had exhausted
their treatment options, and 392 of them were found to have
potentially actionable targets (41). Notably, more than half of
these potentially actionable targets were revealed from RNA
analysis, and the 101 patients who received matched treatment
acquired a median PFS of 12 weeks, suggesting that genomic
and transcriptomic profiling could be useful for personalized
cancer treatment. The WINTHER trial (NCT01856296) is a
multicenter study using advanced genomic and transcriptomic
platforms with 303 patients consented and 107 patients
Frontiers in Oncology | www.frontiersin.org 6
treated (40). In total, 69 participants in the DNA-guided
arm and 38 in the RNA-guided arm have been analyzed. A
general disease control rate (DCR) of 26.2% was recorded, and
the proportion of patients with a PFS2:PFS1 >1.5 was 22.4%.
Intriguingly, patients in both arms had similar outcomes,
indicating that RNA-guided approaches might be as useful
as DNA-guided strategies. In addition, consistent with the I-
PREDICT trial, a higher matching score was associated with
longer PFS.

There is little evidence suggesting that targeting molecular
alterations at the protein level, off-label, would improve patients’
outcome. In the MOSCATO-01 trial, nine patients with MET-
positive IHC received matched therapy, and three of them had a
PFS2:PFS1 >1.3, indicating that targeting MET at the protein
level, off-label, is beneficial (30). However, no current trial is
studying targeted therapy based on proteomic results. The
Clinical Proteomic Tumor Analysis Consortium is one onco-
proteogenomic effort, which aims to unravel the different
proteogenomic subtypes of tumors, thus identifying driver
mutations, and it will study post-translational modifications. A
deeper understanding of tumor biology at the protein level will
lead to proteomic analysis being incorporated into future
precision trials.

Interpretation of Molecular Profiling
Results
The interpretation of molecular profiling is also challenging.
Not all patients who receive matched therapies respond, which
demonstrates the challenges of interpretation of the molecular
profiling information and the definition of their clinical
actionability. More analytical approaches and a deeper
understanding of cancer biology will enable the detection of
more driver mutations, and hundreds of novel targeted drugs
are in clinical development, thus making the data even more
complex. Mutations should be classified in a tumor type–
specific manner according to the level of evidence that a
mutation is a predictive biomarker for a targeted drug.
Negative matched therapy should be carefully avoided, such
as targeted therapy against alterations of the PI3K-AKT axis in
the presence of KRAS or BRAF or another MEK
pathway mutations.

The European Society for Medical Oncology (ESMO) created
a framework to rank genomic alterations (60), and there are also
some precision oncology knowledge databases to help physicians
define targetability (61, 62). However, these resources cannot
substitute for expert-guided decisions; therefore, an experienced
multidisciplinary molecular tumor board, consisting of at least
oncologists, pharmacologists, and bioinformatics experts, should
be set up to review molecular profiling reports and provided
recommendations. Given that physicians have a less stringent
definition of actionability than experts in the fields of medical
genetics and cancer biology (63, 64), they should also be educated
to interpret genomic tests and to publish the outcomes of
patients in cases of multiple targetable alterations. Unlike the
classic multidisciplinary team strategy in clinical practice, there is
currently no consensus on the interpretation of molecular
October 2020 | Volume 10 | Article 532403
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profiling. The results of data interpretation might vary
considerably depending on the interpreters’ knowledge. This
field is still in its early phase and will develop rapidly with the
help of artificial intelligence technology.

Accessibility of Targeted Drugs
Current precision medicine is largely limited by the available
drugs. Tumor genetic landscape testing has revealed a
collection of potential targets; however, many of them do not
have available drugs. It is believed that the lack of approved
agents for actionable molecular alterations accounts for the
unanticipated low response rate in previous studies. Moreover,
performing trials within a large cancer center with more access
to clinical trials could improve the possibility of matched
treatment . Off- labe l use of commercia l drugs and
experimental use of preclinical chemicals could expand the
treatable population and increase the response rate to
treatment. For those drugs that are not approved by local
administrations but have been approved in other countries,
resolving the accessibility of these drugs has practical
significance because these drugs probably work in patients.
Currently, the use of drugs approved in one type of cancer but
not in others (i.e., off-label) is probably the area in which
precision medicine can do the most good. The ongoing TAPUR
trial aims to fill this knowledge gap. Chemicals that are only in
the stage of clinical trials, but are not approved by any
administrations, might cover many targets detected using
molecular profiling; however, the utility of these chemicals
might be overestimated because they have not gained
sufficient clinical data as proof of their efficacy. For instance,
the SHIVA trial indicates that the off-label use of molecularly
targeted agents did not improve the PFS of heavily pretreated
patients (36).

When choosing suitable drugs or chemicals for detected
meaningful targets, several issues emerge. First, one mutation
might have more than one potential drug or chemicals, and one
drug might work on several targets. The complicated associations
between targets and drugs make it very difficult to conduct
clinical trials to answer these questions. Second, more than one
drugable target [e.g., germline BRAC1 mutation with a tumor
mutational burden (TMB) > 20/mega base] may be identified
from one patient, and the choice of preferred target is an open
question. If several driver genomic alterations coexist, a
combination of targeted therapies should be considered. The
combination of a BRAF inhibitor and a MEK inhibitor has been
shown to be more effective than a single agent in treating
melanoma (65). The I-PREDICT trial was an early test of this
concept, and 18 (24.6%) enrolled patients received combination
regimens, which showed that the matching score is associated
with better outcomes, favoring the strategy of combination
therapy. Additional studies with larger sample sizes and well-
designed protocols are needed.

Indications for Molecular Profiling
Not all patients who receive matched therapies respond.
Although physicians obtain increasing amounts information
Frontiers in Oncology | www.frontiersin.org 7
concerning tumor molecular alterations, only a minority of the
patients will respond to the targeted therapy. In the current
model, precision medicine has been offered to patients with
late-stage disease who were refractory to treatment, which
reduced the likelihood that a targeted drug would be effective.
Even if off-label drugs are recommended for actionable
mutations, some patients may not have the chance to start
the treatment because of rapid disease progression. This
strategy is not optimal, suggesting that both tumor
sequencing and the application of targeted therapy should be
performed at earlier stages.

The rationale of precision medicine in cancer treatment is still
under test; thus, most participants in clinical trials were in the
late disease stage and were heavily pretreated. Some drugs with
high response rates, such as Herceptin, Lynparza, and Crizotinib,
could be used as first-line therapy in patients whose tumors
harbor corresponding molecular alterations. However, there are
many more urgent issues to be resolved before this question takes
center stage.
CONCLUSIONS

Current data concerning molecular profiling–based targeted
therapy for patients with cancer demonstrates the prospect of
this approach to gain clinical benefits. Though precision
oncology is increasingly used in the clinical practice, more
well-designed studies are urgently needed to confirm the
efficacy of this strategy. Limited by the knowledge of tumor
biology, precision oncology remains an investigational strategy
rather than a widely used application.
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