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Obesity, one of the most severe public health problems of the 21st century, is a commonmetabolic syndrome due to excess body fat.
The incidence and severity of obesity-related asthma have undergone a dramatic increase. Because obesity-related asthma is poorly
controlled using conventional therapies, alternative and complementary therapies are urgently needed. Lipid metabolism may be
abnormal in obesity-related asthma, and immune modulation therapies need to be investigated. Herein, we describe the
immune regulators of lipid metabolism in obesity as well as the interplay of obesity and asthma. These lay the foundations for
targeted therapies in terms of direct and indirect immune regulators of lipid metabolism, which ultimately help provide effective
control of obesity-related asthma with a feasible treatment strategy.

1. Introduction

Obesity is defined as an excess of body fat, and it is one of the
main public health challenges worldwide. It increases the risk
for certain diseases and disorders, including type 2 diabetes,
hypertension, chronic kidney disease, cardiovascular dis-
eases, certain types of cancer, and depression [1]. According
to a previous report, approximately 13% of adults worldwide
are obese [2]. In 2011–2014, 17% of people aged 2 to 19 years
in the US were obese, and in 2011-2012, 38% were either
overweight or obese; these are substantial increases in the
past three decades [3]. Obesity in the US accounts for up to
one-third of total mortality. A study from the Global Burden
of Disease (GBD) revealed that the global obesity epidemic is
worsening and is placing heavy public health and economic
burdens in most regions of this planet. Thus, effective treat-
ments for controlling obesity is necessary [1, 4].

Asthma is a chronic inflammatory disease characterized
by variable symptoms of wheezing, shortness of breath, chest
tightness, and/or cough and by variable expiratory airflow
limitation. It is triggered by multiple factors such as exercise,
allergen or irritant exposure, change in weather, or viral
respiratory infections [5]. Previous studies have shown that
obesity increases the severity of asthma, which demonstrates
the close association between these two conditions [6, 7].
Global epidemiological studies on asthma and obesity have
also shown that obesity-related asthma has reached an
alarming level [8]. Asthma in obese patients is poorly con-
trolled using standard asthma medications including oral
corticosteroids, which is partial because the underlying met-
abolic mechanism, immune cells, and proteins involved in
related signaling pathways may be unresponsive to cortico-
steroids [9]. Hence, additional treatments are urgently
needed for the treatment of obesity-related asthma.
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We have not yet reached a consensus concerning the
accurate and comprehensive pathogenesis of obesity. How-
ever, lipid metabolism, which is a major part of energy
homeostasis, is undoubtedly involved in the onset and devel-
opment of obesity [4].

In this review, we summarize the association among lipid
metabolism, obesity, and asthma. We also detail the roles of
immune responses in lipid metabolism and the pathogenesis
of obesity-related asthma. Ultimately, we propose various
potential targeted therapies according to distinct cellular
types and proteins involved in the regulation of lipid metab-
olism in obesity-related asthma.

2. Immune Modulators of Lipid
Metabolism in Obesity

2.1. Sterol Regulatory Element-Binding Proteins and Lipid
Metabolism. Sterol regulatory element-binding proteins
(SREBPs) are significant transcription factors that regulate
lipid biosynthesis [10]. This keeps the balance of cholesterol
and fatty acids through the activation of gene-encoding
enzymes [11]. Additionally, SREBPs play an important role
as an interchange node within global signaling networks in
a variety of physiological and pathophysiological processes
[12]. SREBPs also improve the gene expression of low-
density lipoprotein (LDL) receptors (LDLR), which are
involved in sterol regulation [13–15]. SREBPs are divided
into different isoforms, including SREBP1a, SREBP1c, and
SREBP2. The physiological roles of SREBPs vary. SREBP1a
is involved in global lipid synthesis and growth, SREBP1c is
involved in fatty acid synthesis and energy storage, and
SREBP2 is involved in the regulation of cholesterol synthesis
[16]. Moreover, SREBPs are involved in a myriad of cellular
processes and pathologies such as reactive oxygen species
(ROS) production, endoplasmic reticulum stress, apoptosis,
and autophagy [17]. Nevertheless, the underlying molecular
mechanisms remain unclear and need further studies.
SREBP1a might modulate the innate immune responses of
macrophages, whereas SREBP2 is associated with cell phago-
cytosis and autophagy, indicating the significant role of
SREBPs in the onset and development of chronic inflamma-
tory diseases such as obesity [18–20]. These findings also sug-
gest that targeting SREBPs may be clinically feasible and
promising in the treatment of obesity.

2.2. Dipeptidyl Peptidase-4 and Lipid Metabolism. Dipeptidyl
peptidase-4 (DPP-4), also known as T-cell surface marker
CD26, is widely expressed in multiple cells, particularly in
immune cells [20]. It cleaves various chemokines and peptide
hormones involved in the regulation of immune response,
and it plays an important role in the pathogenesis of inflam-
mation [21, 22]. Previous studies reported on the function of
DPP-4, which serves as a surface protease in T-cell activation
[23]. Rufinatscha et al. found that in DPP-4 knockdown cells,
the levels of triglyceride and peroxisome proliferator-
activated receptor alpha (PPARα) were increased, while
SREBP-1c expression was obviously decreased [24]. Similarly,
Mulvihill found that inhibition of DPP4 significantly reduced
postprandial lipoprotein secretion [25]. For example, one

selective DPP-4 inhibitor, vildagliptin, led to a significant
reduction in total triglyceride and apolipoprotein B-48
(apoB48) concentrations after a high-fat meal [26]. Recent
studies showed that another DPP-4 inhibitor, anagliptin,
could significantly decrease the expression level of SREBP2
messenger ribonucleic acid, which significantly decreased the
plasma total cholesterol and triglyceride levels in anagliptin-
treated mice. Both low-density lipoprotein cholesterol and
very low-density lipoprotein cholesterol levels were also
decreased significantly [27].

2.3. Nuclear Factor- (Erythroid-Derived 2-) Like2 and Lipid
Metabolism. In addition to SREBP andDPP-4, nuclear factor-
(erythroid-derived 2-) like2 (Nrf2), a basic leucine zipper
transcription factor, is widely expressed in human andmouse
tissues as a defense against exogenous and endogenous stimu-
lation [28]. Obesity is a low-grade inflammatory disorder, and
in a previous investigation, Nrf2 was reported to be involved
in antiobesity activity. Nrf2 inducers mitigated the weight
gain, insulin resistance, oxidative stress, and chronic inflam-
mation induced by a high-fat diet (HFD) in mice [29]. In the
same study, the weight-reducing and insulin-sensitizing
effects ofNrf2 inducers were abrogated inNrf2−/−mice, which
indicates the importance of Nrf2 in host antiobesity activity.
Consistent with the findings of this study, the Nrf2 inducer
glucoraphanin increased energy expenditure, decreased lipid
peroxidation, and activated M1-like macrophage accumula-
tion and inflammation signaling in HFD-fed mice. Further
experiments uncovered that glucoraphanin mitigates obesity
by promoting fat browning, limiting metabolic endotoxemia-
related chronic inflammation, and regulating redox stress,
which suggests that Nrf2-targeted therapy may be clinically
promising in the treatment of obesity [29].

2.4. Intestinal Microbiota and Lipid Metabolism. Bacterial
bile salt hydrolase (BSH) enzymes in the gut play a significant
role in the metabolism of bile acids [30]. Joyce et al. found
that weight gain of mice with normal microbiota and the
level of serum cholesterol and liver triglycerides are reduced
by the expression of BSH, which indicated that using BSH
may regulate host lipid metabolism [31]. A study showed that
the levels of plasma triglycerides and muscle lipid (triglycer-
ides and phospholipids) were significantly decreased in mice
fed a diet with prebiotic compared to those that were fed a
control diet. Additionally, they also found that the expression
of muscle lipoprotein lipase mRNA increased in mice with
prebiotic treatment, which may have resulted in the decrease
in levels of plasma and muscle lipid [32]. Many studies have
demonstrated that HFD feeding profoundly affects the gut
microbial community [33–35]. Marc Schneeberger’s research
indicated that the number of Akkermansia muciniphila was
reduced in mice with HFD treatment, which was significantly
and positively correlated with fatty acid oxidation and brow-
ning. However, it was negatively associated with lipid synthe-
sis, adiposity, and inflammatory markers [36]. The main
route of cholesterol excretion is the conversion of cholesterol
into bile acid in the liver, followed by excretion of bile acids
through the feces. Bile is also considered to be bacteriostatic
and to prevent overgrowth of small intestinal bacteria [37].
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Control bacterial fermentation of dietary fiber in the
colon produced short-chain fatty acids (SCFAs). SCFAs reg-
ulated the proliferation and apoptosis of cells, which affected
intestinal permeability. Additionally, SCFAs could regulate
anti-inflammatory effects on the intestinal epithelium by
serving as ligands for a series of G-protein-coupled receptors
(GPRs) [38]. Experiments have shown that SCFA levels are
higher in feces of obese (ob/ob) mice and obese human sub-
jects, which may be due to the reduction of colonic absorp-
tion of SCFA leading to obesity [39].

3. Obesity and Asthma

In recent years, the incidences of obesity and asthma have
been rising with a parallel relationship. The presence of obe-
sity increases the risk for several diseases including asthma
[40–42]. Asthma is more common in obese than in nonobese
people [43]. Studies have demonstrated that people with
asthma have higher BMIs than those without asthma. [44]
Moreover, some obese patients with asthma have significant
respiratory symptoms and little eosinophilic airway inflam-
mation. Similarly, concordant and growing evidence also
supports the relationship between being overweight (defined
by body mass index (BMI)) and having asthma [40–42].
Obesity has emerged as a serious risk factor for bronchial
asthma, which indicates that obesity could cause or even
worsen asthma. Additionally, asthma is more difficult to con-
trol in obese patients [45]. Therefore, this study focused on
obesity-related asthma. Potential factors that affect the path-
ogenesis of obesity-related asthma are also summarized in
the review (Figure 1).

3.1. Low-Grade Inflammation and Asthma. Obesity is
regarded as an inflammatory disease [46]. Unlike typical
inflammation, it is chronic low-grade systemic sterile inflam-
mation that is characterized by only moderate upregulation
of circulating proinflammatory factors and the absence of
clinical symptoms of inflammation [47]. The inflammatory
response may affect pulmonary function and thus worsen
the asthma. In particular, macrophages play an important
role in the occurrence and development of obesity-
associated asthma. The HFD mice in obesity modelling
increase the number of macrophages in the lungs and alveoli.
Besides total cell count in bronchoalveolar lavage fluid
(BALF), neutrophils and a few eosinophils also had increased
counts [48]. In addition, the concentration of Th1 cytokines
and IFN-γ also increased significantly inBALF[49]. Inhealthy
adipose tissue, immune cells normally consist of CD4+ T-cell,
regulatory T-cells (Treg), and type 2 macrophages (M2),
which can regulate heat production, inflammation, and lipid
metabolism. Nevertheless, in obese individuals, adipocyte
hypertrophy and cytokine secretion result in a shift from M2
to M1 [50] and from Th2 to three different types: Th1, Th17,
and CD8+ CTL. Obesity leads to increasing expression of the
following: proinflammatory cells such as macrophages; integ-
rins such as CD11b and CD11c; cytokines including TNF-α,
IL-6, and nitric oxide synthase 2 (NOS2); and triggers such
as Toll-like receptors (TLRs), metabolic endotoxemia, lipid
spillover, and adipokines. These result in a shift from anti-

inflammatory M2 type to proinflammatory M1 type [51].
The activation of NF-κB pathways caused by these cytokines
then ensues, thereby inducing the overexpression of proin-
flammatory cytokines such as TNF-α and IL-6. The activation
of adipose tissue macrophages (ATMs) is an amplification of
the inflammatory process [52]. In obese humans, long-term
nutritional excess can lead to adipose tissue hypertrophy, adi-
pose tissue vascularization, hypoxia, and adipose tissue necro-
sis. It can also lead to the infiltration of macrophages into
adipose tissue and the surrounding necrotic tissue, which also
produces a wide variety of proinflammatory cytokines [53]. In
addition, the secretion of inflammatory cytokines and activa-
tion of the NF-κB pathway trigger transcriptional expression
of Nod-like receptor family pyrin domain containing 3
(NLRP3) and pro-IL-1β as well as the subsequent activation
of NLRP3, causing macrophages to produce IL-1β. Overpro-
duced saturated fatty acids in obese individuals can also stim-
ulate NLRP3 inflammasome activation [54]. Inflammatory
factors spread from adipose tissue into the blood circulation
and then reach the lungs, which trigger airway inflammation
and hyperresponsiveness. It has been reported that TNF-α
can directly induce airway hyperresponsiveness (AHR) [55].
Inaddition,obesity can lead toabnormal fattyacidmetabolism
and increased fatty acid in blood by promoting increased
expression of ACC1 and subsequently activation of RORγt to
induce the differentiation of Th17 cells. IL-17 is produced by
Th17 cells that bindwith its receptors. IL-17 is able to improve
the secretion of inflammatory cytokines such as IL-6, TNF-α,
IL-8, CAM-1, and CM-CSF through the MAPK or NF-κB
pathway [56]. The association between obesity and neutrophil
count in sputum is significant; in addition, a recent cluster
analysis has shown that the presence of obesity-related asthma
is characterized by increased airway neutrophils [57–59]. In
addition to this, IL-17, IL-6, and TNF-α secreted by Th17 cells
recruit and activate neutrophils in the lungs [60]. Neutrophils
play an important role inATMrecruitment and inflammation
by degradation of insulin receptor substrate 1 or activation of
the TLR-4 pathway [61]. In addition to Th17 cells, Th1 cells
in abnormal adipose tissue of obese individuals can secrete
cytokines including IL-2, IL-3, IFN-γ, and TNF-α, which
may activate M1 and thereby activate neutrophils through
the chemokines (C-X-C motif) ligand 8 (CXCL8) pathway.
Obesity-associated AHR was independent of adaptive immu-
nity. A few eosinophils but many neutrophils were found in
sputum, which suggests that obesity-associated asthma may
be allergen independent [9]. Apart from the immune
responsesmentioned above, innate lymphoid cells also partic-
ipate in the pathogenesis of obesity-related asthma. Although
ILC2shave been reported topromoteAHRandairway inflam-
mation in a previous study [62], other studies showed that
ILC2s played a crucial role in the repair of the airway epithe-
lium,metabolic regulation, and translation fromwhite adipose
tissue into beige adipose tissue in the lungs [63]. However, a
lack of ILC2 protection in obesity-related asthma may be
partially due to the replacement of the ILC2 response with
ILC3 response. In a study involving diet-induced obese mice,
ILC3s and Th17 as well as the corresponding release of IL-17
were observed in the BALF, which may promote the develop-
ment of AHR [64]. Bronchial epithelial cells stimulated by
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exogenous substances such as ozone [65] or cytokines can
secrete IL-25, IL-33, and thymic stromal lymphopoietin
(TSLP), thereby activating ILC2 to produce type 2 cyto-
kines such as IL-4, IL-5, and IL-13. The pathway depends
on the activation of the transcription factor GATA3 [66].
Macrophages, neutrophils, ILC2, Th1, and Th17 secrete a
wide variety of cytokines and chemokines, which act on
bronchial smooth muscle and may subsequently cause a
series of asthmatic symptoms including airway narrowing,
airway remodeling, mucus hypersecretion, AHR, airway
smooth muscle constriction and hypertrophy, and a rapid
decline in lung function.

3.2. Adipokine Secretion and Asthma. Obesity-related low-
grade inflammation originates from the adipose tissue, which
enables the secretion of a variety of interleukins and adipo-
kines such as leptin, adiponectin, and resistin. In turn, these
factors can affect obesity-related inflammation and airway
inflammation [67]. Therefore, adipose tissue can be consid-
ered as a typical endocrine organ [68]. The amount of leptin
produced by adipose tissue is higher in obese subjects com-
pared to their nonobese counterparts [69]. However, a previ-
ous study found that leptin function in obese patients did not
change. Leptin tolerance may be a causative factor in obesity-
related asthma [70]. Moreover, overproduced leptin can
stimulate the production of proinflammatory mediators,
such as TNF-α, IL-6 from the adipose tissue, and IFN-γ from
Th1 immune responsive CD4+ T-cells. TNF-α and IFN-γ are
the mediators associated with AHR in asthma. On the other
hand, leptin may inhibit the function and proliferation of
regulatory T-cells, which may impair the balance of Th1

and Th2 and promote the polarization of Th1-mediated
autoimmune diseases and Th2-mediated immune diseases
such as asthma [71, 72]. Leptin not only affects the innate
immunity but also has a significant impact on the allergic
inflammatory response in obese individuals. Leptin promotes
the proliferation and survival of proallergic Th2 cells and
ILC2 by activating mTORC1, MAPK, and STAT3 pathways,
which leads to the production of type 2 cytokines such as IL-
4, IL-5, and IL-13, which together contribute to allergic
responses [73]. In short, IL-4 promotes the production of
IgE and subsequently activates mast cells; IL-5 activates and
recruits eosinophils. IL-13 can directly act on goblet cells,
which results in the secretion of airway mucus, airway
remolding, and AHR [74]. A study found that the release of
airway mucus induced by IL-13 can be regulated through
the JAK2-STAT3-MUNC18b pathway [75]. There is no evi-
dence that leptin is a direct cause of asthma. However, several
studies have demonstrated that leptin is correlated with obe-
sity andasthma inbothadults andchildren [69, 76, 77].Adipo-
nectin is an anti-inflammatory adipokineproducedbyadipose
tissue [78]. Adiponectin participates in inflammation by
downregulating proinflammatory cytokines including TNF-
α, IL-6, and NF-κB and upregulating anti-inflammatory cyto-
kines such as IL-1 receptor antagonists and IL-10. In addition,
the decreased level of adiponectin reduces the inhibitory effect
of bacterial lipopolysaccharide (LPS), thereby inducing mac-
rophages to produce IFN-α, which induces the body’s low-
grade inflammatory reaction [79]. Adiponectin also induces
a shift from M1 to M2 and from Th1 to Th2 and enhances
the immunity and anti-inflammatory ability of body [80].
However, despite the enhanced inflammation in obese
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individuals, their levels of adiponectin are low [46]. This may
result in thedecreased anti-inflammatory activity of adiponec-
tin. In addition, the overexpression of proinflammatory cyto-
kines may inhibit the secretion of adiponectin, which results
in further reduction in the anti-inflammatory effect of adipo-
nectin, thereby providing the appropriate immunological
environment for the onset and development of asthma. Fur-
thermore, the effect of distinct isoforms of adiponectin varies
in obesity-related asthma cases. A recent study found that
the higher concentration of low-molecular-weight (LMW)
adiponectin and the lower ratio of middle molecular weight
(MMW) adiponectin/total adiponectin were evidently associ-
ated with asthma [81]. However, the level of high-molecular-
weight (HMW) adiponectin in serum is not related to the
onset and development of obesity-associated asthma [67].
Resistin, like leptin, is another proinflammatory adipokine
produced by adipose tissue. Obesity is a chronic low-grade
inflammatory condition accompanied with the increased
production of various inflammatory factors including
resistin. Moreover, inflammatory factors such as IL-1, IL-
6, TNF-α, and LPS can promote resistin expression via
NF-κB-induced pathways. In turn, the proinflammatory
cytokines including IL-6 and TNF-α can be promoted by
resistin, thus decreasing obesity-associated inflammation
[82]. These proinflammatory factors act on the lungs,
which may lead to increased airway inflammation and
asthma [83]. Through the comparison of serum leptin
levels, Hassan et al. found that obese subjects with asthma
showed higher resistin levels. With the increase in resistin
levels, asthma severity is also accordingly increased [83].
Similarly, other studies have also demonstrated that the
level of resistin and resistin/adiponectin ratio are propor-
tionally increased in asthma and are even higher in obese
subjects with asthma. In addition, the level of resistin and
resistin/adiponectin ratio can also negatively predict lung
function [67]. The above studies suggest that resistin can
aggravate inflammation and promote the onset and deterio-
ration of asthma. Thus, obesity may promote the occurrence
of asthma and further aggravate asthma by promoting the
increase of resistin. These studies probably uncovered a novel
therapeutic target for obesity-related asthma.

3.3. Intestinal Microbiota Dysbiosis and Asthma. Intestinal
microbiota mainly act as a biological barrier and are
involved in immune regulation. Bacterial diversity increases
mucosal immune defense [84]. However, obesity may result
in intestinal microbiota dysbiosis and the reduction of bacte-
rial diversity with an increase in Firmicutes and a reduction
in Bacteroidetes [85], which are responsible for intestinal
barrier and immune function damage. Thus, this results in
weight gain, systemic inflammation, insulin resistance, and
asthma [86]. Studies have reported that the concentration
of LPS in plasma increased significantly in obese individuals,
which may be due to the increase in intestinal permeability
and excessive HFD [87]. Obesity-related low-grade inflam-
mation and intestinal microbiota disorders can cause
increased intestinal mucosal permeability [88]. LPS moves
from the intestinal mucosa into the blood circulation, leading
to endotoxemia. The related underlying mechanism is as

follows: binding of LPS with TLR4 may activate the NF-κB
pathway, which produces a wide variety of cytokines, includ-
ing TNF-α and IL-6 [89]. These cytokines act on the lungs,
which may result in AHR and asthma exacerbation. Diet also
affects the intestinal microbiota, thereby influencing asthma.
A high-fiber/low-fat diet can increase the circulating levels of
SCFAs [87] that play a critical role in inhibiting inflamma-
tion by regulating the differentiation and activation of Treg
[90, 91], inhibiting LPS-induced NF-κB activation, increas-
ing TNF-α levels in neutrophils and macrophages, and inhi-
biting neutrophil production of proinflammatory reactive
oxygen species (ROS) and TNF-α [92]. SCFAs stimulate
intestinal epithelial proliferation and differentiation and
could also contribute to the repair of the epithelial cell dam-
age that is typical in asthma [92]. Moreover, SCFAs produced
by the metabolism of dietary fiber from gut bacteria also pro-
mote the secretion of leptin to inhibit weight gain. However,
a high-fat/low-fiber diet results in decreased levels of SCFAs
and the imbalance of gut bacteria [93]. A study on an animal
model reported that a low-fat/high-fiber diet promoted the
production of beneficial bacteria such as Lactobacilli, Bifido-
bacteria, and Faecalibacterium and the production of SCFAs,
especially butyrate. In contrast, the high-fat/low-fiber diet
increased the Enterobacteriaceae, which are harmful to
human health conditions [94]. High-fat/low-fiber diet-
induced dysbacteriosis inhibits the function of regulatory
T-cells through epigenetic modifications of the Forkhead
box P3 (FoxP3) promoter and increases Th2-induced allergic
airway inflammation. HFD-induced obesity may increase the
risk for asthma via the changing gut bacteria. In addition, the
obesity-induced dysbiosis of gut bacteria causes cholesterol
metabolic disorders and the levels of bile acids are reduced
in the gut, which impair the inhibition of NLRP3. NLRP3
activation induces IL-1β secretion primarily by M1 macro-
phage, which induces AHR that is considered as a major fea-
ture of asthma [95]. Many epidemiological studies have
shown that with the increased number of caesarean section
deliveries, there has also been an increase in obesity, type 1
diabetes, allergies, celiac disease, and some neurological dis-
orders [96]. Caesarean-born children did not pass through
the mother’s birth canal, which causes intestinal microbial
abnormalities, thus resulting in offspring obesity [97]. Stud-
ies found that compared with natural-born mice, caesarean-
born mice gained more weight [98]. In addition, women
who undergo caesarean section delivery usually use antibi-
otics preventively, which may be harmful to the baby’s intes-
tinal microbiota and may exacerbate obesity and other
diseases. Another study found that ovalbumin-induced asth-
matic mice had increased diversity of intestinal microbiota
when exposed to microbes in early life. Moreover, IFN-γ
levels and the ratio of IFN-γ and IL-4 were also increased sig-
nificantly, which suggests that increased diversity of intesti-
nal microbiota may induce Th1 response and inhibit airway
inflammation in allergic asthma [99]. The results of these
studies, taken together, indicate that a lack of microbial
exposure in early life may cause obesity and asthma.
Hence, we think that obesity caused by the lack of micro-
bial exposure in early life may result in the risk and dete-
rioration of asthma.
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4. Potential Targeted Therapy of Obesity-
Associated Asthma

There is a close association between obesity-associated
asthma and several well-established risk factors for morbid-
ity; thus, reversing the obesity-associated asthma is an urgent
priority. We summarize herein potential targeted therapies
for immune regulation, intestinal microbiota, and inflamma-
tion to control obesity-associated asthma (Figure 1). A better
understanding of these different therapies will lead to future
advances in the clinic.

4.1. Immune Regulator-Targeted Therapies. MicroRNAs
(miRNAs), a class of noncoding RNAs, emerge as a novel
treatment strategy for dyslipidemia and obesity via the mod-
ulation of sterols by SREBPs [100]. Among them, the most
popular miRNA in the modulation of lipid metabolism is
miR-33a, which is located in the intron of SREBF2. miR-33
regulates high-density lipoprotein (HDL) biogenesis and
cholesterol efflux by downregulating the expression of
ATP-binding cassette transporters [12]. miR-33 also targets
SREBP1c, thereby affecting obesity [101]. A study using
humanized knock-in mice observed the contribution of
miR-33b to a relatively low HDL cholesterol level in human
beings [101]. After induction by host SREBF genes, the
miR-33 system facilitates lipid homeostasis by modulating
the opposing regulator systems (plasma LDL versus HDL
cholesterol and cholesterol versus fatty acid metabolism),
indicating the therapeutic intervention of miR-33 in dyslip-
idemia [102]. Another example that has found clinical suc-
cess in the regulation of lipid metabolism via SREBP is
PCSK9 inhibitors, which indicate SREBP2 target PCSK9 in
plasma and contribute to LDLR degradation [103, 104].

Intriguingly, extracts and natural compounds derived
from some plants are also reported to possess antiobesity
activity by targeting SREBP genes and other adipogenesis-
related genes (such as PPARγ and ACC1). Betulin, a natural
triterpene isolated from the bark of birch trees, was reported
to inhibit the maturation of SREBP by inducing the interac-
tion of SREBP cleavage-activating protein (SCAP) and
insulin-induced gene protein (INSIG), which lowered the
biosynthesis of cholesterol and fatty acid. In vivo, betulin
ameliorated diet-induced obesity by decreasing the lipid con-
tents in serum and tissues and concomitantly enhancing
insulin sensitivity. Thus, this is a potential compound for
the treatment of hyperlipidemia and obesity [105]. Ginseng,
which has been used in traditional Chinese medicine for cen-
turies, is a novel depressor against SREBP and other tran-
scriptional factors such as PPARγ and ACC1. A South
Korean research group found that compared with HFDmice,
mice receiving HFD with Korean red ginseng extract (GE)
(10μg/ml) for eight weeks had decreased body weight, adi-
pose tissue mass, and adipocyte size, which indicated signifi-
cant antiobesity effect [106]. Additionally, data in vitro
confirmed that GE and two major ginsenosides, Rb1 and
Rg1, inhibited adipogenesis by lowering PPARγ, C/EBPα,
and SCD1 expression at the gene level. Other studies have
also reported significant antiobesity activity of Korean red
ginseng by modulating transcription factors such as PPARγ

and aP2, which decrease the amount of lipid accumulation
and inhibit adipogenesis [107–109]. These observations sug-
gested that natural herbs are abundant medical sources for
targeting SREBPs and other transcriptional factors in the
treatment of obesity-related asthma.

In addition to inhibitors targeting the transcriptional fac-
tor SREBP, two independent research groups highlighted the
potential clinical application of DPP-4 inhibitors in the atten-
uation ofmacrophage cell-mediated or immune cell-mediated
inflammation [110, 111].DDP-4 inhibitor or carotenoids such
asβ-cryptoxanthin and astaxanthin facilitate the immune reg-
ulation of lipid homeostasis in vitro at least partly by the
decline in M1 macrophage numbers and the increase in M2
macrophage numbers, which indicate potential application
in the treatmentofobesity-relatedasthmainclinical and scien-
tific studies [112, 113]. There was evidence demonstrating the
role of Nrf2 in the treatment of obesity. A wide variety of
synthetic Nrf2 inducers including triterpnoid 2-cyano-3, 12-
dioxoolean-1, 9-dien-28-oic acid- (CDDO-) imidazolide,
dithiolethione analog, and oltipraz demonstrated a significant
ameliorative effect on HFD-induced obesity [114, 115]. How-
ever, it seemed that synthetic Nrf2 inducers were not clinically
available due to the significantly increased risks of heart failure
and the composite cardiovascular outcomes (nonfatal myo-
cardial infarction, nonfatal stroke, hospitalization for heart
failure, or death from cardiovascular causes) [116]. Sulforaph-
ane, an isothiocyanate derived from cruciferous vegetables, is
one of the most potent naturally occurring Nrf2 inducer. The
compoundwas reported to ameliorate obesity by the enhance-
ment of energy expenditure and the reduction of metabolic
endotoxemia, which were caused by the decline in inflamma-
tion and insulin resistance. Sulforaphane may be a promising
treatment for obesity-related asthma [29].

4.2. Intestinal Microbiota-Targeted Therapies. Gut microbi-
ota have been associated with obesity-activating innate
immunity through the LPS Toll-like receptor 4 axis [117].
Gut microbiota dysbiosis may induce obesity-related asthma
[118]. We hypothesized that it may be beneficial to improve
or treat obesity-related asthma via the modulation of gut
microbiota. Moreover, the metabolic products of intestinal
microbiota have a significant effect on body metabolism
and immune defense mechanisms. Probiotics have a signifi-
cant effect on improving intestinal microbiota modulation
and systemic immunity. Previous studies indicated the
weight of mice fed with HFD was the highest in three groups
of mice with HFD, mice with HFD plus probiotics, and mice
with HFD plus Lactobacillus plantarum (LP). The mice in
high-fat diet plus LP exhibited significantly lower IL-6 and
endotoxin (ET) content. Moreover, it will preferably regulate
intestinal microbiota and systemic immune function to feed
the combination of Lactobacillus plantarum (LP) and Lacto-
bacillus fermentum (LF) [119]. In view of systemic obesity-
related inflammation, the use of probiotics in the treatment
of obesity probably has a potential effect on improving
asthma. Clinical evidence demonstrated that the microbiome
of obese people lacked a cluster of abundant Bacteroides spe-
cies. Animal experiments showed that gavage with B. thetaio-
taomicron can reduce serum glutamate concentration, which
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increased lipolysis and fatty acid oxidation process, thereby
reducing fat accumulation and eventually achieving weight
loss. Thus, it may be feasible to prevent obesity by regulating
gut microbiota [120].

Obesity-related microbiota dysbiosis influences the pro-
duction of bile acid, which is associated with lipid digestion
and absorption [121]. Intestinal bile acids can be absorbed
by bile acid binding resin (BAR) and likely improve obesity
and metabolic disorders [122]. The binding of Berberine
(BBR), extracted from the roots of Rhizoma coptidis, with
gut and intestinal Farnesoid X receptor (FXR) lead to
decreasing serum lipids in humans, hamsters, mice, and rats
[123]. BBR inhibited bile salt hydrolase (BSH) activity in gut
microbiota and activated FXR signaling pathway to alter bile
acid metabolism, which may regulate lipid metabolism and
then achieve weight loss. Therefore, BBR administration
may be an effective strategy to improve obesity-related
asthma [124].

Diet can also affect the intestinal microbiota balance and
improve obesity and asthma. High-fiber diets can increase
intestinal and circulating SCFA concentrations to suppress
allergic inflammation and weight gain, which relies on the
metabolism of intestinal microbiota [125]. Trompette et al.
reported that high-fiber diet and SCFAs can shape immuno-
logical environment in the lungs by regulating the differenti-
ation and activation of Treg. They can also affect the severity
of allergic inflammation by inhibiting neutrophil production
of proinflammatory reactive oxygen species (ROS) and TNF-
α [90]. Thus, a diet with abundant dietary fermentable fiber
may be beneficial for patients with obesity-related asthma.
In addition, we summarized that increased activation of
microbes producing SCFAs or the direct application of
microbes producing SCFAs via fiber metabolism may also
improve the symptoms of obesity-related asthma. Moreover,
a prospective cohort study indicated that yogurt significantly
prohibited weight gain, in particular among participants with
higher fruit consumption, which may be due to a mechanism
mediated by probiotics such as Lactobacillus and Bifidobac-
terium [126]. Additionally, gastrointestinal bacteria could
metabolize foods such as beef, yogurt, and vegetable oils to
produce conjugated linoleic acid (CLA) such as trans-10
and cis-12 CLA, which significantly prevented weight gain
via mechanisms that increase adipocyte turnover and lead
to the appearance of metabolically active beige adipocytes.
Free linoleic acid and α-linolenic acid are converted to differ-
ent CLA by Bifidobacterium, Bifidobacterium pseudolongum
strain, and Bifidobacterium breve strains [127]. Therefore,
CLA and CLA-associated compounds are a novel strategy
to control weight that may be beneficial to improve obesity-
related asthma.

4.3. Inflammation-Targeted Therapies. Obesity-related
asthma is a chronic inflammatory disease accompanied with
the disorder of proinflammatory and anti-inflammatory
molecules driven by cytokines. Therefore, the regulation of
cytokine secretion may be a new strategy to inhibit
inflammation-induced obese-related asthma. MKP-1, a
MAPK deactivator, can produce p38 MAPK phosphoryla-
tion in an irreversible manner, thereby inhibiting the

occurrence of inflammation. Prabhala found that binding of
dexamethasone or compounds interrupting the proteasome
with MKP-1 can induce p38 MAPK phosphorylation and
inhibit inflammatory cytokines in airway smooth muscle
cells [128]. The interaction of p38 MAPK and MKP-1 may
be a novel therapeutic target for obesity-associated asthma.
Obesity-associated inflammation is mostly related to TLR4-
NF-κB pathway [129]. TLR4 knockout or antagonists may
be beneficial for obesity-related asthma. TLR4 knockout
relieves HFD-induced phosphorylation of IKKβ, JNK,
mTOR, and proinflammatory signaling molecules, which
can alleviate obesity-associated inflammation. It might impli-
cate the possible therapeutic potential of TLR4 in the man-
agement of asthma in HFD-induced obesity [130].
Furthermore, TLR antagonists have been used to treat meta-
bolic diseases due to the beneficial effects of immune sup-
pression in modern medicinal studies and applications.
However, HFD-induced low-grade chronic inflammation
may be an evolutional protective mechanism against patho-
gens. TLR antagonists or TLR knockout may inhibit the
activity of host TLR, which probably increases the vulnerabil-
ity to infection [131].

Chronic low-grade inflammation of the body induced by
obesity also followed ILC2 activation. Cytokines derived
from lung epithelial cells, such as IL-25, IL-33, and TSLP,
can activate ILC2 to cause pulmonary injury. The activated
ILC2s subsequently produce type 2 cytokines (IL-4, IL-5,
and IL-13) and induce severe inflammation in the lungs
[73]. Thus, inhibition of IL-25, IL-33, and TSLP possibly
relieves type 2 inflammation. In a previous publication, a
combination of an anti-TSLP antibody, AMG 157, and TSLP
effectively obstructed the interplay between TSLP and its
receptor, which may inhibit ILC2 activation [132]. Many
clinical trials have revealed that antibodies against IL-5 or
IL-5 receptor, IL-13, and IL-4Rα modestly reduced asthma
exacerbations and improved lung function [133]. Anti-
interleukin-5 (anti-IL-5) is a neutralizing antibody targeting
IL-5, which is essential for eosinophil maturation and sur-
vival. Two anti-IL-5 drugs have been approved by the Food
and Drug Administration (FDA) in the US: mepolizumab
[134], by subcutaneous injection monthly, and reslizumab
[135], by intravenous infusion monthly. Ramirez-Carrozzi
et al. concluded that commissural inhibition of IL-13 and
IL-33 pathway or IL-5 and IL-13 pathway was extremely
effective to reduce type 2 inflammation in patients with
severe asthma [136]. Of note, the blockade of interleukin-
13 using the two anti-interleukin-13 monoclonal antibodies,
lebrikizumab and tralokinumab, potentially improved airway
inflammation and smooth-muscle reactivity, which may
reduce FENO but increase circulating eosinophil counts.
The growth in peripheral blood eosinophil counts have been
reported previously to reflect blocking of IL-13 activity [137].
In 2015, in a phase II clinical study of using lebrikizumab to
patients with moderate-to-severe uncontrolled asthma
despite ICS therapy and an additional controller, subcutane-
ous administration of lebrikizumab taken every four weeks
reduced asthma exacerbation rate by 60% compared with
placebo in periostin-high patients and by 5% in periostin-
low patients. In this study, despite improving lung function,
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lebrikizumab treatments have not yet led to clinically mean-
ingful placebo-corrected improvements in asthma symptoms
or quality of life, potentially due to the limited power of the
studies for these safety endpoints [138]. In 2017, the
researchers had phase III clinical studies to provide further
evidence of the safety and efficacy of lebrikizumab. Lebrikizu-
mab, targeting IL-13 alone with biologics, has not shown a
consistent reduction in asthma exacerbation. However, they
confirmed that dupilumab, a medication simultaneously tar-
geting at both IL-4 and IL-13 via blocking IL-4 receptor, has
yielded more consistent results in reducing asthma exacerba-
tions and improving lung function, especially in patients with
increased blood eosinophils. Therefore, biologics targeting
IL-4/IL-13 may be useful in patients with proof of T2-high
asthma based on the presence of type 2 inflammation regard-
less of their baseline blood eosinophil levels [139]. Besides,
late phase clinical trials of drugs targeting the IL-4/IL-13
pathways show promising results to achieve FDA-approved
therapies. Doherty has said that TSLP can induce partial cor-
ticosteroid resistance, but under this condition, corticoste-
roid can still inhibit IL-33 to activate ILC2 [140]. Therefore,
it is possible that corticosteroid can improve modestly
obesity-related asthma. In addition, the function of ILC2
can be inhibited by Treg cells by the secreting cytokines of
IL-10 and TGF-β in adipose tissue or via the direct contact
of ILC2 with Treg, which can improve type 2 inflammation
and deterioration of lung function. Therefore, taking effective
measures to increase the number of Treg cells in asthmatic
patients may reduce the inflammatory response induced by
type 2 inflammatory cells [141]. In addition to ILC2, a team
conducting experiments in mouse models of HFD concluded
that NLRP3, IL-1β, and ILC3 cells facilitated obesity-related
asthma by mediating inflammation [142]. In an experiment,
after a short treatment of the IL-1β antagonist, anakinra, the
symptom of AHR of obese mice induced by high-fat diets
was improved [143]. Another team conducted a phase I clin-
ical study, the result of which was that anakinra effectively
reduced airway neutrophilic inflammation and caused no
serious adverse events in a model of inhaled endotoxin LPS
challenge. Thus, anakinra can be regarded as a potential ther-
apeutic candidate for treatment of asthma with neutrophil
advantage [144]. To date, it has not been investigated
whether this type of treatment could be clinically applied in
humans. In addition to inhibiting inflammatory cytokines,
overall anti-inflammatory therapy may also be effective in
obesity-related asthma. Similarly, obesity-related asthma fre-
quently accompanies insulin resistance due to the lack of adi-
ponectin. Calixto et al. conducted a study using obese mouse
model fed with a HFD and found that metformin, a first-line
treatment for diabetes, attenuated the exacerbation of the
allergic eosinophilic inflammation [145]. In a retrospective
cohort study, metformin users had a lower risk for asthma-
related hospitalization and asthma exacerbation [146].
Hence, healthcare providers should consider metformin as
a potential medication for patients with concurrent asthma
and diabetes. It is well known that macrophages play an
important role in the development and deterioration of
obesity-related asthma and that peroxisome proliferator-
activated receptors (PPARs) are expressed in monocytes/

macrophages and adipose tissue. The activation of PPARs
inhibits the shift from M2 to M1 and from Th2 to Th1 and
also inhibits the secretion of proinflammatory cytokines such
as IL-1β, IL-6, IL-10, IL-12, and TNF-α [147]. A study con-
ducted by Yoon et al. demonstrated that the activation of
PPAR-γ induced by apoptotic cell instillation over the course
of bleomycin-induced lung injury can reverse the enhanced
efferocytosis, the decreased expression of proinflammatory
cytokines, and neutrophil recruitment, which likely inhibits
inflammatory responses. Moreover, PPAR-γ activation may
cause specific death of macrophages [148]. Therefore,
PPAR-γ activation with PPAR-γ agonist or other PPAR-γ-
stimulating compounds may reduce obesity-associated
inflammation, thereby improving the severity of obesity-
related asthma. To date, PPAR-γ agonists have not been
studied clinically. Moreover, the regulation of adipokine level
in obese individuals can also improve obesity-related asthma.
Adiponectin secreted by adipose tissue is an anti-
inflammatory adipokine and can promote the utilization of
intracellular fatty acid and triglyceride-content reduction,
whereas the level is decreased in obese individuals [149]. It
has been demonstrated that adiponectin resistance observed
in obese patients is due to the increased level of adiponectin
in serum and the defective expression of adiponectin recep-
tors in the lungs [150]. Despite some studies having shown
no effect of recombinant adiponectin in animals, recombi-
nant adiponectin may be a challenging therapeutic strategy
for obesity-related asthma in the future.

5. Conclusion

As obesity becomes more prevalent worldwide, obesity-
related asthma is frequently observed in the whole popula-
tion. In this review, we described the disturbed lipid metabo-
lism and immune modulators of lipid metabolism in obesity
such as SREBPs, DPP-4, and Nrf2. In addition, we also dis-
cussed several immune factors potentially contributing to the
pathogenesis of obesity-related asthma including intestinal
microbiota, immune regulator, and inflammation. According
to these possible immune causes in the onset anddevelopment
of obesity-related asthma, we summarized several promising
targeted therapies in the treatment of obesity-related asthma,
such as miRNAs and TLR antagonists, which may provide
effective medical intervention strategy in controlling obesity-
related asthma.
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