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Pd(II)-catalysed meta-C–H functionalizations of
benzoic acid derivatives
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Benzoic acids are highly important structural motifs in drug molecules and natural products.

Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools

for step-economical organic synthesis. Although direct ortho-C–H functionalizations of

benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H

bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis

has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of

electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor

arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a

general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based

sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively

olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation,

product of which is further transformed at the meta-position, is also reported.
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B
enzoic acids are highly valuable structural motifs and
precursors for synthesizing other organic substances. Direct
and selective transformation of the C–H bonds of this class

of compounds would be very attractive for developing
step-economical organic syntheses (Fig. 1)1–14. To date, direct
ortho-C–H functionalizations of benzoic acids or their derivatives
have been intensely studied with transition-metal catalysts1–12 or
by directed ortho metalation13. Traditionally, the meta-position
of benzoic acids were functionalized by electrophilic aromatic
substitution, which often requires harsh conditions as benzoic
acids are generally deactivated towards this reaction14.
Transition-metal catalysts have been used to functionalize
meta-C–H bonds of limited benzoic acid derivatives. Hartwig,
Yu, Sanford and others have achieved modest to high selectivity
because of substrate steric or electronic control15–25. In prior
examples, an excess of the benzoic acid derivative, which was
often used as the solvent, was generally required with a
Pd catalyst (Fig. 1a)17–18,21. Despite these highly important
pioneering studies, the ability to activate the meta-C–H bond
of benzoic acids or their derivatives in a general manner via
transition-metal catalysis has been largely unsuccessful25.
Therefore, a general approach to meta-C–H functionalization of
benzoic acids or their derivatives regardless of the substitution
patterns is highly desirable to provide synthetic short-cuts.

Controlling the site-selectivity of C–H activation reactions
is an outstanding challenge in the development syntheticially
useful C–H functinalization methodology26–27. So far only a
limited number of approaches are available for addressing
meta-C–H functionalizations of arenes28–63. These approaches
include inherent substrate control via steric and/or electronic
factors28–35, chelating group-assisted Cu(II)-catalysed arylation36–37,
ruthenium(II) complex facilitated meta-C–H functionalizations38–43,

the use of transient norbornene mediator44–45 and formal meta-C–H
functionalizations utilizing traceless directing groups46–51. Another
unique method is the use of nitrile-based templates for meta-C–H
functionalizations of electron-rich arenes, such as hydrocinnamic
acids and phenylacetic acids, which was pioneered by the group
of Yu54–63. However, chelation-assisted meta-C–H activation of
electron-poor arenes such as benzoic acid derivatives remains a
formidable challenge, possibly due to the low reactivity of the
electron-poor arenes towards palladation in this type of C–H
activation.

Herein, we disclose our discovery of a recyclable nitrile-based
sulfonamide template that promotes the olefination and acetox-
ylation of meta-C–H bonds of a broad range of benzoic acid
derivatives (Fig. 1b). Notably, a protocol is developed that enables
the use of environmentally benign molecular oxygen as the
terminal oxidant for chelation-assisted meta-C–H olefination,
which previously required the use of costly silver salt oxidants.

Results
Development of meta-C–H olefination reaction conditions. As
benzoic acids are both electronically and structurally distinct
from other electron-rich arenes that undergo template-assisted
meta-C–H functinalizations, the elaboration of a compatible
template-directing group is required to accommodate their
unique properties. After investigating several newly designed
templates (see Supplementary Table 1 for details), we found
amide 1a bearing a highly electron-withdrawing nosyl group
was the most promising substrate. After 1a was subjected
to the similar reaction conditions that were developed by us for
meta-C–H olefination64–67 of phenylethylamines63, much to our
delight, excellent yields of desired products were obtained with
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Figure 1 | Transition-metal-catalysed meta-C–H functionalizations of benzoic acid derivatives. (a) Previous reports on meta-C–H functionalizations of

limited benzoic acid derivatives. (b) Our design of template for meta-C–H functionalizations of electron-poor benzoic acid derivatives and the highlights of

our work. (c) Representative drugs of benzoic acid derivatives with meta-substituents.
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tiny traces of other olefinated isomers (Table 1, entry 1). To avoid
using the costly silver acetate as the oxidant, we continued to
optimize the reaction conditions to search for a less costly
oxidant. After screening a few inorganic as well as organic
oxidants (entries 2–5), we were very surprised to find Cu(OAc)2,
which might compete with Pd(OAc)2 in coordination with the
weakly coordinating nitrile group, could be used as an effective
oxidant (entry 2). The yield was increased to 72% when the
reaction was run under oxygen atmosphere (entry 6)10,68,69.
Notably, better results were obtained by increasing the loading of
Ac-Gly-OH ligand (entries 7–8), leading to almost full conversion
of the substrate with 60 mol% of the ligand (entry 8). By further
tuning the loading of Cu(OAc)2, the reaction time and
temperature (entries 9–13), the best result was achieved in 48 h
at 90 �C using oxygen as the terminal oxidant with catalytic
amount of Cu(OAc)2 (entry 13). It was found that the reaction
was almost shut down without adding Cu(OAc)2 as co-oxidant
(entry 12). The use of oxygen is notable as all the previous
chelation-assisted meta-C–H olefination reactions required the
use of silver salt as the oxidant54–63. Finally, the reaction
conditions were carefully tuned to improve the mono versus di-
olefination selectivity (see also Supplementary Table 1 for details),
although the two products could be easily separated. Pleasingly,
the use of Formyl-Gly-OH ligand with an inorganic base would
result in good mono versus di-olefination selectivities (entries
14–15)59, albeit in lower overall yield. Interestingly, this selectivity
was switched when no inorganic base was added (entry 16).

Substrate scope of meta-C–H olefination. With the optimized
conditions in hand, we carried out olefinations on a variety of

benzoic acid derivatives, which were easily prepared in one step
from benzoic acids using routine conditions (see Supplementary
Methods for details). It was found that both electron-donating
and electron-withdrawing ortho-substituents were well tolerated
(Fig. 2a, 3b–3e), and a good yield of mono-olefinated product
was obtained with substrate 1b. Di-olefination occurred
predominantly with less hindered amides 1c–1e. Notably, our
method provided a direct access to an aspirin derivative (3e).
The reaction also proceeded smoothly with meta-substituted
substrates (3f–3h). Para-substituted benzamides with
electron-donating methoxy (3i) and methyl (3j) groups as well as
electron-withdrawing fluoro (3k), chloro (3l) and bromo (3m)
groups were all suitable substrates, affording mono-olefinated
products selectively. Interesting, the bromo group (3m) was tol-
erated in our protocol, which is synthetically useful for further
elaborations of the product. It should be noted di-olefination
products with high overall yields could also be produced when
KH2PO4 was used as the base for substrates 1j–1l (see
Supplementary Methods for details). Importantly, the method
was compatible with a range of substrates carrying two sub-
stituents (3n–3w), generally producing high yields of desired
products. It is surprising that tri-substituted substrates were also
able to afford desired products in moderate to high yields
(3x–3z). Such highly substituted patterns were not observed in all
previous transition-metal catalysed meta-C–H functionalizations.
Desired products were also generated with other electron-
deficient olefin-coupling partners (3fa–3fe), although production
of 3fc and 3fd required silver acetate as the oxidant since the
standard conditions only afforded low yields of these two
products. The meta-selectivity was generally excellent, although

Table 1 | Optimization of reaction conditions.

Ns

NC

NO

1a

+ CO2Et

CO2Et
2a (2.0 equiv)

Pd(OAc)2 (10 mol%)
Ligand

Oxidant
HFIP, 80 °C

24 h, Atmosphere
EtO2C

3a

NC

Ns

NO

m' m

Entry Ligand (equiv) Oxidant (equiv) Atmosphere (1 atm) Yield (%; mono/di)

1* Ac-Gly-OH (0.2) AgOAc (3) Air 90 (1.5/1)w

2 Ac-Gly-OH (0.2) Cu(OAc)2 (2) Air 61 (5.8/1)
3 Ac-Gly-OH (0.2) CuBr2 (2) Air —z

4 Ac-Gly-OH (0.2) MnO2 (3) Air 17 (1/—)
5 Ac-Gly-OH (0.2) BQ (2) Air —z

6 Ac-Gly-OH (0.2) Cu(OAc)2 (2) O2 72 (5/1)
7 Ac-Gly-OH (0.4) Cu(OAc)2 (2) O2 83 (2.3/1)
8 Ac-Gly-OH (0.6) Cu(OAc)2 (2) O2 96 (1/1.1)
9 Ac-Gly-OH (0.6) Cu(OAc)2 (1) O2 94 (1.1/1)
10 Ac-Gly-OH (0.6) Cu(OAc)2 (0.5) O2 83 (1/3.6)
11*,,y Ac-Gly-OH (0.6) Cu(OAc)2 (0.2) O2 68 (4.7/1)
12 Ac-Gly-OH (0.6) — O2 12 (1/—)
13 *,,y,,|| Ac-Gly-OH (0.6) Cu(OAc)2 (0.5) O2 92 (1.1/1)w

14z Formyl-Gly-OH (0.6) Cu(OAc)2 (0.2) O2 72 (5/1)w

15# Formyl-Gly-OH (0.6) Cu(OAc)2 (0.2) O2 78 (3.9/1)w

16 Formyl-Gly-OH (0.6) Cu(OAc)2 (0.2) O2 78 (1/3.3)

HFIP, hexafluoro-2-propanol; Ns (nosyl group), 4-nitrobenzenesulfonyl; Gly, glycine; BQ, 1,4-Benzoquinone.
Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), Pd(OAc)2 (10 mol%), Ac-Gly-OH (20–60 mol%), oxidant (0.2–3.0 equiv), HFIP (1 ml), 24 h, 80 �C, air or O2. Yield was determined by 1H NMR with
CH2Br2 as internal standard. (mono/di) denotes the ratio of mono-meta-olefininated and di-(meta,meta’)-olefinated products. The bold ‘entry 13’ represents the optimal conditions for obtaining highest
overall yield. (Note: (a) Although the mono versus di-olefination selectivity is not good, the isolated overall yield is best. (b) Although entry 8 led to higher overall yield, it does not use catalytic amount of
Cu(OAc)2). The bold ‘entry 15’ represents the conditions that result in highest overall yield with relatively good mono versus di-olefination selectivity.
*1a (0.2 mmol scale).
wIsolated yield.
zNo reaction.
yThe reaction was run for 48 h.
||The reaction was run at 90 �C.
zK2HPO4 (0.5 equiv) was added.
#KH2PO4 (0.5 equiv) was added.
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traces of isomers were observed for some substrates. However, it
was hard to assign the peaks of isomers that were only traces from
the crude 1H NMR and thus we did not attempt to calculate the
exact ratios of isomers. Finally, the template-directing group
could be removed and recycled readily with LiOH or K2CO3 in
high yields as shown in Fig. 2b. Moreover, the auxiliary 5 could be
synthesized in multi-gram scale from inexpensive chemicals (see
Supplementary Methods for details).

Meta-C–H acetoxylation. The versatility of our sulfonamide
template with different catalytic cycles was investigated briefly
with meta-acetoxylation of benzoic acid derivatives using the
previously established oxidation conditions (Fig. 3a)70. Although
the acetoxylation was generally less efficient than olefination,
several substrates with different substitution patterns underwent

meta-acetoxylation successfully to give desired products in
moderate to good yields (6a–6za). Moreover, 60% combined
yield of products was obtained when the reaction was performed
in 1.3 mmol scale (6a).

Synthetic elaboration. To demonstrate the utility of our meta-C–H
functionalizations, we attempted further elaboration of the acet-
oxylated product (Fig. 3b). Thus, triflate 7 was prepared in high
yield from 6amono by hydrolysis of the template and the acetoxy
group in one step, which was followed by triflation of
the resulting hydroxyl group. Triflate 7 was then transformed
to a range of synthetically useful substances with well-established
coupling reactions, namely, amination (8), arylation (9), alkyny-
lation (10), cyanation (11) and carbonylation (12), greatly
expanding the application potential of our method.
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Proposed catalytic cycle. On the basis of the above results, a
plausible catalytic cycle is proposed for meta-C–H olefination
(Fig. 4). The complex A is generated by coordination of substrate
1 to a Pd(II) species followed by template-directed insertion of
Pd(II) into the meta-C–H bond of 1. Following coordination of A
with olefin 2, the resulting complex B undergoes 1,2-migratory
insertion to give intermediate C. Product 3 is then afforded by
b-hydride elimination of C. Reductive elimination of hydride D
produces Pd(0), which is reoxidized to Pd(II) by two equivalents
of Cu(II). The resulting Cu(I) is then oxidized by molecular
oxygen to re-enter the catalytic cycle.

Discussion
In summary, a general protocol for meta-C–H bond olefination
of a broad range of benzoic acid derivatives assisted by a nitrile-
based sulfonamide template has been developed. Desired
meta-functionalized products were obtained regardless of
the substitution patterns and steric biases of the substrates.
Notably, the challenging tri-substituted substrates were tolerated,
which was not observed in previous transition-metal catalysed
meta-C–H functionalizations15–63. Importantly, the new protocol
was compatible with molecular oxygen as the terminal oxidant.
Moreover, the sulfonamide template auxiliary could be effi-
ciently removed and recycled under mild conditions. Finally,
the versatility of our template was demonstrated with meta-
C–H acetoxylation, which enabled the access to five synthe-
tically useful major classes of substitents at the meta-position
of benzoic acid derivatives. It is expected that the protocol
disclosed herein will soon inspire the development of more
synthetically useful meta-C–H transformations for benzoic acid
derivatives.

Methods
General methods. For 1H and 13C NMR spectra of compounds in this manuscript
and details of the synthetic procedures, see Supplementary Figs 1–102 and
Supplementary Methods.

General procedure for meta-C–H olefination. To a 50-ml Schlenk sealed tube
(with a Teflon cap) equipped with a magnetic stir bar was charged with amide
1 (0.10 mmol, 1.0 equiv), Pd(OAc)2 (2.3 mg, 0.010 mmol, 10 mol%), Ac-Gly-OH
(20–100 mol%) and Cu(OAc)2 (0.2–1.0 equiv) sequentially. Hexafluoro-2-propanol
(HFIP; 1.0 ml) was added to the mixture along the inside wall of the tube, followed
by the corresponding alkene 2 (2.0 equiv). The reaction tube was capped, then
evacuated briefly under vacuum and charged with O2 (1 atm, balloon, � 3).
The tube was then submerged into a preheated 80 or 90 �C oil bath. The reaction
was stirred for 24–48 h and cooled to room temperature. The crude reaction
mixture was diluted with EtOAc (5 ml) and filtered through a short pad of Celite.
The sealed tube and Celite pad were washed with an additional 20 ml of EtOAc.
The filtrate was concentrated in vacuo, and the resulting residue was purified
by flash silica gel chromatography or preparative thin layer chromatography
using petroleum ether/EtOAc as the eluent. The site selectivity was assigned by
NMR analysis of the product or the hydrolysed product. Full experimental details
and characterization of new compounds can be found in the Supplementary
Methods.

General procedure for meta-C–H acetoxylation. To a 50-ml Schlenk sealed
tube (with a Teflon cap) equipped with a magnetic stir bar was charged with
amide 1 (0.10 mmol, 1.0 equiv), Pd(OAc)2 (2.3 mg, 0.010 mmol, 10 mol%),
Ac-Gly-OH (2.4 mg, 0.020 mmol, 20 mol%) and PhI(OAc)2 (96.6 mg, 0.30 mmol,
3 equiv). HFIP (1.0 ml) was added to the mixture along the inside wall of the
tube, followed by Ac2O (47ml, 5 equiv). The reaction tube was capped, then
evacuated briefly under vacuum and charged with N2 (1 atm, balloon, � 3). The
tube was then submerged into a preheated 90 �C oil bath. The reaction was stirred
for 24 h and cooled to room temperature. The crude reaction mixture was diluted
with EtOAc (5 ml) and filtered through a short pad of Celite. The sealed tube
and Celite pad were washed with an additional 20 ml of EtOAc. The filtrate was
concentrated in vacuo, and the resulting residue was purified by flash silica gel
chromatography using petroleum ether/EtOAc as the eluent. Full experimental
details and characterization of new compounds can be found in the Supplementary
Methods.
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