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Abstract: The Hedgehog (Hh) signaling pathway plays an essential role in the growth, development,
and homeostatis of many tissues in vertebrates and invertebrates. Much of what is known about Hh
signaling is in the context of embryonic development and tumor formation. However, a growing
body of evidence is emerging indicating that Hh signaling is also involved in postnatal processes
such as tissue repair and adult immune responses. To that extent, Hh signaling has also been shown
to be a target for some pathogens that presumably utilize the pathway to control the local infected
environment. In this review, we discuss what is currently known regarding pathogenic interactions
with Hh signaling and speculate on the reasons for this pathway being a target. We also hope to shed
light on the possibility of using small molecule modulators of Hh signaling as effective therapies for
a wider range of human diseases beyond their current use in a limited number of cancers.
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1. Introduction: Basics of the Hedgehog Signaling Pathway and Its Evolutionary Conservation

The Hedgehog (Hh) family of ligands are secreted signaling molecules essential for embryogenesis
and tissue homeostatis in the adult [1–3]. The Hh pathway was originally identified for its
developmental role in patterning the Drosophila embryo, and Hh pathway components have
subsequently been found to be remarkably conserved between invertebrates and vertebrates where
the pathway also plays key roles in several types of cancers, some of which are being treated with
drugs that inhibit signaling [3,4].

The Hh ligand acts as a morphogen to control cellular fates by signaling at narrowly
defined durations and concentrations [1,2]. In the absence of Hh, the primary transcriptional
effector(s)—Cubitus interruptus (Ci) in Drosophila and Gli-2 and Gli-3 in mammals—are tethered to
microtubules in the fly or primary cilia in mammals through a transcription factor inhibitory complex
(TFIC) (Figure 1A). This complex contains kinases responsible for phosphorylation and consequent
partial degradation of Gli/Ci into transcriptional repressors that lack the C-terminal transactivation
domain and nuclear export sequences [1–3]. As these shorter protein sequences retain their N-terminal
nuclear localization signals, they readily enter the nucleus and inhibit expression of a subset of
target genes.

Cells that express the 12-pass transmembrane protein, Patched (ptc), along with coreceptors can
receive the Hh ligand and transduce the signal [1,2]. Hh binding to Ptc initiates a phosphorylation
cascade of the G-protein coupled receptor-like, seven-pass transmembrane domain protein Smoothened
(Smo) resulting in its surface accumulation and a conformational change that is important for triggering
downstream effects (Figure 1B). Although there is some divergence between flies and mammals in
steps that relay Smo activation to downstream components [2,5], the culmination in all species is a
disruption of the TFIC. This leads to the activation of some Hh target genes simply by inhibiting
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repressor formation. However, further activation via Fused in the fly [6–8] or de-repression by Su(fu)
in mammals [9–11] results in the conversion of Gli/Ci into a labile transcription factor that can activate
the full range of targets.
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Figure 1. Schematic illustration of Hh signaling and how pathogens may modify pathway activity. 
(A) In the absence of Hh ligand, the receptor Ptch inhibits Smo activation. Ci/Gli is retained in the 
cytoplasm tethered to microtubules (in flies) or primary cilia (in mammals) through a complex of 
several proteins, simplistically termed here as “transcription factor inhibitory complex” (TFIC). This 
complex promotes Ci/Gli phosphorylation, which results in partial proteolysis to a repressor form 
that can readily enter the nucleus and repress expression of some Gli targets. (B) When Hh ligand 
binds to Ptch, inhibition upon Smo is relieved and the C-terminus of Smo is phosphorylated which 
promotes the release of Ci/Gli from the TFIC. The activated form of Gli/Ci can enter the nucleus and 
activate expression of Hh targets. Examples of canonical Gli target genes as well as those involved 
specifically in proliferation, immunity, and migration are given. Helicobacter Pylori (H.p.) has been 
proposed to act, in part, by repressing expression of the Hh ligand. Influenza NS1 and HBV X protein 
have been proposed to interact directly with Gli/Ci, but the precise mechanism by which they affect 
transcriptional activity has not been fully elucidated. The diagram also shows the pathway 
components which can be inhibited by FDA-approved small molecules: Vidmodegib and Sonidegib 
inhibit the activity of Smo, whereas arsenic trioxide (ATO) inhibits the activity of Gli1/2. 

One of the key differences between flies and mammals is the redundancy in pathway 
components [2]. Whereas Drosophila has only one Hh ligand and one primary receptor, mammals 
have three ligands (Sonic Hedgehog-Shh, Indian Hedgehog-Ihh, and Desert Hedgehog-Dhh) and two 
primary receptors (Ptch1 and Ptch2). Similarly, Drosophila has only one transcriptional effector, Ci, 
which can act as both an activator and repressor, whereas mammals have three, Gli1, Gli2, and Gli3, 
where Gli2 is the primary activator, Gli3 is the primary repressor, and Gli1 is a target gene that acts 
as an activator in a positive feedback loop [12]. There are also differences in how the message is 
relayed from Smo to downstream components. Namely, mammalian cells require intracellular 
transport components housed in primary cilia [13]; this subcellular compartmentalization is not 
required in Drosophila [5]. Regardless of these differences, the method by which canonical Hh signals 
as a morphogen in all systems is understood to be by creating precise balances between repressor 
and activator forms of Gli/Ci, which activate target genes with varying numbers and affinities of 
transcription factor binding sites [14,15]. 

Figure 1. Schematic illustration of Hh signaling and how pathogens may modify pathway activity.
(A) In the absence of Hh ligand, the receptor Ptch inhibits Smo activation. Ci/Gli is retained in the
cytoplasm tethered to microtubules (in flies) or primary cilia (in mammals) through a complex of
several proteins, simplistically termed here as “transcription factor inhibitory complex” (TFIC). This
complex promotes Ci/Gli phosphorylation, which results in partial proteolysis to a repressor form
that can readily enter the nucleus and repress expression of some Gli targets. (B) When Hh ligand
binds to Ptch, inhibition upon Smo is relieved and the C-terminus of Smo is phosphorylated which
promotes the release of Ci/Gli from the TFIC. The activated form of Gli/Ci can enter the nucleus and
activate expression of Hh targets. Examples of canonical Gli target genes as well as those involved
specifically in proliferation, immunity, and migration are given. Helicobacter Pylori (H.p.) has been
proposed to act, in part, by repressing expression of the Hh ligand. Influenza NS1 and HBV X protein
have been proposed to interact directly with Gli/Ci, but the precise mechanism by which they affect
transcriptional activity has not been fully elucidated. The diagram also shows the pathway components
which can be inhibited by FDA-approved small molecules: Vidmodegib and Sonidegib inhibit the
activity of Smo, whereas arsenic trioxide (ATO) inhibits the activity of Gli1/2.

One of the key differences between flies and mammals is the redundancy in pathway
components [2]. Whereas Drosophila has only one Hh ligand and one primary receptor, mammals
have three ligands (Sonic Hedgehog-Shh, Indian Hedgehog-Ihh, and Desert Hedgehog-Dhh) and two
primary receptors (Ptch1 and Ptch2). Similarly, Drosophila has only one transcriptional effector, Ci,
which can act as both an activator and repressor, whereas mammals have three, Gli1, Gli2, and Gli3,
where Gli2 is the primary activator, Gli3 is the primary repressor, and Gli1 is a target gene that acts as an
activator in a positive feedback loop [12]. There are also differences in how the message is relayed from
Smo to downstream components. Namely, mammalian cells require intracellular transport components
housed in primary cilia [13]; this subcellular compartmentalization is not required in Drosophila [5].
Regardless of these differences, the method by which canonical Hh signals as a morphogen in all
systems is understood to be by creating precise balances between repressor and activator forms of
Gli/Ci, which activate target genes with varying numbers and affinities of transcription factor binding
sites [14,15].
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Non-canonical pathways have also been described more recently which are independent of Gli
activity or independent of Hh activation, suggesting that the influence of the Hh pathway on cellular
processes may be far more expansive than originally thought [16]. If this is the case, presumably
regulating this pathway provides a broad target to pathogens, such as viruses, that have a limited
number of genes and effector avenues for controlling the host environment.

2. Hh Signaling as a Target of Pathogens

While much is known about Hh signaling in embryogenesis [12,17], it has been shown, more
recently, that signaling also occurs postnatally in several tissue types such as the skin, lung, gut,
and within the haemopoatic and immune systems [18–25]. A clear role has been established for
this postnatal signaling in maintaining tissue homeostasis, stem cell maintenance, and regulating
haematopoiesis and lymphopoiesis [25–30]. However, more recently, it has also been shown that
Hh signaling is activated in response to encounters with pathogens, wounding, and/or damaging
agents. As the body of evidence supporting Hh signaling in these latter processes grows, perhaps
unsurprisingly, so does the data demonstrating the Hh pathway as a target of several pathogens.
Examples of Hh-interacting pathogens are discussed below.

Hepatitis B and C (HBV and HCV, respectively) are major causes of liver cirrhosis and
hepatocellular carcinoma (HCC) worldwide [31]. Initial findings by Pereira et al. showed that livers
from patients with chronic HBV and HCV infection displayed an increase in hepatocyte production
of Hh ligands and an accumulation of Hh-responsive cells with higher levels of pathway activity
correlating to more dire outcomes [32]. Complementary studies further confirmed that treatment of
liver cells in vitro with the whole HBV replicon or with serum from HCV-infected patients increased
expression of Hh targets in a Gli-dependent manner [33,34] and led to pro-fibrotic effects [33]. In the
case of HBV, the viral protein causing this effect was revealed to be HBV X (Figure 1B) which increases
Gli1 protein stability and promotes nuclear accumulation, an interaction shown likely to be direct
through a series of in vitro binding assays [34–36]. While the precise motive by which these viral
activities promote infections remains unclear, Choi et al. showed that increasing Hh signaling in liver
cells promoted permissiveness for HCV replication, implying the presence of a positive feedback loop
between pathway activation and viral production [37].

Hh target genes are also increased in Epstein–Barr virus (EBV)-derived nasopharyngeal carcinoma
(NPC) tissue, NPC-derived cell lines, and in EBV infected epithelial cells, in vitro [38]. Further
mechanistic studies revealed that the EBV-dependent increase in Gli1 expression correlated to a
decrease in expression of Human Leukocyte Antigen, which is involved in presentation of viral antigens
to cytotoxic T cells, which may limit the recognition of EBV by the immune system [39]. Hh activity is
also upregulated in mice kidneys afflicted with HIV-associated nephropathy and in a human podocyte
cell line infected with HIV [40]. This increase was associated with enhanced expression of proliferation
and migration markers, loss of kidney filtration barrier function, and increased permeability, which
could presumably augment viral dissemination and decrease host defenses, among other effects.

Helicobacter Pylori (H.p.) is a gram-negative bacterium found in the stomach and is the major
cause of chronic atrophic gastritis and gastric cancer worldwide [41,42]. During the early stages of H.p.
infection, Hh was shown to be upregulated in HCl-secreting parietal cells in an in vivo mouse infection
model and in epithelial cell cultures grown in vitro from whole dissociated gastric glands [43–45]. This
upregulation of signaling appeared to be due, in part, to the inflammation/repair response as this
promoted macrophage recruitment to the infected area and was dependent upon NFkB induction.
Prolonged exposure of H.p., however, resulted in a decrease of Hh expression in the gastric epithelium
and an associated loss of parietal cells in the gastric gland in Mongolian gerbils, an established
animal model for H. pylori infection, and in patients with H.p.-dependent chronic gastritis analyzed
postmortem [46,47]. Eradication of H.p. infection could often restore Hh expression and frequently
reversed tumor transformations [48–51]. This decrease of Hh signaling over the course of H.p. infection
is partially in response to macrophage secretion of regulatory cytokines [43]. However, it has been also
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been proposed that H.p.-dependent upregulation of caudal-type homeobox 2 (CXD2), a protein that
can bind directly to the promotor of Shh, is responsible for repressing expression, suggesting that this
may be an evolved mechanism for regulating Hh pathway activity [52–54].

More recently, we reported that the Hh signaling pathway is also a direct target of the influenza A
virus, linking pathway activation to the pathology of the virus [55]. This observation was originally
made using Drosophila melanogaster as a model organism to screen for cell non-autonomous activities
of disease genes and also an organism where Hh signaling has been shown recently to be linked to
innate immunity [56–60].

In larval wing precursors (Figure 2A) expressing the influenza gene Nonstructural protein 1 (NS1),
we detected a dramatic increase in expression of the Hh target gene, decapentaplegic (dpp) (Figure 2B),
as well as the Dpp target, pMad, and a corresponding increase in distance between the adult wing
veins L3 and L4, phenotypes indicative of increased Hh signaling [55,61,62]. Expression of BMP2,
the mammalian homologue of dpp, and the Hh target, Ptch1, was also enhanced cell-autonomously in
infected mouse lungs, indicating that the effect of NS1 on Hh signaling is conserved between species
(Figure 2C,D) [55]. As NS1 is one of 14 proteins encoded by the influenza A virus whose main role is as
a virulence factor to interact with host proteins to promote viral growth and maturation, it is perhaps
expected that this protein may have evolved to exploit a conserved signaling pathway [63–65].
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disrupt the Hh-dependent activity of NS1. A point mutation was recovered resulting in an alanine to 
valine substitution at position 122 that reduced this activity in flies and in transfected cells [55]. 
Interestingly, however, when the A122V mutation was incorporated into a mouse-adapted influenza 
A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung and 
significantly hastened lethality. These results indicate that, in addition to its multiple intracellular 
functions, NS1 plays a vital role in activating—but at the same time, mitigating—the activity of a 
highly conserved signaling pathway during infection. Interestingly, no mutation at position 122 of 
NS1 has been identified previously in any influenza strain, which may reflect the critical role of NS1 
in restraining signaling in order to protect the host. This muting of Hh signaling may be utilized to 
dampen deleterious effects that could be caused by Hh signaling (discussed below) to ensure optimal 
viral maturation prior to dissemination.  

The precise mechanism by which Hepatitis viruses, HIV, EBV, and H.p. interact with Hh 
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Figure 2. Influenza NS1 increases Hh target gene expression in Drosophila and mice. (A) Schematic
diagram of a Drosophila wing imaginal disc with the anterior/posterior (A/P) border, the domain
where Hh signaling is active, demarcated in red. The dashed box represents the area of the disc that
was imaged in B. (B) Influenza NS1, expressed from a transgene in the wing imaginal disc, increases
expression of the Hh target gene reporter, dpp-lacZ, at the A/P border compared with a disc with no
transgene (no tg). (C,D) Infected mouse lungs show a cell-autonomous increase in expression of the
Hh targets, BMP2 (C) and Ptch1 (D) compared with uninfected lungs. Target proteins are in green,
NS1 is in red.

Using Drosophila, a forward genetic screen was performed to identify point mutations that
might disrupt the Hh-dependent activity of NS1. A point mutation was recovered resulting in an
alanine to valine substitution at position 122 that reduced this activity in flies and in transfected
cells [55]. Interestingly, however, when the A122V mutation was incorporated into a mouse-adapted
influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung
and significantly hastened lethality. These results indicate that, in addition to its multiple intracellular
functions, NS1 plays a vital role in activating—but at the same time, mitigating—the activity of a
highly conserved signaling pathway during infection. Interestingly, no mutation at position 122 of
NS1 has been identified previously in any influenza strain, which may reflect the critical role of NS1
in restraining signaling in order to protect the host. This muting of Hh signaling may be utilized to
dampen deleterious effects that could be caused by Hh signaling (discussed below) to ensure optimal
viral maturation prior to dissemination.

The precise mechanism by which Hepatitis viruses, HIV, EBV, and H.p. interact with Hh signaling
has not been completely elucidated, however, all interactions and often the deleterious effects could be
blocked by eliminating Gli [34,39,66] and/or by blocking Hh signaling with potent inhibitors [33,35,38,40].
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Similarly, in flies, NS1-dependent pathway activation was blocked by over-expressing the receptor
Ptc (which recruits Hh ligand and prevents it from dissipating to other cells), an RNA interference
(RNAi) molecule directed to Ci, or other factors with inhibitory roles in signal transduction [55].
Likewise, constitutively activating signaling using a phosphomimetic form of Smoothened promoted
activity. Thus, similar to other viruses, influenza NS1 requires pathway activation to upregulate Hh
target genes.

The mechanism by which NS1 modulates Hh signaling was analyzed using the extensive array of
genetic and molecular tools available when using Drosophila as a model organism to study disease
genes. For example, a series of genetic epistasis experiments and quantitative imaging experiments
using Förster resonance energy transfer-Fluorecence lifetime imaging (FRET-FLIM) assays revealed
that NS1 interacts directly with the transcriptional mediator, Ci/Gli1, parroting the HBV X/Gli1
interaction [36,55]. Furthermore, this analysis showed that the A122V mutation significantly impeded
this interaction. Importantly, pathway activity was not required simply to stabilize the full-length form
of Ci and eliminate repressor formation, but additional pathway components with positive roles in
signaling were also required for NS1 activity. Taken together, these data suggest that viral proteins
likely do not activate the Hh pathway or expression of target genes themselves directly, but rather that
Hh signaling is first activated by canonical signaling and then a viral interaction intervenes to alter the
readout of the pathway activity. How Hh signaling is initially activated during infection remains an
intriguing question.

3. Why Might Hh Signaling Be a Frequent Target for Pathogens?

To ensure efficient use of their genomes, pathogenic interactions are usually established with
more centrally connected host proteins so that several processes may be targeted concomitantly. These
virulence factors constantly evolve their interface residues, either to evade or to optimize their binding
capabilities to host proteins [67]. Thus, some viruses may have evolved the ability to modulate Hh
signaling due to its substantial involvement in several processes such as wound healing and the role it
plays in immunity.

3.1. Hh Signaling Modulates Wound Repair and Tissue Fibrosis

As Hh signaling has significant roles in tissue homeostasis and remodeling, we speculated that
Hh signaling may be activated as a part of a defense mechanism during infection to promote tissue
repair (Figure 3). Indeed, a firm role for Hh signaling in wound repair has been established in several
cells types such as the lung, skin, and pancreas where damaged areas correlate with Hh activation.

In the lung, acute activation of Shh signaling in epithelial cells was observed upon naphthalene
injury, which was strikingly similar to the activation observed during prenatal development [68].
Shh is also upregulated in lung homogenates during hyperoxia-induced injury and recovery [69]
and bleomycin administration [70], as well as around damaged airways in lungs chronically exposed
to fluorescein isothiocyanate (FITC) [22,71].

In the skin, Asai et al. found that Ptch1 expression is upregulated in wounds in mice and
that in vitro stimulation of cultured skin cells with Hh ligand promoted production of angiogenic
signals, increased proliferation of fibroblasts, and increased migration, adhesion, and tube formation of
endothelial progenitor cells to aid in wound closure [72]. Furthermore, topical gene therapy treatment
on wounds using DNA encoding Shh accelerated wound recovery, while commensurate studies
showed that wound closure, vascularization, and proliferation were inhibited at wound sites by
intraperitoneally injected cylopamine, a potent Smoothened antagonist [21,72–74].

Similarly, Shh signaling in pancreatic fibroblasts is required for tissue repair during the onset of
pancreatic cancer and pancreatitis due to a mutation in the proto-oncogene, K-ras, as a deletion of one
allele of Gli1 or mice lacking expression of Shh in the pancreatic epithelium significantly impaired
tissue remodeling and cytokine expression in this model [75]. This study also confirmed the presence
of Ptch1 on the surface of several immune components including peripheral T cells, suggesting that Hh
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ligand secreted from the damaged areas can activate the local immune network to work simultaneously
to repair the tissue. Interestingly, Gli1 also plays a key role in pancreatic tumorigenesis by enhancing
expression and activation of Signal transducer and activator of transcription 3 (STAT3) by direct
and Hh-dependent upregulation of IL-6 expression [76]. Therefore, a positive feedback loop exists
whereby Hh signaling helps initiates tumor formation which, in turn, triggers Hh signaling to assist in
tissue repair.
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that cause damage to the host tissue promote activation of Hh signaling due to the key roles it plays
in repair processes and immunity (green boxes). If not regulated properly, these cellular processes
can cause fibrosis and an imbalanced immune response, respectively (red boxes). Pathogens, such as
Influenza, EBV, HBC, HCV, HIV, and H.p., have been shown to directly modulate pathway activity
once signaling is activated and may do so in order to exacerbate or restrain these detrimental outcomes.

Where repair processes fall short, however, tissue fibrosis can occur, marked by the formation of
detrimental scar tissue. Perhaps not surprisingly, there is also a strong link between tissue fibrosis and
Hh signaling in several tissues inflicted with chronic ailments, primarily driven by the Hh-dependent
activation of epithelial to mesenchymal transition of cells and the resultant excessive extracellular matrix
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deposition [77]. Pulmonary fibrotic diseases such as idiopathic pulmonary fibrosis (IPF) [78,79], interstitial
lung disease [80–82], and usual and nonspecific interstitial pneumonia [83] are all characterized by
expression of Shh and Ptch1 in areas of fibrosis. Additionally, Gli1nlacZ/+ mice show an increased
number of Hh-responsive cells in bleomycin-induced fibrosis where overexpression of Shh can further
augment damage [84].

Hh ligand secreted by liver cells in response to damage causes cellular differentiation of fibroblasts
and myofibroblasts which are critical for normal liver regeneration [37,85,86]. However, similarly to the
lung, excessive signaling leads to fibrosis, which can cause cirrhosis and HCC if not controlled [37,87].
Syn et al. demonstrated that Hh upregulates expression of osteopontin (OPN), a cytokine involved in
wound healing, in a Nonalcoholic Steathohepatitis-related liver fibrosis, where a reduction in either
Hh signaling or OPN reduced fibrogenesis [88]. This was postulated to be through a direct interaction
between Gli and Gli-binding sites in the OPN promotor [89]. Moreover, HBV and HCV infections are
leading causes of liver fibrosis which is likely mediated through Hh-signaling enhancement (the role
of Hh signaling in HBV and HCV pathogenesis is discussed above) [32,33,35].

Hh ligand and target genes, including those involved in extracellular matrix (ECM) production,
have also been shown to be upregulated in a mouse model of renal fibrosis following injury where
protection was provided by cyclopamine treatment or by deficiency in Gli1 [90,91]. Similarly, transgenic
zebrafish over-expressing Hh ligands developed pancreatic fibrosis, and pathway components are
found upregulated in patients suffering from pancreatitis [92,93]. Correspondingly, Hh-mediated
expression of ECM genes were also upregulated in cultured renal cells and in culture-activated
pancreatic stellate, both of which showed augmented proliferation and/or migration [91,94].

These data clearly establish the role of Hh signaling in tissue repair processes where unstrained
signaling can cause harmful fibrotic outcomes. This aligns with a model in which pathogen-dependent
tissue damage causes a Hh-mediated repair response (Figure 3). Some viruses may augment this
already active signal to promote irreparable fibrotic damage to ensure viral spread. However,
Hh activation at sub-maximal capacity, such as what appears to occur during influenza and in
late-stage H.p. infection, may limit formation of fibrotic tissue which may also benefit the pathogen by
increasing the time allotted for replication, maturation, and/or dissemination while, at the same time,
also maintaining an ample pool of viable hosts available for reinfection.

3.2. Hh Signaling Involved in Immune Pathways and Immune Diseases

The Hh pathway also has postnatal roles in defining the immune response which is conserved
from flies to humans, although the relevant signaling output and how it is applied as a defense
mechanism differs between vertebrates and invertebrates. In a study conducted in Drosophila by
Lee et al., Hedgehog signaling was found to be required as a first line of defense against harmful
uracil-secreting pathogens in the gut by triggering the production of microbicidal reactive oxygen species
(ROS) [60,95,96]. Flies expressing RNAis directed to several canonical Hh pathway components showed
reduced ROS production upon bacterial infection and a consequent higher mortality rate. Exogenous
expression of the Hh target gene, Cadherin 99C (Cad99C), however, could rescue this phenotype,
and subsequent experiments determined that Cad99C-dependent formation of signaling endosomes
stimulated the enzyme, dual oxidase (DUOX), to produce ROS in response to uracil detection.

In mammals, Hh signaling takes a multipronged approach in regulating the immune system
by controlling several T-cell features such as differentiation, proliferation, and activity [97,98].
Shh ligands, secreted from thymic epithelial cells to T-cell progenitors, influence cell lineage and
proliferation [97]. Pro-thymocytes undergoing a series of differentiation stages ultimately mature
into either helper or cytotoxic T cells defined by the expression of the cell-surface markers, CD4 or
CD8, respectively [99]. During this process, thymocytes progress from double-negative (DN) to
double-positive (DP) expressing markers, with several intermediate steps in between classified by
CD25 and CD44 expression profiles, then on to mature single-positive cells that can then exit the
thymus to the bloodstream [100]. Throughout this process, T-cell receptor maturation and selection
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is occurring via gene rearrangement such that a diverse array of receptors are produced that can
recognize foreign peptides [101].

Analysis of thymocyte phenotypes in mouse mutants of Hh pathway components show that Hh
signaling is important for regulating T-cell proliferation rates, determining the final differentiation
step between CD4 vs. CD8, controlling various steps throughout the conversion process of double
negative cells to single positive cell, as well as modulating the strength of T-cell receptor (TCR)
signaling to influence TCR repertoire selection [27–29,102,103]. Additionally, Ihh expression directly in
developing DP T-cells themselves is critical for negatively regulating proliferation and differentiation
of thymocytes at earlier stages in the developmental process [104]. Ihh is also expressed directly in
mature CD8 T-cells and, through an autocrine manner of signaling, is involved in regulating activity
by controlling immunological synapse formation and mediating target cell lysis [98]. Thus, both
positive [27,80,81,98,103,104] and negative [28,29,104] roles for Hh signaling have been described for
these processes, suggesting that there may be a narrow range of signaling that is optimal for proper
T-cell maturation andactivity and for generating proportional representation of subpopulations.

Direct induction of cytokine expression—secreted factors of immune cells that have an effect
on other cells—is another capability of Hh signaling. Peripheral CD4 T-cells retain expression of Hh
pathway components and can respond to Hh signaling following TCR-activation [80,81]. Hh signaling
can induce clonal expansion of this cell population by enhancing expression of cytokines, such as
IL-2, IL-10, and IFNγ, which promote entry into the S-G2 phase of the cell cycle. Additionally, human
macrophages stimulated in vitro with recombinant Shh respond by upregulating expression of some
cytokines and chemokines, such as IL-6, IL-8, MCP-1, and IL-10, whereas expression of others was
reduced in a conditional Hh KO H.p. infection model [105,106]. Shh also induces expression of the
pro-fibrotic cytokines, IL-13 and IL-4, in natural killer T-cells during liver fibrosis [107–109].

Consistent with Hh controlling immune cell proliferation and cytokine induction, some
auto-immune disorders [110–113] and leukemias [114,115] have been associated with aberrant pathway
activation. Allergic asthma is an example of an autoimmune condition where the pathophysiology
of the disease is connected to an erroneous immune reaction to aeroallergen inhalation [116]. This
disease has been directly linked to Shh production in a murine model where pathway activation
results in an over-abundance of conversion of naïve T cells to Thelper 2 (Th2) cells [110]. This occurs
through a Hh-dependent upregulation of several target genes that specify Th2 cells’ fates such as
the cytokines, IL-4 and IL-1rl1 [30,110]. Thus, while Th2 cells are important for protection against
extracellular parasites and tissue remodeling upon damage, they are also involved in the pathogenesis
of some allergic and inflammatory diseases [117].

Similarly, influenza infection strongly induced expression of cytokines CXCL-10 and IL6, the latter
at least partially by a direct, cell-autonomous interaction between Hh signaling and NS1 [55].
Interestingly, IL6 (along with other Hh target genes discussed above) was present at comparatively
higher levels in animals infected with the more pathogenic virus carrying the A122V point mutation in
NS1, thus we speculate that the hastened lethality caused by the mutant virus may be due, in part, to a
Hh-dependent over-production of cytokines (often called cytokine storms), which have been thought
to be the cause of past influenza pandemics [118].

Collectively, these studies indicate that select populations of immune cells are primed to respond
to the Hh signal, often resulting in proliferation and an upregulation of a subset of cytokines. Increasing
Hh signaling, as occurs in certain tissues during HBV, HCV, EBV, and HIV infection, may help the virus
evade the immune response by disrupting the balance of immune components available to extract the
infection (Figure 3). In contrast, limiting full pathway activation, as occurs during influenza infection,
may suppress the immune response to evade it and/or protect the host from detrimental outcomes,
such as cytokine storms [75,76,97].
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4. Therapeutic Strategies

Small molecule modulators of Hh signaling have been used in basic research for several years
now to detect links between signaling and specific phenotypes of interest. Currently, CDC-0449
(Vismodegib) and LDE225 (Sonidegib), both Smoothened inhibitors, and arsenic trioxide (ATO),
a Gli1/2 inhibitor, have been approved by the Food and Drug Administration (FDA) to treat basal
cell carcinoma (BCC) and certain leukemias, respectively, whereas many others are still in clinical
trials (Figure 1B) [3,119,120]. The idea that these approved and yet-to-be-approved molecules might
be repurposed to have therapeutic value in humans beyond certain types of cancers is certainly worth
exploring [24].

Treatment both in vivo and in vitro with Vismodegib or the Gli inhibitors, Gant-58 and Gant-61,
has successfully reversed the detrimental phenotypes caused by several of the ailments mentioned in
this review. For example, Vismodegib reduced liver fibrosis and tumor formation in a mouse model
of fibrosis-associated HCC [121] and ameliorated early liver fibrosis in a rat model of common bile
duct ligation [122]. Vismodegib also reduced the growth of HBV X-expressing tumor xenografts in
nude mice and HCC formation in transgenic mice expressing the HBV X protein [35]. Similarly, Gli
inhibitors reduced the pro-fibrotic effects and autophagy inhibition in HCV-exposed fibroblasts [33],
reduced tumor-sphere formation in several EBV-infected cell lines [38], and decreased the proliferation
of Human Papilloma Virus-derived cervical cancer cells [123]. Likewise, ATO was shown to inhibit
tumor growth in several types of cancers in both in vitro and in vivo models [124–129].

Thus, it stands to reason that therapeutic uses of FDA-approved molecules that inhibit Hh
signaling may be expanded for use as potent inhibitors to treat several pathogenic infections. In contrast
to the currently available therapies, such as vaccines and antivirals, which target strain-specific and
rapidly-mutating viral proteins, treatments that target highly-conserved host targets may ultimately
provide superior and continual protection across a broader spectrum of strains.

Interestingly, HIV-infected cells and tissues appear to be responsive to treatment with both
Hh antagonists and agonists—the former directed to infected cells, the latter directed to the local
uninfected environment. In the former case, Gli inhibitors were shown to decrease HIV-dependent
proliferation and migration of mouse kidney podocytes in vitro [40]. In the latter case, treatment
of humanized mice with a Smoothened Agonist reduced leukocyte infiltration into the brain by
fortifying the blood–brain barrier, thus limiting the viral niche [130,131]. These differences illustrate
a circumstance in which the location of the infection (kidney vs brain) can be controlled through
contrasting Hh-modulating mechanisms.

These HIV studies reinforce the importance of carefully selecting a relevant treatment since the
cellular processes regulated by this signaling pathway are expansive and unforeseeably complex. This
may require a combinatorial approach in which several drugs are targeted to different Hh-dependent
processes, which may further strengthen or reduce signaling in a context-dependent fashion. This
may be possible by using a combination of drugs that target pathway components with both positive
and negative roles in signaling. Additionally, defining the precise mechanism in which viral factors
interact with the pathway would, no doubt, restrict the search for useful drugs.

5. Summary

The Hh signaling pathway has emerged as a target of several pathogens in recent years, where
cases of both pathogen-dependent increases and decreases in pathway activity have been observed.
These changes in signaling correlate to an exacerbated detriment to the host and sometimes also as
protection, as in the case of influenza. We speculate that the key postnatal roles that Hh signaling plays
in wound repair and the immune response are critical features that would be appealing for pathogenic
control. Potential new therapies involving Hh inhibitory and stimulatory compounds that disrupt or
reverse these interactions could derive from these findings and suggest an important new avenue for
further investigation.
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