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Recent large-scale neuroimaging studies suggest that most parts of the human
brain show structural differences between the left and the right hemisphere. Such
structural hemispheric asymmetries have been reported for both cortical and subcortical
structures. Interestingly, many neurodevelopmental and psychiatric disorders have
been associated with altered functional hemispheric asymmetries. However, findings
concerning the relation between structural hemispheric asymmetries and disorders
have largely been inconsistent, both within specific disorders as well as between
disorders. In the present review, we compare structural asymmetries from a clinical
neuroscience perspective across different disorders. We focus especially on recent
large-scale neuroimaging studies, to concentrate on replicable effects. With the notable
exception of major depressive disorder, all reviewed disorders were associated with
distinct patterns of alterations in structural hemispheric asymmetries. While autism
spectrum disorder was associated with altered structural hemispheric asymmetries in
a broader range of brain areas, most other disorders were linked to more specific
alterations in brain areas related to cognitive functions that have been associated with
the symptomology of these disorders. The implications of these findings are highlighted
in the context of transdiagnostic approaches to psychopathology.

Keywords: brain structure, laterality, hemispheric asymmetry, psychopathology, mental health, clinical
neuroscience

INTRODUCTION

Large parts of the human brain show structural differences between the left and the right
hemisphere (Güntürkün and Ocklenburg, 2017; Esteves et al., 2020; Güntürkün et al., 2020). In
general, three forms of structural hemispheric asymmetries can be distinguished: macrostructural
asymmetries such as asymmetries in volume or surface of specific areas in the brain, microstructural
asymmetries such as asymmetries in neurite structure, and asymmetries in gene expression
(Amunts, 2010). All three forms of structural hemispheric asymmetries can be investigated in both

Abbreviations: ADHD, attention deficit hyperactivity disorder; ALE, activation likelihood estimation; ASD, autism
spectrum disorders; DTI, diffusion tensor imaging; FDR, false discovery rate; MDD, major depressive disorder; NODDI,
neurite orientation dispersion and density imaging; OCD, obsessive–compulsive disorder; PTSD, posttraumatic stress
disorder; RDoC, Research Domain Criteria; TBSS, tract-based spatial statistics.
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the gray and the white matter of the brain (Hugdahl and
Westerhausen, 2010; Ocklenburg et al., 2016a).

Regarding macrostructural asymmetries in gray matter, a
recent large-scale study by the ENIGMA consortium analyzed
asymmetries in thickness and surface area of cortical brain areas
based on MRI scans of 17,141 healthy volunteers (Kong et al.,
2018). The authors identified significant structural asymmetries
both on the global and the local level. While the cortex
was thicker in the left hemisphere, it had a larger surface
in the right hemisphere. On the local level, 24 out of 34
areas (76.5%) showed significant hemispheric asymmetries for
cortical thickness, with a significant leftward asymmetry more
common in anterior regions. In contrast, a significant rightward
asymmetry was more commonly observed in posterior regions.
For surface area, 31 out of 34 brain areas (91.1%) showed
significant asymmetries. Here, no clear anterior-posterior pattern
was observed, but the largest leftward asymmetries were observed
for language-relevant brain areas. These findings clearly show
that structural hemispheric asymmetries are the rule, rather than
the exception, for the structural organization of cortical brain
areas. Similar findings have also been reported for subcortical
brain structures. A recent large-scale multi-site study (Guadalupe
et al., 2017) assessed asymmetries in the volume of seven
subcortical structures (nucleus accumbens, amygdala, caudate
nucleus, globus pallidus, hippocampus, putamen, and thalamus)
based on 15,847 MRI scans. All seven structures showed
significant structural lateralization.

These findings are not only interesting from a basic
neuroscience point of view, but also in the context of clinical
neuroscience (Malatesta et al., 2021; Mundorf and Ocklenburg,
2021). Indeed, several neurodevelopmental and psychiatric
disorders such as dyslexia (Woodhead et al., 2021), schizophrenia
(Ocklenburg et al., 2013), ASD (Floris and Howells, 2018),
and ADHD (Alperin et al., 2019) have been linked to
altered functional as well as structural hemispheric asymmetries
(Mundorf and Ocklenburg, 2021).

Why are alterations of structural brain asymmetries and
psychopathology linked? One possibility may be that variation
in genes associated with mental illness is also associated with
structural asymmetries in the brain. It is conceivable that genes
involved in both basic brain development and specific cognitive
systems linked to disorders may be relevant here. A recent study
investigated the genetic architecture of structural asymmetries
in surface area and thickness of cortical structures, as well as in
volume of subcortical structures in the United Kingdom Biobank
dataset (Sha et al., 2021). Twenty-one genetic loci were found
to be significantly associated with different aspects of structural
asymmetries. Functional enrichment analysis revealed that genes
related to microtubules, a group of polymers involved in building
the cytoskeleton, and genes expressed in the embryonic brain
were particularly relevant. Importantly, the genetic variants
associated with structural symmetries in the brain overlapped
with genetic variants that had been associated with ASD and
schizophrenia in previous studies. Moreover, stress, as one of
the major transdiagnostic environmental influence factors for
mental illness (Demetriou et al., 2021), has been implicated in the
ontogenesis of hemispheric asymmetries (Berretz et al., 2020).

THE RELATION OF STRUCTURAL
HEMISPHERIC ASYMMETRIES AND
NEURODEVELOPMENTAL AND
PSYCHIATRIC DISORDERS

As mentioned above, several neurodevelopmental and psychiatric
disorders have been related to atypical functional and structural
asymmetries (Mundorf and Ocklenburg, 2021). In all cases, this
relationship is relative, not absolute. While patients often show
more atypical asymmetries on average, there still is a considerable
number of patients with typical asymmetries. One of the core
questions regarding this pattern of results is why so many
disorders with widely different symptoms are related to a decrease
of typical hemispheric asymmetries, but almost never an increase
(Mundorf and Ocklenburg, 2021). On a theoretical level, three
different types of associations between structural asymmetries
and psychopathology can be conceived:

Non-specific Association
There are one or more non-specific influence factors that affect
both structural brain asymmetries across the whole brain and the
general risk to develop psychopathology independent of a specific
diagnosis. These factors could functionally be associated with
general processes of early brain and nervous system development.
Alterations of asymmetries should have small effect sizes and be
distributed across the whole brain without any relation to specific
higher cognitive systems. For example, the results of recent large
scale neurogenetic study analyzing the United Kingdom Biobank
data suggested that genetic variants associated with gray matter
brain asymmetry overlapped with genetic variants associated
with autism and schizophrenia (Sha et al., 2021). As other
studies reported direct genetic overlap between schizophrenia
and autism (Morimoto et al., 2021), these findings may be
indicative of a non-specific association.

Diagnosis-Specific Association
There are no non-specific influence factors that influence both
structural asymmetries and psychopathology. Instead, several
specific influence factors affect both structural asymmetries and
the risk for a specific disorder. These factors would also be
functionally specific, i.e., related to neural networks linked to
a specific disorder, e.g., to networks underlying language in
language-related disorders such as dyslexia (Pinel et al., 2012).

Symptom-Specific Association
There are influence factors related to a symptom group
such as cognitive or affective issues that influence both
structural asymmetries and psychopathology. This symptom
group, however, is independent of a specific diagnosis. This
would be in line with transdiagnostic approaches in clinical
neuroscience such as the RDoC approach (Insel et al., 2010).

Differentiation between these theoretical approaches requires
integration of the results of original studies on structural
asymmetries in different disorders. The first approach suggests
that there is a similar pattern of asymmetry reduction across
different disorders that affects multiple brain areas in a
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diffuse way. The second approach suggests that there are
individual patterns of asymmetry reduction for each disorder,
with little overlap between them. Disorder-related asymmetry
reductions should occur in brain areas related to the typical
symptomatology of the disorders. The third approach suggests
asymmetry reductions in brain areas functionally related to
specific functions, but independent of a diagnosis. For example,
the RDoC framework includes the domain “Cognitive Systems”
(Insel et al., 2010). Different disorders have been related to
cognitive deficits (Sciortino et al., 2021) and could therefore
show similar reductions of hemispheric asymmetries in brain
areas related to cognition such as the prefrontal cortex
(Freund et al., 2021).

Taking these considerations into account, the present review
article aims to give an overview of structural asymmetries in
different disorders and to integrate findings across disorders
to determine which of the three theoretical approaches fits the
existing data the best. To this end, we review the evidence
for alterations in structural asymmetries in the most widely
investigated forms of mental illness.

We have searched the scientific databases PubMed and
Web of Science for published studies focusing on structural
asymmetries in gray and white matter in patients with
neurodevelopmental and psychiatric diagnoses. The following
neurodevelopmental and psychiatric disorders were included:
anxiety and panic disorders, ASD, ADHD, dyslexia, MDD, OCD,
PTSD, schizophrenia, stuttering, substance-related and addictive
disorders. Of note, we will separately discuss studies investigating
multiple disorders. To rely on robust and replicable evidence, we
focus on meta-analyses and large-scale studies.

ANXIETY AND PANIC DISORDERS

Anxiety disorders are mainly characterized by persistent and
excessive fear or anxiety of specific objects or situations. There
are several types of anxiety disorders that differ in anxiety-
inducing objects or situations, e.g., generalized anxiety disorder,
panic disorder, and various phobia-related disorders (American
Psychiatric Association, 2013). Anxiety disorders frequently
manifest in childhood or adolescence and show a chronic-
recurrent course (Kessler et al., 2010). The peak age of onset
for anxiety disorders is 5.5 years (Solmi et al., 2021). The
prevalence varies greatly between the different types, with an
estimated prevalence of 6–12% for specific phobias and 3–
5% for generalized anxiety disorder (Kessler et al., 2010). In a
review analyzing the pooled prevalence for all anxiety disorders,
1-year prevalence was 10.6% and lifetime prevalence 16.6%
(Somers et al., 2006).

Despite this high prevalence, anxiety disorders have not been
the main focus of clinical laterality research, but there are some
meta-analyses and large-scale studies that allow for at least
some indirect conclusions about structural asymmetries. One
meta-analysis comprising eight studies that used voxel-based
morphometry investigated macrostructural gray matter changes
in panic disorder (Wu et al., 2018). The authors found that
patients with panic disorder showed lower gray matter volume in

both left and right dorsomedial prefrontal cortex, left dorsolateral
prefrontal cortex, right insula, right superior temporal gyrus,
right middle temporal gyrus, and right superior orbital frontal
cortex. While the asymmetries were not directly compared
between patients and controls, this pattern of results suggests that
hemispheric asymmetries in these areas except for the bilaterally
affected dorsomedial prefrontal cortex could also be altered in
panic disorder. Concerning functional implications, the authors
suggested that this pattern of results reflects impairment of higher
cognitive functions in panic disorder.

For social anxiety disorder, a multi-center mega-analysis of
voxel-based morphometry data revealed no group differences
between patients and healthy controls in whole-brain analysis,
suggesting that group differences in structural asymmetries may
also be unlikely (Bas-Hoogendam et al., 2017). However, a
small meta-analysis of voxel-based morphometry studies in social
anxiety disorder (Wang et al., 2018) including 11 studies with
470 patients and 522 healthy controls found significant group
differences between patients and controls. Compared to controls,
patients showed larger gray matter volumes in left precuneus,
right middle occipital gyrus, and supplementary motor area, but
smaller gray matter volume in the left putamen. While structural
asymmetries were not assessed directly, these results imply that
asymmetries in these brain areas may also be altered in social
anxiety disorder.

Taken together, more studies directly assessing structural
hemispheric asymmetries in anxiety disorders are needed.
Indirect evidence suggests an inconsistent pattern in social
anxiety disorder that is substantially different from panic
disorders, suggesting diagnosis-specific alterations of structural
asymmetries within the group of anxiety and panic disorders.

AUTISM SPECTRUM DISORDERS

Autism spectrum disorders are a group of developmental
disorders with onset in early childhood. They involve difficulties
in communicating or interacting with other people, repetitive
behaviors, and restricted interests (American Psychiatric
Association, 2013). Children diagnosed with ASD also experience
deficits in social-emotional reciprocity and non-verbal
communicative behaviors. Around 1% of the general population
are affected by ASD, with males diagnosed about four times more
frequently than females (Werling and Geschwind, 2013).

Differences in structural asymmetries in gray matter between
individuals with ASD and controls have been investigated in
several different studies (Knaus et al., 2012; Joseph et al., 2014;
Preslar et al., 2014; Dougherty et al., 2016; Floris et al., 2016;
Richards et al., 2020). Since the results of these studies differed
considerably, we will focus on the largest study on structural
asymmetries conducted so far (Postema et al., 2019). In this
study, conducted by the ENIGMA consortium, 54 independent
datasets with 1774 individuals with ASD and 1809 controls were
analyzed. The authors found a general pattern of reduced cortical
thickness asymmetries in individuals with ASD compared to
controls, no matter whether a specific area showed left- or
right-hemispheric asymmetries. This affected medial frontal,
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orbitofrontal, cingulate, and inferior temporal areas. For cortical
surface, alterations of structural asymmetries were observed for
the orbitofrontal cortex. For subcortical structures, increased
asymmetry of the volume of the putamen was observed in
individuals with ASD. Effect sizes were generally small, indicating
subtle rather than substantial changes in structural asymmetries
in ASD. While some of the brain areas that showed altered
structural asymmetries in ASD were functionally linked to
typical ASD symptoms such as impairment in social-cognitive
processing, others were unrelated to the symptoms associated
with ASD. The authors therefore suggested that altered lateralized
neurodevelopment may be a feature of ASD that affects a
wide range of functionally diverse brain regions. Along these
lines, alterations of structural asymmetries in ASD are likely
linked to both general influence factors and specific influence
factors associated with the impairment of social processes, an
important symptom of ASD.

Importantly, a recent study using the data of the longitudinal
EU-AIMS ASD study (European Autism Interventions -
A Multicentre Study for Developing New Medications)
highlighted the importance of individual symptom complexes
for understanding the link between ASD and structural
asymmetries (Floris et al., 2020). In this study, there was no
clear group pattern of alterations of structural asymmetries in
ASD. Instead, individuals with ASD showed a highly individual
pattern of alterations, with some showing extreme leftward
and others extreme rightward deviations. Notably, language
delay as a symptom explained most of the variance in extreme
rightward patterns. In contrast, core autism symptoms explained
most of the variance in extreme leftward patterns. Importantly,
language is lateralized to the left hemisphere in most individuals
(Hirnstein et al., 2013), while comparative research points toward
right-hemispheric dominance for social processing (Karenina
and Giljov, 2018). Specifically, Karenina and Giljov (2018)
suggested the existence of a right-hemispheric dominance for
social processing through analysis of asymmetries in mother-
offspring positioning in different animal species. Investigating
the link between functional hemispheric asymmetries and
mother-infant positioning during interactions has a long
tradition in human laterality research (Bourne and Todd,
2004) and is still popular today (Packheiser et al., 2019, 2020;
Malatesta et al., 2020b). Importantly, a relation between maternal
cradling asymmetries and typical and atypical development
has been suggested by several studies (Forrester et al., 2019,
2020; Malatesta et al., 2020a,c). Regarding ASD, an absence
of cradling bias has been reported for children with ASD
compared to intellectually disabled and typically developing
children (Pileggi et al., 2015). Taken together, these findings
imply that the structural results by Floris et al. (2020) need
to be understood in the context of functional hemispheric
asymmetries in symptom-relevant cognitive systems such
as language and social cognition. This strongly suggests a
symptom-specific relation between alterations in structural
asymmetries and ASD. In line with this argumentation,
Floris et al. (2020) highlighted the need for symptom-based
dimensional approaches in clinical laterality research, as opposed
to diagnosis-based approaches.

For structural asymmetries in white matter, one study reported
generally reduced asymmetry of white matter microstructure in
ASD (Carper et al., 2016), while two studies reported reduced
leftward asymmetry of the arcuate fasciculus, an important tract
in the language system (Wan et al., 2012; Joseph et al., 2014).
The latter finding mirrors the link between language impairment
in ASD and alterations of structural asymmetries in language-
relevant brain areas suggested by Floris et al. (2020). So far,
no meta-analysis on white matter asymmetries in ASD has
been performed. A general meta-analysis of DTI studies in
ASD revealed reduced microstructural integrity in the corpus
callosum, the left uncinate fasciculus, and the left superior
longitudinal fasciculus (Aoki et al., 2013). These findings are
in line with the idea of long-distance underconnectivity in the
left hemisphere. However, whether or not these findings reflect
changes in white matter asymmetries needs to be investigated
in future studies.

ATTENTION DEFICIT HYPERACTIVITY
DISORDER

Attention deficit hyperactivity disorder is defined as having
difficulties in paying attention and being impulsive and
overactive (American Psychiatric Association, 2013). This
neurodevelopmental disorder usually manifests in childhood but
can persist into adulthood. Approximately 5% of children and
2.5% of adults are affected worldwide (American Psychiatric
Association, 2013). Males are affected twice as likely as females
(Ramtekkar et al., 2010). Research on hemispheric asymmetries
in ADHD has been motivated by the observation that patients
with right-hemispheric lesions often show attentional deficits
(Heilman et al., 1991; Stefanatos and Wasserstein, 2001; Klimkeit
and Bradshaw, 2006). This finding led to the idea that ADHD
might be the result of a specific, right-hemispheric dysfunction
(Heilman et al., 1991).

Most studies on structural gray matter asymmetries in ADHD
focused on the basal ganglia and prefrontal areas since these
brain areas are highly relevant for attentional processing. Several
small studies reported alterations in structural asymmetries of
the basal ganglia (Castellanos et al., 1994, 1996; Schrimsher
et al., 2002; Uhlíkova et al., 2007; Dang et al., 2016; Paclt et al.,
2016; Douglas et al., 2018), but the affected structures and the
directions of asymmetry were inconsistent. Moreover, an absence
of asymmetries in the thickness of the orbitofrontal cortex and
inferior frontal cortex has been reported for ADHD (Shaw et al.,
2009). The largest study on structural gray matter asymmetries
in ADHD was recently performed by the ENIGMA consortium
and included 1,933 individuals with ADHD and 1,829 healthy
controls (Postema et al., 2021). Here, weak empirical evidence
for alterations in basal ganglia asymmetry, but not frontal
asymmetry, emerged. When all age groups (children, adolescents,
and adults) were combined, no effect survived correction for
multiple comparisons. When only adults were analyzed, there
was a significant effect of globus pallidus asymmetry that
survived FDR correction in order to account for multiple testing.
Patients showed decreased leftward asymmetry. The effect size
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was small (Cohen’s d = −0.18). When children or adolescents
were analyzed separately, again no effect survived correction for
multiple comparisons.

Meta-analytical evidence also supports the idea that ADHD
is linked to alterations of structural asymmetries in gray matter.
An early meta-analysis of seven ADHD neuroimaging studies
that did not specifically assess structural asymmetries reported a
significant reduction of regional gray matter in the right putamen
and globus pallidus in ADHD (Ellison-Wright et al., 2008).
A more recent meta-analysis of eight neuroimaging datasets
with an overall sample size of 324 patients with ADHD and
303 controls included lateralization analysis of gray matter
volume (He et al., 2021). The authors reported that 38 (68%) of
the 56 brain regions of interest showed statistically significant
differences between ADHD patients and controls after FDR
correction for multiple comparisons to avoid spurious findings.
The areas for which significant group differences between
patients and controls were observed included the putamen and
globus pallidus, but also several other structures, including the
inferior frontal and orbitofrontal cortex, and structures in the
cerebellum and other parts of the brain. The authors concluded
that ADHD is linked to widespread cortical changes in structural
gray matter asymmetries.

It is not easy to come to clear conclusions from this data
pattern. The often reported finding of alterations in basal ganglia
asymmetry in ADHD suggests that symptom-specific factors
linked to attention are relevant for the association of structural
asymmetries in ADHD. However, the widespread alterations
observed in the study by He et al. (2021) indicate that general
factors influencing basic brain development may also play a role.
It is also unclear why He et al. (2021) found so many significant
associations, while there was only one significant association in
the much larger dataset by Postema et al. (2021), even though
both studies used FDR correction for multiple comparisons.

For structural asymmetries in white matter, results for ADHD
are largely inconclusive. Studies have reported that ADHD is
linked to alterations of asymmetries in the connection between
the basal ganglia and frontal areas (Silk et al., 2016), in the
cingulum, the inferior and superior longitudinal fasciculus, the
cortico-spinal tract (Douglas et al., 2018), and in the posterior
thalamic radiation (Wu et al., 2020). Moreover, ADHD has
been linked to reduced rightward asymmetry in global network
efficiency (Li et al., 2021). However, since none of these effects
were observed in more than one study, more research on
structural white matter asymmetries in ADHD is clearly needed.

DYSLEXIA

Dyslexia is characterized by spelling difficulties, problems in
reading word recognition, reading comprehension, and oral
reading skills as well as by problems in performing tasks that
require reading (Habib and Giraud, 2013). Dyslexia usually
begins in early development and thus is a neurodevelopmental
disorder. Prevalence is between 5 and 17% among school-aged
children (Habib and Giraud, 2013). Since the main symptom
of dyslexia is difficulty in reading despite normal intelligence

(American Psychiatric Association, 2013), it can be assumed that
left-hemispheric language networks in the brain are of direct
relevance for the disorder. Therefore, it comes as no surprise that
several authors have suggested an association between dyslexia
and hemispheric asymmetries. The most prominent model is
probably the highly influential Geschwind–Behan–Galaburda
model (Geschwind and Behan, 1982; Geschwind and Galaburda,
1985a,b,c) which suggests that sex hormones affect hemispheric
asymmetries and the risk to develop different disorders.
However, a systematic investigation of the empirical evidence
for different aspects of this highly complex model concluded
that there is almost no empirical evidence supporting it
(Bryden et al., 1994).

The largest structural gray matter asymmetry in the human
language system has been observed in the planum temporale,
a brain area located posterior to the auditory cortex that
contains Wernicke’s area. In neurotypical individuals, the planum
temporale shows leftward asymmetry on both macro- and
microstructural levels (Ocklenburg et al., 2018). Early descriptive
integration of neuroimaging studies in dyslexia reported that out
of eight analyzed studies, four reported reduced asymmetry of the
planum temporale due to a leftward size reduction in patients
with dyslexia, while one study reported reduced asymmetry
due to a rightward size increase (Shapleske et al., 1999). The
authors concluded that dyslexia is associated with a decrease
in leftward planum temporale asymmetry. A later study also
reported that alterations in planum temporale asymmetry were
related to a family history of dyslexia (Vanderauwera et al.,
2018). Participants with no family risk for dyslexia were found
to have more pronounced leftward asymmetry of the planum
temporale than participants with a family risk for dyslexia. Apart
from the study by Shapleske et al. (1999), no study as yet has
performed meta-analytic integration of gray matter asymmetries
in dyslexia. However, meta-analytic integration of neuroimaging
studies in dyslexia without a focus on asymmetries revealed
reductions of gray matter in left- or right-hemispheric brain
areas that may indicate changes in hemispheric asymmetries
in these areas. One study reported relative reductions of gray
matter bilaterally in temporo-parietal areas and the cerebellum
as well as left-sided in occipito-temporal regions of the cortex
(Linkersdörfer et al., 2012). A more recent meta-analysis showed
that dyslexia was associated with lower gray matter volume
in the left posterior superior sulcus and the left orbitofrontal
gyrus that contains pars orbitalis of Broca’s area (Eckert et al.,
2016). Taken together, these studies suggest that dyslexia is likely
associated with reduced leftward asymmetries of temporal and
potentially also frontal language areas. These findings strongly
support a diagnosis or symptom-based link between structural
asymmetries and dyslexia.

This assumption is further supported by studies on white
matter asymmetries in dyslexia. Meta-analytic integration of nine
DTI studies revealed reduced microstructural integrity in the
left arcuate fasciculus and the left corona radiata (Vandermosten
et al., 2012), both of which are relevant for reading (Lebel et al.,
2019; van der Auwera et al., 2021). Two subsequent studies
confirmed a reduction of leftward structural asymmetry of the
arcuate fasciculus (Vandermosten et al., 2013; Banfi et al., 2019),
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while a third study did not find a significant group difference for
arcuate fasciculus asymmetry (Zhao et al., 2016).

MAJOR DEPRESSIVE DISORDER

Major depressive disorder is among the top 10 leading
causes of disability in adolescents and adults worldwide
(Vos et al., 2015, 2020), with a global prevalence of 6–
18%. This disorder is characterized by loss of pleasure,
motivation, energy, interest, appetite, and libido as well as
disturbed sleep, feeling of worthlessness, reduced self-esteem,
and reduced self-confidence, mostly occurring in so-called
depressive episodes and present for at least 2 weeks (American
Psychiatric Association, 2013). As several core processes that are
disturbed in MDD show hemispheric asymmetries, such as self-
perception and emotional processing, functional hemispheric
asymmetries have been widely investigated in MDD patients
(de Aguiar Neto and Rosa, 2019).

Compared to the large number of published studies
on functional hemispheric asymmetries, only a few articles
on structural hemispheric asymmetries in MDD have been
published. Earlier small-scale studies reported inconsistent
results on alteration of structural gray matter asymmetries in
mood disorders (Kumar et al., 2000; Liu et al., 2016). In
contrast, the largest published study on this topic reported
no differences between MDD patients and controls regarding
thickness and surface asymmetries in cortical gray matter and
subcortical structures (de Kovel et al., 2019). For white matter
asymmetries, we were unable to identify any published studies
that investigated MDD patients.

OBSESSIVE–COMPULSIVE DISORDER

Obsessive–compulsive disorder is marked by the presence
of obsessions (recurrent thoughts, urges, or images) and/or
compulsions (repetitive behaviors or mental acts) in an excessive
or repeated manner, occurring beyond the developmentally
appropriate period of the affected person (American Psychiatric
Association, 2013). The affected person frequently suppresses
the occurring obsessions by performing certain compulsions
(American Psychiatric Association, 2013). The mean age of
onset for OCD is 14.5 years (Solmi et al., 2021), but 25%
of males affected by OCD show an onset before the age of
10 years (American Psychiatric Association, 2013). The disorder
has a 12-month prevalence of 1.1–1.8% (American Psychiatric
Association, 2013).

Obsessive–compulsive disorder has not been a traditional
focus of clinical laterality research, but recently a large-scale
study by the OCD Working Group within the ENIGMA
consortium investigated structural gray matter asymmetries in
OCD in 16 pediatric and 30 adult datasets (Kong et al., 2020).
The authors assessed asymmetries in thickness and surface of
different cortical areas, as well as asymmetries in the volume
of different subcortical structures. In the analysis of the 16
pediatric datasets, significant differences between OCD patients

and controls reflected increased leftward asymmetry of the
thalamus and reduced leftward asymmetry of the pallidum. No
differences between patients and controls were observed in the
analysis of datasets containing data from adult participants. This
suggests that there is no strong relation between OCD diagnosis
and altered structural asymmetries.

For white matter asymmetries in OCD, a recent meta-
analysis of 17 TBSS datasets revealed that OCD patients showed
reductions of white matter integrity in the left orbitofrontal
cortex as well as in the genu of the corpus callosum (Hu et al.,
2020). Interestingly, fractional anisotropy of left orbitofrontal
white matter showed negative correlations with symptom severity
and illness duration. As the orbitofrontal cortex has been
linked to the symptoms that OCD patients experience (Bokor
and Anderson, 2014), this finding is in line with a symptom-
specific link between alterations in white matter structural
asymmetries and OCD.

POSTTRAUMATIC STRESS DISORDER

Posttraumatic stress disorder can occur in individuals who
experienced traumatic events (Bisson et al., 2021). Typical
traumatic events are war, natural disasters, mass catastrophes,
and sexual abuse (Andreasen, 2010). PTSD is characterized by
an ongoing fear-related reaction whenever the individual is re-
experiencing or remembering the traumatic event (American
Psychiatric Association, 2013). PTSD patients typically avoid
situations, people, or memories associated with the event,
and sometimes unwillingly re-experience the event. Moreover,
alterations in cognition and mood concerning the event or
oneself, as well as changes in arousal and reactivity, e.g., angry
outbursts or feeling tense, are typical symptoms (American
Psychiatric Association, 2013). PTSD has a global lifetime
prevalence of approximately 8% and, depending on the country,
a 12-month prevalence varying between 1 and 9% (Atwoli et al.,
2015). Since stress has been suggested as a factor that may
influence both the risk to develop PTSD and the ontogenesis
of hemispheric asymmetries (Berretz et al., 2020), hemispheric
asymmetries in brain structure have been investigated in several
different studies (Ocklenburg et al., 2016b).

On meta-analytical level, earlier studies showed somewhat
contradictory results. While a meta-analysis of 13 studies focused
on the hippocampus reported bilateral, rather than asymmetric,
volume reductions in the hippocampus in PTSD (Smith, 2005), a
more recent whole-brain meta-analysis found volume reduction
in PTSD specifically in the left hippocampus and the left temporal
lobe (Kühn and Gallinat, 2013). Greater volume reduction of
the left compared to the right hippocampus was later confirmed
by two larger PTSD meta-analyses (Li et al., 2014; O’Doherty
et al., 2015), among other study-specific effects. Functionally,
the hippocampus is a key structure in a larger fear learning and
memory network that is highly relevant for the typical symptoms
experienced by PTSD patients (Harnett et al., 2020). This suggests
that a symptom- or diagnosis-based approach is optimally suited
to understand the relation of PTSD and alterations in structural
gray matter asymmetries.
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For white matter, a recent large-scale study by the ENIGMA
consortium reported that PTSD patients compared to controls
showed significantly lower microstructural integrity of the
segment of the corpus callosum that connects the two
hippocampi (Dennis et al., 2019). However, no alterations
of asymmetries in larger intrahemispheric white matter
pathways were described.

SCHIZOPHRENIA

Schizophrenia is one of the most widely investigated psychiatric
disorders in the context of hemispheric asymmetries. With
0.3–0.7% of the global population affected at some point
in their lives (van Os and Kapur, 2009), schizophrenia is
characterized by two main symptom categories: positive and
negative symptoms. Delusion of thought, hallucinations, speech
disorders, and motor problems are positive symptoms. In
contrast, anxiety, social withdrawal, flat affect, odd behavior,
apathy, and self-neglect are defined as negative symptoms
(Elert, 2014). Investigating hemispheric asymmetries has a long
history in schizophrenia research, the main idea being that
left-hemispheric dysfunction could lead to schizophrenia (Lohr
and Caligiuri, 1997). One early theory linking hemispheric
asymmetries and schizophrenia specifically suggested that
temporal lobe epilepsy of “the dominant” hemisphere could lead
to psychosis (Flor-Henry, 1969).

Regarding cortical gray matter asymmetries, two early meta-
analyses found a significant decrease of the typical leftward
asymmetry of the planum temporal in schizophrenia (Shapleske
et al., 1999; Sommer et al., 2001). The meta-analysis by
Sommer et al. (2001) additionally reported reduced asymmetry
of the Sylvian fissure. Importantly, it was shown that individual
decrease of lateralization in the planum temporale correlated
positively with symptom severity (Oertel et al., 2010), suggesting
a direct link between atypical lateralization in this brain structure
and schizophrenia symptoms.

This indicates that symptom-specific factors, for example,
related to the common schizophrenia symptom of auditory
verbal hallucinations (Hugdahl and Sommer, 2018; Bless
et al., 2020), link structural gray matter asymmetries and
schizophrenia. Interestingly, a recent large-scale study on
genetic effects on planum temporale asymmetry in participants
from the United Kingdom Biobank (which were from the
general population) found no significant genetic correlations of
asymmetry in the planum temporale with schizophrenia, ASD, or
ADHS (Carrion-Castillo et al., 2020). This suggests that genetic
factors do not play a large role in the relationship of structural
asymmetries and schizophrenia, but that other influence factors
such as disorder-specific brain plasticity processes may link the
two traits (Bishop, 2013). Interestingly, altered planum temporale
asymmetry has also been implicated in dyslexia (see above),
suggesting an overlap in alterations of structural asymmetries
between these two very divergent disorders. On the subcortical
level, a recent large-scale study on subcortical structural
asymmetries in schizophrenia found leftward asymmetry of
the globus pallidus in patients with schizophrenia that was

absent in controls (Okada et al., 2016). The authors concluded
that this alteration of asymmetry may be functionally linked
to neural networks associated with executive functions (which
are commonly impaired in schizophrenia), including the basal
ganglia and frontal areas.

Regarding white matter asymmetries, two studies found
alterations of asymmetries in the uncinate fasciculus (Kubicki
et al., 2002; Miyata et al., 2012). Moreover, a meta-analysis of
white matter neuroimaging studies in schizophrenia comparing
schizophrenia patients who experienced auditory verbal
hallucinations with healthy controls reported reduced fractional
anisotropy in the left arcuate fasciculus in schizophrenia patients,
albeit without specifically assessing asymmetries (Geoffroy et al.,
2014). Another study focused on white matter asymmetries
found reduced leftward asymmetry of the arcuate fasciculus in
schizophrenia (Abdul-Rahman et al., 2012). Importantly, a very
recent study showed that schizophrenia patients who experience
auditory verbal hallucinations show differences in structural
white matter asymmetries compared to patients who do not
experience auditory verbal hallucinations (Beresniewicz et al.,
2021). The authors found significantly reduced leftward white
matter asymmetries in patients experiencing auditory verbal
hallucinations compared to patients who do not experience
auditory verbal hallucinations in two clusters, both located in
the superior longitudinal fasciculus. The superior longitudinal
fasciculus is a larger pathway connecting frontal and temporal
cortices and contains the arcuate fasciculus (Gonzalez et al.,
2021). Moreover, another recent study showed that schizophrenia
patients experiencing auditory verbal hallucinations had longer
leftward arcuate fasciculus fiber tracks than schizophrenia
patients who do not experience auditory verbal hallucinations
(Falkenberg et al., 2020).

It is reasonable to assume that these findings are related
to a dysfunction of the language network that is especially
prominent in schizophrenia patients who experience auditory
verbal hallucinations. Auditory verbal hallucinations are a
major symptom of schizophrenia, and it has been estimated
that they occur in about 70% of schizophrenia patients
(McCarthy-Jones, 2012; Fuentes-Claramonte et al., 2021).
Auditory verbal hallucinations have been suggested to reflect
aberrant lateralized speech perceptions (Hugdahl et al., 2012).
These findings thus strongly suggest that a symptom-based
approach does reflect the relationship between schizophrenia
and alterations of structural white matter asymmetries better
than a non-specific or a diagnosis-based approach, as has been
suggested for functional language lateralization in schizophrenia
(Ocklenburg et al., 2015).

STUTTERING

Stuttering is defined by disrupted fluency and time patterning
of speech that does not match the individuals’ age (American
Psychiatric Association, 2013). As a neurodevelopmental
disorder, symptom onset usually begins during early
development between 2 and 7 years of age (American Psychiatric
Association, 2013). Even though 70–80% of affected children
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recover during development, stuttering can persist throughout
life with approximately 1% of children and adolescents, and
1% of adults (0.8% men, 0.2% women) affected worldwide
(Neumann et al., 2017).

As stuttering is marked by disrupted speech processes,
hemispheric asymmetries in language-related brain areas have
frequently been the focus of studies in patients suffering from
stuttering. Results were, however, largely inconsistent. For the
planum temporale, two studies reported reduced leftward gray
matter asymmetry in stuttering (Foundas et al., 2001, 2004), while
two more recent studies did not find this association (Cykowski
et al., 2008; Gough et al., 2018). These findings indicate that
the link between stuttering and planum temporale asymmetry
is weak at best. Other studies in small cohorts reported reduced
prefrontal and occipital asymmetries in stuttering (Foundas et al.,
2003), as well as alteration of asymmetries in the caudate nucleus
(Foundas et al., 2013) and brain torque (Mock et al., 2012).

For white matter asymmetries, only one small-scale study
in 10 adults who stuttered and 10 controls has been published
(Jäncke et al., 2004). In this study, individuals who stuttered did
not show a leftward white matter asymmetry in the auditory
cortex that was observed in controls. Moreover, stuttering was
associated with white matter volume increases in several right-
hemispheric structures related to language, but also further
prefrontal and sensorimotor areas. While these findings provide
preliminary evidence for changes in white matter asymmetries
in stuttering, replication in larger cohorts is needed due to the
small sample size in this study. Taken together, new large-scale
studies and, if possible, integration of existing data, e.g., in the
form of voxel-based ALE meta-analysis, is needed before any
final conclusions on alterations of structural asymmetries in
stuttering can be drawn.

SUBSTANCE-RELATED AND ADDICTIVE
DISORDERS

Substance-related and addictive disorders are divided into two
main classes: substance-related addiction and non-substance-
related addiction, with substantial activation of the reward
system as a common factor leading to neglect of everyday
activities (American Psychiatric Association, 2013). Addictive
disorders are marked by compulsive use of a substance or need
for a behavior irrespective of harmful consequences. Further
symptoms of these disorders are craving, inability to reduce
or quit, and continued use regardless of induced problems,
tolerance, investing a great deal of time and effort to obtain, use,
or recover from the substance or behavior (American Psychiatric
Association, 2013). Global estimated prevalence is around 18.4%
for heavy alcohol use, 15.2% for daily tobacco smoking in adults,
and less than 4% for illicit drugs as reviewed by Peacock et al.
(2018). With these numbers, substance-related and addictive
disorders are amongst the most prevalent mental disorders.

Earlier studies on structural gray matter asymmetries in
substance-related and addictive disorders had small sample sizes
and diverging results (Jung et al., 2007; Medina et al., 2007;
Zhu et al., 2018). We therefore focus on the largest study on

this topic, a recent mega-analysis of 22 structural MRI datasets
performed by the ENIGMA Addiction Working Group (Cao
et al., 2021). In this study, the authors compared cortical and
subcortical asymmetries between 1796 patients addicted to either
alcohol, nicotine, cocaine, methamphetamine, or cannabis and
996 controls not suffering from an addictive disorder. They
found that, on average, patients showed reduced rightward
volume asymmetry of the nucleus accumbens, and concluded
that disrupted structural asymmetry in this brain area might
be a characteristic of addiction. The nucleus accumbens is a
central component of the reward circuit in the brain (Teague
and Nestler, 2021). Since altered reward processing is a central
component of substance-related and addictive disorders, this
finding suggests that diagnosis-specific risk factors or symptom-
specific risk factors, but not non-specific risk factors, link gray
matter asymmetries and this group of disorders.

Structural asymmetries in white matter have not been a major
focus in research on substance-related and addictive disorders.
A recent meta-analysis on white matter structure in cocaine use
disorder reported lower fractional anisotropy in the genu of the
corpus callosum in cocaine users compared to controls, but not
specific left- or right-hemispheric alterations (Suchting et al.,
2021). Additionally, a DTI study in patients addicted to alcohol
(Schulte et al., 2010) reported degeneration of posterior callosal
fibers and left posterior cingulate fibers in patients compared to
controls. In general, more, and larger studies on white matter
asymmetries in substance-related and addictive disorders need
to be performed before any final conclusions can be drawn.
It is also important to specifically conduct more longitudinal
studies. In studies with one-time cross-sectional data collection,
it is not possible to assess whether altered structural asymmetries
represent a potential risk factor to develop a disorder or are
themselves due to impairments provoked by persisted substance
abuse in itself, like asymmetric brain atrophy.

STUDIES INVESTIGATING MULTIPLE
DISORDERS

In addition to the previously described studies focusing on
structural asymmetries in one disorder, one study has also
investigated structural brain asymmetries across different groups
of disorders. The study, an ALE meta-analysis, was focused
on schizophrenia, bipolar disorder, and MDD (Huang et al.,
2021). The authors analyzed gray matter asymmetries based
on data from 169 clinical neuroimaging studies. Overall, 3517
schizophrenia patients, 1575 bipolar disorder patients, 3280
MDD patients, and 9733 controls were included, making this a
well-powered study.

When analyzing regional differences between patients and
controls independent of asymmetries, the authors found that
the right parahippocampal gyrus and the left superior frontal
gyrus showed similar alterations across all three disorders. Based
on the functions of these brain areas, the authors concluded
that working memory impairments in the three disorders
may be influenced by similar structural alterations. However,
when specifically assessing differences in structural asymmetries
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between patients and controls, the authors did not identify
any common patterns. While MDD was linked to asymmetrical
alterations with a rightward bias, schizophrenia and bipolar
disorder were linked to asymmetrical alterations with a leftward
bias, but in different brain areas.

These findings suggest that while there are common
neurobiological alterations in MDD, schizophrenia, and bipolar
disorders, alterations in structural asymmetries are not among
them. Therefore, the results of this study do not support the idea
that there are non-diagnosis-specific factors that are associated
with both structural asymmetries and the risk to develop mental
illness. Instead, they support the idea that diagnosis- or symptom-
specific factors link structural asymmetries and mental illness.

DISCUSSION

The present review aimed to determine whether psychopathology
and structural asymmetries in the brain are more likely linked
by non-specific factors that generally affect the risk to develop a
mental disorder or factors that affect the risk to develop a specific
disorder or a specific symptom. While the results for ASD at
least partly suggest a potential influence of non-specific factors
with widespread impact on many different brain structures, the
results for most other disorders suggested that symptom- or
diagnosis-based factors linked to cognitive systems associated
with disorder-specific symptoms may be better suited to explain
the relation of psychopathology and structural asymmetries.
For MDD, notably, no differences in gray matter asymmetries
were observed. While some overlap in affected brain regions
was observed between disorders, most notably for dyslexia and
schizophrenia, most altered asymmetries were highly disorder-
specific and typically related to the symptoms related to each
disorder. For most disorders, the empirical evidence does not
currently allow us to disentangle whether symptom-based or
diagnosis-based approaches are better suited to explain the
association of structural asymmetries and psychopathology.
However, the results for schizophrenia patients with and without
auditory verbal hallucinations make a strong argument for a
symptom-based association. This suggests that empirical studies
investigating differences in structural asymmetries between
patients with the same diagnosis, but different symptoms are
highly important to further advance clinical laterality research.

A recent opinion article argued that understanding altered
laterality in different psychiatric and neurodevelopmental
disorders is one of the core challenges for laterality research
in the 2020s (Ocklenburg et al., 2021). The current review
identified several critical gaps in the existing research literature
on structural asymmetries and psychopathology that need to be
filled to overcome this challenge.

One major gap that became evident is the fact that almost
all studies linking structural asymmetries and psychopathology
focused only on macrostructural asymmetries. Differences
between patients and controls in microstructural asymmetries
and gene expression asymmetries remain largely unexplored.
While investigating the link between psychopathology and gene
expression asymmetries will rely largely on animal models
(Mundorf et al., 2020a, 2021a), neuroimaging techniques to

investigate microstructural asymmetries in vivo in humans,
such as NODDI (Zhang et al., 2012), are readily available.
Since the first studies have already used NODDI to investigate
microstructural asymmetries in healthy participants (Schmitz
et al., 2019; Mundorf et al., 2021b) and linked them to cognitive
phenotypes (Ocklenburg et al., 2018), application in clinical
cohorts will be a logical next step.

Another major gap is the lack of cross-disorder studies
investigating structural asymmetries. While the study by
Huang et al. (2021) was an important step, more large-
scale studies comparing structural asymmetries in a wider
range of mental disorders are needed. Along these lines,
more transdiagnostic studies, focusing not on diagnoses
but investigating the relation of structural asymmetries and
psychopathology in transdiagnostic frameworks such as
RDoC (Insel et al., 2010), are warranted. While an RDoC
perspective has been used in a study on functional asymmetries
(Nusslock et al., 2015), it has not been used in research on
structural asymmetries so far. Doing so would allow researchers
to disentangle to a greater extent whether diagnosis- or
symptom-specific factors link structural brain asymmetries and
psychopathology.

Similar to the described lack of cross-disorder studies,
there is also a lack of studies that investigate structural
asymmetries in gray and white matter while taking into
account all relevant functional asymmetries. For example, it
has been suggested that the association between handedness
and brain structural asymmetries needs further investigation
(Guadalupe et al., 2014; Budisavljevic et al., 2021). Moreover,
recent research highlights the importance of understanding
individual hemispheric segregation, i.e., the individual pattern
of distribution of different lateralized functional networks in
the brain (Vingerhoets, 2019; Gerrits et al., 2020). Functional
asymmetries may be shaped by structural asymmetries, but also
affect structural asymmetries via processes like use-dependent
plasticity. Therefore, integrating individual patterns of functional
hemispheric integration into research designs may be highly
relevant to further understand the link between structural
asymmetries and neurodevelopmental and psychiatric disorders.

Last, but not least, more studies on structural asymmetries
in animal models of mental disorders are needed to gain a
more mechanistic understanding of why asymmetries in brain
structure and psychopathology are linked. Using a preclinical
animal model for early life stress, we recently analyzed the
consequences of stress exposure on turning asymmetry in rats
and found that prolonged early life stress leads to atypical
leftward asymmetry in the elevated plus-maze test (Mundorf
et al., 2020a). When investigating turning behavior in a
maternal immune activation animal model for schizophrenia
in rats, we furthermore found not only atypical turning
behavior in the experimental condition but also an effect of
age on turning asymmetry, with adolescents showing a more
pronounced asymmetry than adults after maternal immune
activation (Mundorf et al., 2021a). Similar experiments could
also be conducted using established clinical models of other
mental disorders (Mundorf et al., 2019, 2020b; Bölükbas
et al., 2020; Lopez and Bagot, 2021) and with a focus on
structural asymmetries.
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CONCLUSION

In the present review article, we gave an overview of
research on structural asymmetries in the brain in different
mental disorders. Focusing on large-scale studies and
meta-analyses, we revealed that alterations in structural
hemispheric asymmetries are widespread across almost all
investigated disorders. Cross-disorder overlap in these alterations
was minimal. This suggests that diagnosis- or symptom-
specific factors link asymmetries in brain structure and
psychopathology, and not unspecific factors that generally
increase the risk to develop mental illness. Further research
is needed to determine to what extent diagnosis- or
symptom-specific factors link asymmetries in brain structure
and psychopathology. Research in schizophrenia indicates
that symptom-based approaches may be more promising,

emphasizing a need for more transdiagnostic studies in clinical
laterality research.
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