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Abstract: Human saliva is an ideal body fluid for developing non-invasive diagnostics. Saliva
contains naturally-occurring nanoparticles with unique structural and biochemical characteristics.
The salivary exosome, a nanoscale extracellular vesicle, has been identified as a highly informative
nanovesicle with clinically-relevant information. Salivary exosomes have brought forth a pathway
and mechanism by which cancer-derived biomarkers can be shuttled through the systemic circulation
into the oral cavity. Despite such clinical potential, routine and reliable analyses of exosomes remain
challenging due to their small sizes. Characterization of individual exosome nanostructures provides
critical data for understanding their pathophysiological condition and diagnostic potential. In
this review, we summarize a current array of discovered salivary biomarkers and nanostructural
properties of salivary exosomes associated with specific cancers. In addition, we describe a novel
electrochemical sensing technology, EFIRM (electric field-induced release and measurement), that
advances saliva liquid biopsy, covering the current landscape of point-of-care saliva testing.

Keywords: salivary diagnostics; salivaomics; saliva-exosomics; biomarker; liquid biopsy; cancer;
point-of-care

1. Introduction

In the era of personalized medicine, knowing specific cancer information is essential as it
guides treatment decisions. Tissue biopsy is a standard method, but the limited sampling is often
insufficient to capture the heterogeneity and evolution of tumors [1]. Conventional imaging techniques
could offer non-invasive modalities, but they are less sensitive for early detection of cancer [2–4].
A developing concept, liquid biopsy, aims to provide an alternative to invasive tissue biopsy by
identifying biomarkers in biofluids that reflect the presence of cancer [5]. Early pursuits in the liquid
biopsy concept predominantly focused on blood, but now involve the analysis of urine, cerebral spinal
fluid (CSF), and saliva. While blood, urine, and CSF are all viable candidates for cancer detection,
saliva is the epitome of a non-invasive, readily-available, and easily-collectable biofluid. Saliva is
composed of the secretions from the major salivary glands (parotid, submandibular, and sublingual)
and numerous minor salivary glands [6]. Saliva has a wide variety of biological functions integral for
food digestion and oral health maintenance [7]. Saliva contributes to the protection of teeth by pH
maintenance and enamel remineralization [7]. Lactoferrin, lactoperoxidase, and immunoglobulin A
contribute to saliva’s antibacterial and antiviral roles [8–10]. Since saliva reflects health conditions (e.g.,
blood glucose [11]) and provides unique information about the body (e.g., stress hormone [12]), rapid
advances have been made in the field of salivary diagnostics.
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Recently, extracellular vesicles (EVs) have gained considerable attention as mediators of
intercellular signaling and as potential sources of cancer biomarkers [13]. Exosomes, which are
nanoscale EVs of endocytic origin, were initially thought of as a way for cells to dispose of
unnecessary proteins, but are now considered as mediators of intercellular signaling through
RNA and functional protein exchange [14]. Exosomes are present in nearly all types of biofluids,
carrying a tremendous potential for liquid biopsy and therapeutic applications [15]. There is a
global demand for simple exosome isolation and robust analysis methods amenable to clinical
application. Traditionally, exosomes are isolated through a density gradient or sucrose cushion
by ultracentrifugation at 100,000× g [16]. Additional methods, however, such as polymer-assisted
precipitation [17], immunoaffinity-based capture beads [18], immunoaffinity-based microfluidic
chips [19], and acoustic fluidic chips [20], have surfaced with promising capabilities. Now, extracellular
RNA (exRNA) can be screened in salivary exosomes in an attempt to detect and guide treatment for
cancer [5].

Nanotechnology has become an important approach to improve the diagnosis and treatment
of cancer [21]. Materials at the nanoscale have unique physical and biological properties that are
useful for cancer detection [22]. Exosomes are naturally-occurring nanovesicles with clinically-relevant
information and have the potential to reduce the detection limit of cancer biomarkers [23]. The concept
that a patient can take a single drop of their own saliva and test it using a point-of-care device to
determine their cancer risk has long been entertained by engineers and clinicians [24].

Here, we review the molecular and nanostructural properties of salivary exosomes as potential
cancer biomarkers and discuss novel electrosensing technology that can detect and analyze salivary
exosomes, with emphasis on point-of-care diagnosis.

2. Salivary Diagnostics

In the past decade, saliva researchers have explored saliva as a diagnostic fluid to detect oral
and systemic diseases. Saliva is colorless, 99% water-based, slightly acidic (pH of 6.60), and contains
a vast array of ions and organic compounds [25]. Salivary glands are densely surrounded by blood
vessels containing epithelial cells enriched with passive and active cellular transporters and channels
for substantial molecule exchange with circulating blood [26]. Proteomic studies of saliva revealed that
20–30% of the salivary proteome mirrors the plasma proteome, indicating that a substantial portion
of salivary constituents are derived from the blood [27–29]. Thus, the significant overlap between
saliva and blood due to their physiological interactions indicates a potential alternative approach
to diagnosing systemic diseases. Saliva possesses several advantages over blood as a body fluid for
clinical diagnosis. Saliva collection is performed easily and noninvasively, thereby reducing patient
discomfort. Unlike blood, saliva does not coagulate, making it easier for handling and processing.
Saliva is regarded as a mirror of oral and systemic health, containing a wide variety of biomarkers,
rendering it an attractive biofluid for early disease detection. In fact, several studies have already
demonstrated saliva’s usefulness for the diagnosis of health conditions such as diabetes [30], human
immunodeficiency virus [31], cardiac disease [32], autoimmune diseases [33], and tobacco use [34].
Thus, many investigators have attempted to use saliva with point-of-care devices to assess health
conditions (Table 1).
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Table 1. Salivary diagnosis for health conditions.

Disease/Condition Platform Salivary Biomarker Reference

Diabetes Screen-printed electro chemical
sensor Glucose [30]

HIV OraQuick HIV-1/2 antibody [31]

Hepatitis C Mono-Lisa anti-HCV Plus HCV antibody [35]

Acute myocardial infarction Luminex lab-on-a-chip
C-reactive protein, myoglobin,

MMP-9, IL-1B, slCAM-1,
myeloperoxidase

[32]

Asthma and chronic
obstructive pulmonary

disease (COPD)

Multiplexed fiber optic
microsphere-based cytokine array

IFNg, IP-10, RANTES,
eotaxin-3, VEGF [36]

Periodontitis Lab-on-a-chip C-reactive protein, MMP-8,
IL-1B [37]

Tobacco use NicAlert test strips Cotinine [34]

Salivaomics integrates the study of saliva and its constituents, functions, and related
techniques [38,39]. Salivaomics technologies are derived from scientific advances in genomics,
transcriptomics, and proteomics, and these high-throughput technologies have prompted interest in
the use of saliva as a source of disease biomarkers. The development of particular saliva biomarkers
and their associated in-clinic analyzers could facilitate point of care diagnostics [40].

The study of salivaomics is a relatively new field. It is only in the past decade that it has been
known that salivary glands transfer molecular information. The full potential to harness this knowledge
for biomedical use has been hampered due to difficulties in analyzing the heterogeneous nature of
saliva. Saliva has been analyzed as a bulk population of constituents with insufficient sensitivity. Since
the oral cavity is openly exposed to the surrounding environment, food and oral bacteria contribute
to salivary composition [23]. The body’s natural circadian rhythm influences the production and
composition of saliva [41]. A stimulated (masticatory) or rested salivary state also affects the saliva
properties [42]. In addition, amylase, an example of an enzyme inherent in the saliva for the breakdown
of complex carbohydrates, may interfere with or mask with diagnostic protein biomarkers during
analysis [43]. Salivary proteins (histatins, statherin, or acidic proline-rich proteins) and RNAs are prone
to degradation when taken out of their optimal environment [44]. Therefore, preemptive strategies
must be used to stabilize the salivary components with protease inhibitors and RNase inhibitors to
preserve their integrity [45,46]. In order to overcome these limitations, salivaomics should focus on
salivary EVs. The EV fraction reduces the complexity of saliva, and the EV’s lipid bilayer protects its
cargo, providing more stable and accurate clinically-relevant information for disease detection.

3. Salivary Exosomes

EVs are classified into three subgroups based on their size and associated pathways [47]. EVs
include exosomes, microvesicles, and apoptotic bodies and can contain protein and genetic materials
that resemble those in parental cells. Apoptotic bodies are generated in the terminal stages of apoptotic
process and contain fragments of the nuclei and their cancerous mutations [48,49]. Among the
different subpopulations of EVs, exosomes are of particular interest, as they are involved in cell-to-cell
communication through RNA and protein exchange [15]. Exosomes are nano-sized vesicles (30–100 nm
in diameter), originating from the endosomal pathway and secreted into the extracellular space by
exocytosis. They are released from almost all cell types, transporting a unique cargo to the surrounding
microenvironment and distal parts through vasculature. Exosomes have been isolated from a wide
variety of body fluids such as blood, urine, saliva, breast milk, and cerebrospinal fluid [50,51].
Recent studies have shown that they play an important role in intercellular signaling and cellular
homeostasis [52]. These functional roles are attributed to their contents originating from parental cells,
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thereby affecting the pathophysiological conditions of recipient cells. Given their biological role in
cancer pathogenesis, exosomes can be used as ideal biomarkers in detecting and monitoring cancer.

The discovery that exosomes are present in saliva has raised a possible explanation for how cancer
biomarkers are packaged and transported to the salivary glands [53]. The use of these small, but highly
informative nanovesicles reduces the overall complexity of saliva [54]. The term “saliva-exosomics”
is used to describe the study of salivary exosomes using “–omics” technologies (e.g., genomics,
transcriptomics, or proteomics) and their relationship to biological functions in oral and systemic
diseases [23]. Saliva-exosomics presents a new landscape and a new horizon of saliva biology that is
just now being explored.

3.1. Salivary Extracellular RNA

The transcriptome is the complete set of RNA transcripts that are produced by the genome.
It refers to all RNAs, including messenger RNA (mRNA), microRNA (miRNA), piwi-interacting RNA
(piRNA), and other small RNAs such as rRNA and tRNA. The study of the salivary transcriptome
uses high-throughput methods that have emerged as powerful tools for exploring biomarkers [55].
Saliva contains an assortment of extracellular RNA species including mRNA, miRNA, and other
small non-coding RNAs (e.g., piRNA). The human salivary transcriptome was initially described
using microarray technology [56]. This resulted in the characterizing of the salivary transcriptome as
highly-fragmented coding and noncoding RNAs derived from host cells and oral microbiota [55,57,58].
High-throughput RNA sequencing (RNA-Seq) using human saliva revealed that the most abundant
types of small RNAs are piRNA (7.5%) and miRNA (6.0%) [59]. Interestingly, miRNA [60,61] and
piRNA [62,63] appear to be enriched at higher abundance in exosomes compared to whole saliva.
This finding suggests that exosomes protect their cargo from degradation, making them attractive
diagnostic tools for clinical application. miRNAs are a class of 21–25 nucleotide non-coding RNAs
and of particularly interest since they play major roles in the regulation of gene expression in cancer
cells [64]. In various cancers, such as oral, esophageal, lung, pancreatic, breast, and ovarian cancers,
certain RNA biomarkers have been discovered in saliva and proposed as possible biomarkers (Table 2).

Table 2. Salivary RNA biomarkers in cancers.

Cancer RNA Type Salivary RNA Biomarker Reference

Oral cancer
messenger RNA DUSP1, H3F3A, IL1B, IL8, OAZ1, S100P, SAT [65]

microRNA miR-125a, miR-200a [66]

Esophageal cancer microRNA miR-144, miR-451, miR-98, miR-10b, miR-363 [67]

Lung cancer messenger RNA CCNI, FGF19, GREB1, FRS2, EGFR [68]

Pancreatic cancer messenger RNA KRAS, MBD3L2, ACRV1, DPM1 [69]

Breast cancer messenger RNA CSTA, TPT1, IGF2BP1, GRM1, GRIK1, H6PD,
MDM4, S100A8 [70]

Ovarian cancer messenger RNA AGPAT1, B2M, IER3, IL1B, BASP1 [71]

3.2. Salivary Circulating Tumor DNA

Saliva contains cell-free DNA, and genomic analysis revealed that 70% is host-derived, whereas
30% originates from the oral microbiota [72]. Salivary DNA is stable and is of high quality, suggesting
that salivary DNA is a useful biomarker target [73–75]. Circulating tumor DNA (ctDNA) is 180–200
base pair fragment of DNA containing mutated cancer sequences and believed to be derived from
apoptotic or necrotic tumor cells releasing DNA fragments into circulation [76]. The DNA length,
which is characteristic of the apoptotic process, corresponds to the inter-nucleosomal length of DNA
that is wrapped around the nucleosome, including the linker segment [77].
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There have been indications that ultrashort single-stranded cell-free DNA (<100 base pair) is
present in plasma, which would suggest that these same ultrashort species could appear in saliva [78].
A large-scale study on multiple cancer types demonstrated that an increasing concentration of ctDNA
is associated with an advancing stage of disease [79]. It is not clear if ctDNA has a pathophysiological
role in promoting malignancy or is simply a waste-product of tumor cell death. There is some evidence,
however, that the presence of ctDNA can promote cancer by transfecting healthy cells [80]. Given the
heterogeneous nature of tumors, ctDNA analysis in liquid biopsy has the potential to detect accurately
and monitor tumor progression in real time compared to tissue biopsy [5,77,81–86].

3.3. Salivary Protein Biomarkers

The discovery of salivary proteins associated with cancer has mainly been the result of
high-throughput mass spectrometry screening of patient samples. From these studies, a series of
protein biomarkers has been detected in whole saliva or salivary EVs for specific cancer types (Table 3).
The emergence of the relevance of salivary EVs has provoked interest in EV-specific proteins, which
have been found to be associated with oral and lung cancers. Although an extensive list of biomarkers
has been compiled, further work must be performed to validate these candidate proteomic biomarkers
in prospective clinical trials [87].

Table 3. Salivary protein biomarkers for cancers.

Cancer Sample Salivary Protein Biomarker Reference

Breast cancer Whole saliva

EGF [88]

c-erbB-2 [89]

CA15-3, c-erbB-2 [90]

VEGF, EGF, CEA [91]

CA6 [70]

LRP [92]

Oral cancer
Whole saliva

A1BG, CFB [93]

M2BP, MRP14, CD59, CAT, PFN [94]

FGB, S100, TF, IGHG, CFL1 [95]

ADA [96]

IL-8, M2BP, IL-1B [97]

Salivary EVs A2M, HPa, MUC5B, LGALS3BP, IGHA1, PIP,
PKM1/M2, GAPDH [98]

Gastric cancer Whole saliva
1472.78Da, 2936.49Da, 6556.81Da, 7081.17Da [99]

CSTB, TPI1, DMBT1, CALML3, IGH, IL1RA [100]

Lung cancer

Whole saliva HP, AZGP1, CALPR [101]

Salivary EVs
Annexin A1, A2, A3, A5, A6, A11, NPRL2,
CEACAM1, HIST1H4A, MUC1, PROM1,

TNFAIP3
[102]

Ovarian cancer Whole saliva CA125 [103]

4. Nanostructural Properties of Salivary Exosomes

Salivary exosomes are naturally-occurring nanovesicles that are secreted from oral epithelial cells
into saliva. Elucidating the nanostructural differences between the salivary exosomes originating
from healthy subjects compared to patients with disease is particularly important as disease-specific
exosomes may differ in functional properties [104]. In a nanostructural characterization study,
the salivary exosomes from healthy donors using atomic force microscopy (AFM) and field
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emission scanning electron microscopy (FESEM) identified 70–100-nm exosomes with trilobed
structures, demonstrating their reversible and elastic mechanical properties (Figure 1) [105,106].
Low-force imaging revealed round-shaped exosomes, suggesting exosomes have an inherent spherical
morphology when stresses are not applied (Figure 1a,e,f). Additionally, AFM phase contrast images
portrayed exosomes with a heterogeneous surface, likely attributed to the embedded proteins in a
dense lipid membrane (Figure 1c,d).
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Figure 1. Nanostructure of individual salivary exosomes observed under tapping mode AFM and
FESEM. (a) Tapping mode topographic low-force AFM image showing the round morphology of
isolated exosomes. (b) AFM phase image of aggregated exosomes. Interconnections (arrows) lacking
the characteristic phase shift probably indicate some extravesicular protein content. (c) At higher forces
under AFM (~2 nN), representative single-exosome phase images reveal trilobed substructure within
the center of the vesicles. The contrast in images may be presumably attributed to variable constitutive
elements (lipid, protein, RNA ratio) making up these structures. (d) Corresponding height images
show a central depression of the vesicles. (e) FESEM exosome image showing clumping exosomes and
(f) single isolated vesicles as round bulging structures with well-resolved intervesicular connections.
Reprinted with permission from [106]. Copyright 2010, American Chemical Society.
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Morphological characterization of salivary exosomes at the single-vesicle level using
high-resolution AFM displayed irregular morphologies and higher intervesicular aggregation in
an oral cancer patient compared to a healthy control (Figure 2) [107]. Quantitative analysis also
revealed that size and CD63 surface density were significantly increased in cancer exosomes (98.3 ±
4.6 nm) compared to normal exosomes (67.4 ± 2.9 nm) (p < 0.05) [107]. Structural and morphological
aberrations in the exosomes are suggestive that these exosomes are at least in part cancer-derived
products that were shed directly into saliva. Multivesicular bodies (MVs) were identified in oral
cancer salivary exosome fractions (Figure 3). These multivesicular structures showcased ruptures
and elongated nanofilaments around the lumen of these MVs, suggesting that these are the sites for
exosome release, as well as filamentous extension of nucleic acids. These images suggest that oral
cancer-derived exosomes in saliva have distinct properties that make them potential biomarkers for
cancer diagnosis.Materials 2018, 11, x FOR PEER REVIEW  7 of 19 
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contrast between the less dense periphery and the denser core region. (d–f) Exosomes from an oral 
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Figure 2. Structural characteristics of the human salivary exosome at the single-vesicle level. (a–c) AFM
topographic (z = 0–10 nm), amplitude, and phase images of salivary exosomes from healthy donors.
The exosomes appear as homogeneous circular structures with a distinct phase contrast between the
less dense periphery and the denser core region. (d–f) Exosomes from an oral cancer patient show an
irregular morphology with varying shapes and vesicle aggregation (arrows). (e) The amplitude image
shows the clumping of vesicles. (f) In the phase image, the larger vesicles appear hollow (arrows)
without the dense core region typically seen in normal exosomes. All images were obtained over mica
substrates under ambient conditions. Reprinted with permission from [107]. Copyright 2011, American
Chemical Society.
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Figure 3. Release of exosomes from multivesicular bodies (MVs) seen in the saliva of an oral cancer
patient. (a) Schematic of single MV membrane rupture and exosome release along with intervesicular
filaments from MV lumen. (b) AFM topographic and phase image of a single MV filled with exosome
vesicles. (c) Elongated intervesicular filaments (dashed arrow) and exosome-like vesicles (arrows) are
observed. (d) At high resolution, the ruptures and fragmentation of the MV membrane are clearly
observed (dashed circles). Additionally, the intervesicular filaments are seen in the MV lumen. (e) At
higher resolution, a large rupture is seen in the MV membrane (arrow). Samples were imaged under
ambient conditions. Reprinted with permission from [107]. Copyright 2011, American Chemical Society.

5. Electric Field-Induced Release and Measurement

Routine isolation and analysis of nanoscale exosomes in clinical settings is challenging.
Conventional methods have been facing a number of drawbacks including high cost and long
processing time. The current gold standard for exosome isolation is by density gradient or
sucrose cushion ultracentrifugation at 100,000 × g [16]. Regular laboratory methods for the ctDNA
interrogation include allele-specific polymerase chain reaction (PCR), digital PCR, and next-generation
sequencing (NGS) [108]. These methods are predominantly PCR-based and have demonstrated limited
success in saliva. In one study, the saliva from 93 head and neck squamous cell carcinoma (HNSCC)
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patients were analyzed for human papilloma virus (HPV) DNA (HPV16/18) and/or somatic mutations
(TP53, PIK3CA, CDKN2A, FBXW7, HRAS, and NRAS) related to HNSCC using a multiplex panel of
PCR primers [109]. Their results showed that in saliva from oral cavity cancers, ctDNAs associated
with HNSCC were detected in saliva with 100% concordance. However, saliva from patients from other
anatomical sites demonstrated poor results with oropharynx (47%), larynx (70%), and hypopharynx
(67%). Thus, the development of reliable and highly-sensitive modalities for cancer detection is an
unmet need [110–112].

Recently, dramatic progress has been made in nanotechnology by bringing new electrochemical
biosensing technology to exosome analysis. The electrochemical sensing approach is highly suitable
for the detection of biomolecules due to its inherent advantages such as high sensitivity and
specificity [113–115]. In comparison with conventional methods (e.g. PCR, NGS), electrochemical
techniques are fast and affordable, only requiring small sample volumes less than 50 µL. We
have developed a novel saliva liquid biopsy technology termed EFIRM (electric field-induced
release and measurement), which has been engineered to detect minute amounts of ctDNA and
RNA in saliva (Figure 4) [116]. This procedure can detect and quantify the ctDNA in 40 µL of
saliva of non-small cell lung cancer (NSCLC) patients with near perfect concordance with biopsy
genotyping (96–100%) [116,117]. This non-PCR-based electrochemical platform utilizes an immobilized
oligonucleotide capture probe and detector probe system aided by cyclic square wave (CSW)
voltammetry throughout the procedure. Moreover, the EFIRM platform can integrate magnetic
selection and electrochemical detection, thereby facilitating the capturing of exosomes present in
saliva (Figure 5) [118]. For detection, exosomes are first captured onto magnetic beads conjugated with
antibody against CD63, a representative exosome surface marker. The CSW electric field is then applied
to release the RNA from the exosomes, followed by a mixture of detector probes. The HRP-conjugated
secondary antibody and 3,3′,5,5′-tetramethylbenzidine (TMB) substrate generate electrical current and
detected by an electric sensor. Indeed, this integrated magnetic-electrochemical EFIRM can detect
and analyze exosomes by disrupting exosomes and releasing GAPDH mRNA in a similar manner as
Triton X-100 detergent lysis (Figure 6) [118]. Combining affinity capture and electrochemical sensing
technologies is desirable for rapid detection of exosomal biomarkers, facilitating the development of
point-of-care devices and their translation into routine clinical use.
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Figure 4. Schematic of the EFIRM assay procedure. (a) An electrical field is applied to polymerize
pyrrole in order to anchor a single-stranded oligonucleotide capture probe specific for a ctDNA
onto a gold electrode. (b) The saliva containing ctDNA target molecules is added and hybridizes
with the capture probe in the presence of a cyclical square wave. (c) A complementary biotinylated
single-stranded oligonucleotide detector probe hybridizes with the target under an electric field. (d)
HRP (horseradish peroxidase)-streptavidin binds to biotin on the detector probe. (e,f) A subsequent
layer of biotinylated anti-streptavidin antibody and HRP-streptavidin amplifies the signal. The
3,3’,5,5’-tetramethylbenzidine (TMB) substrate is added to generate a continuous, quantifiable electric
current through a reduction reaction with HRP.
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attached to anti-CD63 antibody-conjugated magnetic beads; (ii and iv) indicate the absence of 
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min. Background webbing indicates lacey support film for TEM. (c) The levels of GAPDH mRNAs 
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kinetics of the GAPDH mRNA signal reduction by EFIRM (top) or Triton X-100 (bottom) indicates 
that bare RNAs (released by E-field or Triton X-100) decay rapidly. 

Figure 6. EFIRM can disrupt exosomes to release exosomal GAPDH mRNA from human saliva. (a)
Schematic illustration of an exosome disrupted with an electric field (E-field) and GADPH mRNA
released. (b) Transmission electron microscopy (TEM) images before (i and iii) and after (ii and iv);
E-field (top) or Triton X-100 detergent (bottom) treatment. (i and iii) show exosomes (arrows) attached to
anti-CD63 antibody-conjugated magnetic beads; (ii and iv) indicate the absence of exosomes disrupted
after treatment with (ii) a CSW E-field for 200 s or (iv) with Triton X-100 for 20 min. Background
webbing indicates lacey support film for TEM. (c) The levels of GAPDH mRNAs were measured at
different time points by EFIRM after the application of E-field or Triton X-100. The kinetics of the
GAPDH mRNA signal reduction by EFIRM (top) or Triton X-100 (bottom) indicates that bare RNAs
(released by E-field or Triton X-100) decay rapidly.
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6. Conclusions and Future Perspectives

Nanodiagnostic strategies are being developed to meet the requirements of clinical practice for
the detection of cancer. Nanovesicles and their detection method play vital roles in the development of
new platforms for biomarker detection essential for diagnosis and treatment decisions. The versatile
structural and functional properties of exosomes pave the way for the development of specific and
sensitive diagnostics, opening the door for precise personalized medicine. Further nanostructural and
functional studies of salivary exosomes are warranted for a better understanding of the biological
mechanisms mediated by molecules present in exosomes.

Many transcriptomic and proteomic studies have uncovered potential salivary biomarkers,
placing greater focus on exosomes and their disease-associated biomarkers. EFIRM identification of
actionable EGFR ctDNA (L858R and Exon19 deletion) in saliva will determine which tyrosine kinase
inhibitors (TKIs) are to be prescribed [116]. If ctDNA can be frequently and routinely assayed in saliva,
the early detection of mutation T790M, another EGFR mutation indicative of resistance to first and
second-generation TKIs, would influence changes in therapy [119]. Despite such clinical potential
of saliva, reliable exosome analyses remain challenging due to their small sizes [120]. The major
technical challenge in exosome detection in clinical applications is to detect disease-specific exosomes
in heterogeneous bulk populations derived from normal and cancer cells. The electrochemical sensing
approach with rapid and sensitive readout is an effective detection modality. The integration of
magnetic-electrochemical approaches together with other novel platforms (e.g., microfluidics) can
result in an efficient tool for clinical diagnosis, particularly in point-of-care devices for a wide range of
disease detection.

The development of multiplex detection technologies (e.g., nano flow cytometry) will offer
insight into understanding the exosome’s heterogeneity and subset differentiation. Combining the
outstanding components of exosome isolation techniques and multiplexed assay systems will also
make it capable of selective isolation of specific exosome subtypes in heterogeneous samples. This
can expand the borders of saliva research and open up new avenues of biomarker discovery and
therapeutic interventions. As research and knowledge in the field of salivaomics and saliva-exosomics
continues to advance, it will solidify saliva as an integral part of liquid biopsy. When these conditions
are met, saliva liquid biopsy will be a viable tool for high-risk population screening.
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