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Abstract
An increased understanding of the current and potential future impacts of
climate change has significantly influenced conservation in practice in recent
years. Climate change has necessitated a shift toward longer planning time
horizons, moving baselines, and evolving conservation goals and targets. This
shift has resulted in new perspectives on, and changes in, the basic
approaches practitioners use to conserve biodiversity. Restoration, spatial
planning and reserve selection, connectivity modelling, extinction risk
assessment, and species translocations have all been reimagined in the face of
climate change. Restoration is being conducted with a new acceptance of
uncertainty and an understanding that goals will need to shift through time. New
conservation targets, such as geophysical settings and climatic refugia, are
being incorporated into conservation plans. Risk assessments have begun to
consider the potentially synergistic impacts of climate change and other
threats. Assisted colonization has gained acceptance in recent years as a
viable and necessary conservation tool. This evolution has paralleled a larger
trend in conservation—a shift toward conservation actions that benefit both
people and nature. As we look forward, it is clear that more change is on the
horizon. To protect biodiversity and essential ecosystem services, conservation
will need to anticipate the human response to climate change and to focus not
only on resistance and resilience but on transitions to new states and new
ecosystems.
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Introduction
Climate change is one of the largest threats to biodiversity and to 
natural systems in general1,2. Recent changes in climate are driving  
shifts in the timing of ecological events3, the distribution of  
species4,5, and the functioning of ecosystems6. Models project even 
greater changes for the future7–10.

These climate-driven changes challenge the way the planning and 
practice of conservation have traditionally been done. Most con-
servation has been predicated on the fact that the environment is 
relatively stable over the time frames of management planning 
(generally less than 50 years). However, projected changes in spe-
cies distributions and ecosystem functions present obvious chal-
lenges to this assumption. Over the last decade, there has been a 
growing literature on what climate change means for biodiversity11 
and the implications this has for conservation planning and action12. 
As a consequence, there have been some notable shifts in the way 
conservation is being conducted, from the goals and structure of 
conservation organizations to the planning and execution of conser-
vation projects on the ground12,13.

Climate change is increasingly integrated into the daily operations 
of conservation organizations. The anticipated impacts of climate 
change have driven planners and managers to consider longer time 
horizons and to anticipate the potentially synergistic effects of cli-
mate change and other threats and the need to address them quickly. 
Likewise, conservation biologists have begun to acknowledge the 
importance of planning for extreme weather events in addition to 
slow, long-term climatic change. These shifts have led to new per-
spectives on, and alterations to, approaches used to conserve biodi-
versity. Here, we describe some of the more prominent changes in 
the approaches conservation planners and practitioners have taken to 
help address the threat of climate change. Some of these approaches, 
such as restoration and the prioritization of species for conservation 
actions, have been around for quite some time but needed reframing 
as a consequence of the likely impacts of climate change. Others, 
such as assisted colonization, are new twists on old practices and 
have arisen directly out of the challenges posed by climate change.

Changing conservation approaches to address 
climate change
Rethinking restoration
Restoration is one of the basic tools of a conservation practitioner. It 
has traditionally involved returning a system to its state prior to some 
disturbance14. However, climate change challenges the very nature 
of restoration based on such a definition15. It brings into question the 
utility of historical benchmarks as restoration targets, the species or 
seed sources to be used, and the time frame for planning.

Rethinking how restoration efforts are applied in light of climate 
change has led to shifts in thinking as well as in practice. Most 
fundamentally, practicing restoration in a changing climate requires 
embracing uncertainty and accepting that the goals of a project 
may need to change over time16. Instead of relying on historical  
benchmarks, restoration efforts will likely need to look into the 
future and anticipate change—perhaps relying on a dynamic refer-
ence process that accounts for variability in reference ecosystems16,17. 
Looking forward will also include rethinking the mix of species to 

be planted and potentially focusing on ecosystem function rather 
than particular assemblages of species. Restoration efforts have 
begun to make use of the same niche modelling methods that have 
been used to assess potential species responses to climate change18, 
but there is clear recognition that better models are needed19.

Many recent climate-adaptation efforts have involved restoration. Of 
the projects funded by the Wildlife Conservation Society’s Climate 
Adaptation Fund, at least 70% have involved restoration20. These 
projects have included riparian restoration to enhance connectivity, 
coastal restoration to prevent storm damage, forest restoration to 
reduce fire risk, and prairie restorations to enhance watershed func-
tion. In addition to the projects that clearly engage in restoration, 
several projects are aimed at converting one type of ecosystem to 
another—not necessarily restoring a historical condition but pre-
paring an ecosystem to function differently in a future climate. An 
example of this type of project involved converting forested areas to 
grasslands to facilitate marsh establishment in the face of sea-level 
rise. Whether such actions are classified as restoration could be 
debated, but clearly the lessons learned from decades of restoration 
will be essential to these new types of adaptation projects.

Changes in how conservation planning is undertaken
Systematic conservation planning21 has been used widely around 
the world to help prioritize conservation efforts, particularly the 
location of protected areas22. Most conservation planning has been 
based on “static” representations of biodiversity across a region, an 
approach that is clearly challenged by climate-driven changes in 
the distribution of species and communities23. Consequently, sub-
stantial thought has been put into how best to incorporate climate 
change into the conservation-planning process.

The cornerstone of initial approaches to integrate climate change 
into conservation planning was the use of correlative niche models  
to predict future distributions of species and ensure that these 
were adequately represented by present-day conservation efforts. 
The more sophisticated niche-based planning efforts included the 
ability of species to track changing habitat conditions through 
space and time24,25 and consideration of uncertainties in predicted  
distributions26,27. Climate, however, is only one of many factors 
determining the distributions of species, and the relationship is 
complex, uncertain, and in many cases evolving28. The magnitude 
of these ecological uncertainties compounded by the uncertainties 
associated with climate predictions29 led to calls to integrate climate 
change into planning using approaches that were more robust to 
uncertainty in predicted climate impacts30–32.

An approach to planning that has gained some traction for conserva-
tion in a dynamic climate involves conserving the underlying geo-
physical variation in a region, also referred to as “conserving nature’s 
stage”33. The rationale for this approach is that, theoretically, there 
should be a strong relationship between species distributions and 
geophysical settings (for example, elevation and geology)34 such that 
conserving representative examples of geophysical settings will 
protect representative ecological communities under both current 
and future climates35. A similar approach that focuses on current 
and known patterns in a region emphasizes conserving connectivity 
between climatically diverse areas31,36,37.
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Increasing connectivity
Increasing the connectivity of landscapes to allow species to move 
in response to climate change is the most-often cited climate 
change adaption strategy38–40. Traditionally, connectivity planning 
has focused on connecting patches of habitat with what amount 
to linear strips or stepping-stones of more habitat. Although this 
approach may allow species to move through the landscape, it may 
do little to facilitate movement into what might become newly suit-
able habitat. Early attempts to model connectivity expressly for 
addressing climate change involved projecting shifts in species dis-
tributions through time and either identifying overlap of current and 
future distributions or mapping pathways that tracked those shifting 
distributions41,42. A more mechanistic application of this approach 
involved mapping potential corridors through climate-driven shifts 
in suitable levels of snowpack for wolverines in the northwestern 
United States43. Other studies have taken different approaches to 
identifying important areas for species movement in the face of cli-
mate change—approaches that are less reliant on projected future 
changes in climate and species distributions. Brost and Beier44 and 
Beier45 focused on the geophysical settings mentioned in the pre-
vious section, and charted routes across the landscape that either 
connected similar geophysical setting or linked a diversity of set-
tings. Nuñez and colleagues46 mapped routes through landscapes 
that connected slightly warmer patches of intact land to slightly 
cooler ones with routes that followed gentle temperature gradients 
and avoided human-impacted landscapes.

Although efforts continue to develop more relevant climate-
connectivity methods, the critical question of whether corridors 
are really needed—or whether there might be other strategies and 
approaches that would achieve the same result—has been repeat-
edly raised37. Some argue that the focus on corridors is misguided 
and that, alternatively, protecting large intact ecosystems should be 
prioritized47,48. Others have argued that the benefits of increasing the 
size and number of corridors are fewer than those resulting from 
simply increasing the amount of protected land, which, if regularly 
distributed, would increase connectivity49.

Assessing extinction risk through the climate change lens
Although a growing wealth of studies predict increased extinction 
risk for species because of climate change50,51, many of these vary 
enormously in their estimations. It is also increasingly recognized 
that the predictions of extinction risk do not reflect the number of 
species that have become vulnerable (or extinct) to date, nor do 
they match the number identified as threatened because of climate 
change on the International Union for the Conservation of Nature 
(IUCN) Red List (only 10.5% of the 22,176 species)52. A funda-
mental challenge has involved integrating the projections of species 
niche models (the most-often used tool for assessing the impacts of 
climate change on species) into the processes of real-world extinc-
tion assessments.

Simple measures of population size, geographic range size, and 
other indicators of current status already used as IUCN Red List cri-
teria are likely to be good predictors of climate change-associated 
extinction risk53. Such IUCN Red List criteria have been used to 
predict the risk of extinction in the absence of conservation action 

and the time lag between assessment and extinction54,55. This time 
lag amounts to a warning period in which adaptation efforts can be 
taken to prevent extinction. Although there is a warning period, it 
is finite and thus delays in developing and implementing conserva-
tion plans after a species is identified as being threatened could be 
costly. Roughly half of listed species are likely to go extinct within 
20 years of being listed as critically endangered54.

An additional challenge is that most species risk assessments treat 
climate change as a problem driven by relatively slow, predictable, 
and continuous change in environmental conditions and fail to 
account for other important components of climate change, such 
as increasing extreme weather and climate events (for example, 
cyclones, floods, and drought)56,57. It is increasingly recognized 
that the increases in frequencies and intensities of extreme events 
are critical determinants of patterns of biological diversity and will 
affect it differently from impacts resulting from steady climate 
change58. A good example of this is how climate change will impact 
bat species: extreme maximum temperature is now considered a 
critical factor in the vulnerability of bats to climate change59, but 
many studies (for example, 60) fail to consider it in projections of 
species distributions under climate change.

Even though our understanding of which extremes are most impor-
tant and how they are shifting is limited61, there are good examples of 
assessments that do account for extremes. Recently, Ameca y Juárez 
and colleagues62 produced a comprehensive analysis of the impacts 
of cyclones and droughts on terrestrial mammals, one of the few 
large-scale studies to consider exposure to extreme events. They 
followed this exposure analysis with an assessment of terrestrial 
mammal sensitivity to extreme weather and climate events, iden-
tifying biological traits that make large terrestrial mammals more 
susceptible to climate-induced population declines.

Alongside species risk assessments, the assessment of the vulner-
ability of species to climate change—as well as the climate-related 
vulnerability of places and natural resources in general—has 
emerged as an important step in the adaptation process63. As with 
extinction risk assessments, many different approaches to assessing 
vulnerability have been proposed (for example, 64), each evaluat-
ing some subset or combination of sensitivity, exposure, and adap-
tive capacity65. These vulnerability assessments serve not only to 
determine which species are likely to be most vulnerable but also to 
identify the factors that make a species vulnerable and thus poten-
tial conservation actions—adaptation measures—that can be taken 
to reduce vulnerability.

Assisted colonization
One of the relatively new tools in the conservation toolbox is assisted 
colonization—broadly defined by the IUCN as the movement of an 
organism outside of its native range to avoid extinction of popula-
tions due to current or future threats66. There are some species, par-
ticularly endemics with relatively specific habitat requirements and 
poor dispersal abilities, that will be unable to move to suitable cli-
mates. When these species are threatened with extinction—because 
of either climate change or some other factor—it may become nec-
essary to move them to prevent their loss.
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The question of whether assisted colonization should even be con-
sidered as an option spawned a lively debate67–72. Those opposed to 
assisted colonization argue that the history of invasive species has 
taught us that the potential impacts on the ecosystems into which 
organisms would be moved could be too great68. Those in favour 
of keeping the option of assisted colonization on the table argue 
that it would likely be necessary for preventing the extinction of 
certain species69, that the potential impact of translocated species 
is likely overstated for several reasons69,71 (including that the traits 
of species that will need to be moved are not those traits generally 
associated with invasive species73), and that the amount of change 
that systems will experience over the coming decades will likely 
overshadow the impacts of translocated individuals of a rare and 
declining species74.

As the debate worked its ways through the scientific literature, 
many researchers started to ask more productive questions—facing 
the reality that assisted colonization was already being used. There 
were, for example, several early efforts to develop frameworks for 
determining under what circumstances assisted colonization would 
be a viable conservation option75,76. Other studies have highlighted 
the importance of the timing of assisted colonization efforts77, 
developed advanced modelling approaches for identifying poten-
tial sites for translocations78, and explored the situations in which 
invasions will be less likely and hence assisted colonization a less 
risky venture79. Furthermore, calls for the development of policies 
to address assisted colonization80 have begun to be met81,82. Overall, 
it appears that, at least in the scientific literature, assisted coloniza-
tion is gaining acceptance as a tool in the conservation toolbox and 
one that may not differ so much from other movements of species 
for conservation reasons83,84.

Future trends
The practice, and to some degree the study, of conservation is cur-
rently undergoing a major shift—a shift from a focus on nature to a 
focus on nature and people. The idea that people are a part of eco-
systems and that conservation needs to include the social sciences 
is not new and this is not the shift to which we are referring. This 
new shift is one from conserving nature for nature’s sake to con-
serving nature both for nature’s sake and for the use and enjoyment 
by people85. This shift has resulted in an apparent change in the 
missions and the actions of several major non-governmental con-
servation organizations (for example, The Nature Conservancy, the 
World Wildlife Fund, and Conservation International). Like the sub-
ject of assisted colonization, however, this shift has not been well 
received by all in the conservation community and there remains 
a heated debate in conservation circles as well as in the literature 
about the degree to which conservation should focus on the needs 
of people85–88.

The impact of this shift can be clearly seen in the way that conser-
vation organizations are addressing climate change and is reflected 
in the application of all of the approaches mentioned above. With 
respect to restoration, conservation planning, and connectivity,  

conservation practitioners have begun to target efforts that consider 
the roles that natural systems play in protecting people against 
the potential impacts of climate change89,90. These ecosystem- 
based adaptation strategies may be more cost-effective than 
hard infrastructure-based solutions. One striking example of this 
approach is The Nature Conservancy’s “flood plains by design” 
strategy in which stretches of river are restored in places that will 
simultaneously reduce flooding of nearby communities and restore 
fish habitat. Another example is the active protection of coastal 
habitats, which has the potential to reduce the risks and the costs 
of sea-level rise, providing a critical service in the face of climate 
change91.

Because climate-driven changes are likely to be so large in some 
places, climate change is in part causing conservation practitioners 
to question their goals as well as the approaches they use7. These 
new goals are beginning to take people’s needs into account. For 
example, restoration efforts are now being refocused toward eco-
system function and ecosystem services instead of the specific set 
of species in a given ecosystem19. In addition, assisted colonization 
may be called on not just to preserve threatened species, but also 
to provide certain functions—and perhaps to allow ecosystems to 
provide certain services73,92.

Given that our understanding of climate change impacts is still 
evolving, the theory and practice of conservation will likely con-
tinue to change at a relatively fast pace. One of the greatest future 
challenges to the conservation of biodiversity will likely come from 
how people respond to climate change93. Sea-level rise is forcing 
human populations to consider radical adaption action, including 
the construction of massive sea walls and the migration of coastal 
and island communities94,95. Water shortages and crop failures will 
similarly result in human migrations, shifts in agriculture, and 
increased water withdrawals. There is increasing recognition that, 
in many places, human responses to climate change may further 
constrain options for biodiversity conservation, and therefore plan-
ning needs to simultaneously consider both human and biodiver-
sity responses93. The tools that conservation practitioners have to 
address climate change (for example, conservation planning, res-
toration, species risk assessments, and assisted colonization) will 
likely be most effective if their application takes human responses 
to climate change into account.

Continued rapid climate change will also necessitate a shift from 
discussions of resistance and resilience to more strategies that 
embrace change and foster transitions96. Particularly if society 
hopes to continue to be the recipient of essential ecosystem services 
and to enjoy a diversity of plants and animals, conservation efforts 
will need to focus on smoothly transitioning ecosystems from one 
state to another. The enormity of that challenge necessitates poli-
cies and actions that reduce greenhouse-gas emissions and increase 
carbon sequestration. Unless adaptation is accompanied by mean-
ingful mitigation efforts, it will be hard for conservation practition-
ers to accomplish even their shifting and evolving goals.
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