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Abstract: Tunable diode laser absorption spectroscopy technology (TDLAS) has been widely applied
in gaseous component analysis based on gas molecular absorption spectroscopy. When dealing with
molecular absorption signals, the desired signal is usually interfered by various noises from electronic
components and optical paths. This paper introduces TDLAS-specific signal processing issues and
summarizes effective algorithms so solve these.
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1. Introduction

Sensors based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) have the advantages of
high sensitivity, high stability, high selectivity and fast response, and have been widely applied in
atmospheric environmental monitoring [1–3], medical health [4], industrial production [5,6], military
surveying [7,8] and other fields. Given that the absorption spectrum is primarily determined by
the atomic and molecular composition of the measured sample, it is a useful tool to determine the
presence of a particular substance in a sample [9–12]. Nevertheless, the performance of TDLAS systems
can be limited by many factors [13,14], especially, the measurement signal incorporates numerous
contributions from optical components (interference fringe) and electronic components [15,16].
Background errors, which are caused by background extraction, also limit the detection precision of
the system. Therefore, signal preprocessing is necessary to improve the accuracy of TDLAS-based
analytical instruments.

In the development of TDLAS, many methods have been proposed to improve system accuracy
and to measure resolution [17–22], which can be divided into two classes: software processing and
hardware-based processing. Some hardware-based approaches such as multi-pass cells, differential
schemes, and wavelength modulation techniques have been proved to ameliorate signal quality
effectively [23–26]. Besides, with the continuous evolution of data processing technology, many
data analysis algorithms have emerged in some fields [27,28]. Some of these methods have been
introduced and applied in TDLAS systems to enhance the accuracy and resolution performance.
Thereby the current review focuses more on software-based methods. Some algorithms have also been
proposed to address pertinent issues in TDLAS signals, and the applicability of these algorithms
have been experimentally demonstrated.

Sensors 2018, 18, 4295; doi:10.3390/s18124295 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4281-7417
https://orcid.org/0000-0002-7837-2408
https://orcid.org/0000-0003-3512-863X
https://orcid.org/0000-0002-8576-4733
https://orcid.org/0000-0003-1131-4913
http://www.mdpi.com/1424-8220/18/12/4295?type=check_update&version=1
http://dx.doi.org/10.3390/s18124295
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 4295 2 of 20

2. Factors Affecting the Accuracy of TDLAS

Many factors can affect the accuracy of a TDLAS system [29], such as white noise in electronic
units, interference fringes in optical components [30,31], errors in background extraction [32,33],
signal drift, and atmospheric pressure changes [34,35]. Some errors even arise from dust in light
paths [36,37] and mechanical jamming when the device is used. Among these errors, the first three
interferences are universal, and this article mainly introduces research works on these three issues.
Examples of these polluted waveforms are shown in Figure 1.
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Figure 1. Signal simulation. (a) White noise; (b) interference fringe; (c) background; (d) multiple
interference signal.

Among these problems, the most common issue is background error, which is easier to work out
but should be given priority to deal with. Interference fringes are relatively difficult to remove, and are
usually the main constraint on the accuracy of TDLAS. The noise, especially high-frequency white
noise, should be handled after the first two problems are resolved.

2.1. Denoise

The signal obtained from the TDLAS system usually tends to exhibit a limited signal-to-noise
ratio (SNR). The amplitude of absorption peak is smaller than that in other detection methods because
the gas absorption is weaker in the near-infrared than in the mid-infrared region [38]. Especially in
trace gas detection, the gas absorption signal is so weak that it can be easily submerged in various
noise and spikes. These noises may originate from TEC or lock-in amplifier, the 1/f noise or power
supply voltage jitter [39]. In this case, those algorithms that are most commonly used in general
signal processing, like the least-squares method, cannot efficiently extract the precise desired signal.
In recent years, some advanced algorithms have been proposed or introduced into TDLAS systems to
process signals with low SNR, including wavelet transform (WT) [39,40], adaptive Savitzky–Golay
algorithm [41], and empirical mode decomposition (EMD)-FCR algorithm [42]. These algorithms
have been verified to be significant for practical issues.
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2.2. Interference Fringe

The detection sensitivity of TDLAS technology is severely restricted by optical interference due to
the strong coherence of the laser [43,44]. Especially at low concentration, this disturbance leads to
baseline fluctuation and causes error in waveform extraction [45]. These optical interferences may arise
from the multiple reflections on the reflecting or scattering surfaces in the light path [43,46], which
then periodically fluctuates like a sine function in the measurement signal. Unlike the electrical noise,
optical interference like the effect of interference fringes is in the low frequency segment and exhibits
large amplitude. Distinguishing the location of signal peaks under some extreme cases may be difficult.
Even if a comprehensive algorithm, such as the WT, can perform interference fringe removal, it cannot
achieve high-precision extraction in many special situations. Some strategies for removing optical
interference have been proposed [47,48], and these targeted algorithms give better results compared
with common methods.

2.3. Background Correction

The carrier density inside the diode laser controls the light emission frequency and light emission
intensity equally due to the nature of the semiconductor laser. Hence, when the modulation current
drives the laser to sweep the absorption peak of the gas, the incident laser intensity will also be similarly
modulated. As a result, the measuring signal peak will contain a ramp known as “background”.
Before extracting useful information, the raw spectral signal must be intensity normalized, that is,
the raw spectrum is divided by the background line. For the information contained in the measurement
signal, the error caused by the background removal also causes an error in the peak and outline area of
the signal waveform, especially for the method of calculating the concentration information by using
the signal area. The error is relatively large. Therefore, the background correction pretreatment is
quite necessary. Like the removal of optical interference, background correction can be performed by
some comprehensive algorithms, such as the EMD algorithm, which can obtain some background
information by decomposing a final Intrinsic Mode Function (IMF) [49,50]. Some improvements that
add an iteration process have been proposed to achieve an accurate background correction [51,52],
and the ideas and strategies in these algorithms can be referenced to address the background problem
before other signal processes.

3. Algorithms for TDLAS Signal Processing

Algorithms applied to denoising and signal processing have been further developed, and signal
averaging is an early and simple method for signal processing [53]. Many kinds of algorithms have
been developed to denoise from different perspectives, examples of which are the linear filters based on
early filtering theory, such as the Wiener filter and Kalman filter [54,55]; the fitting algorithms based on
nonlinear regression, such as least-squares method; and some other decomposition algorithms based on
signal decomposition and reconstruction, such as empirical mode decomposition [49]. In recent years,
some novel strategies have been developed to deal with the usual signal disturbances in TDLAS.
For any denoising process, the ideal situation is to obtain a priori knowledge of a noise model
before selecting an algorithm. Therefore, algorithm classification based on noise models has practical
significance. This article will introduce some solutions addressing the three issues mentioned above.
To compare the different methods, we present the experimental performance of each algorithm in
each section.

3.1. Denoising

Noise reduction is required in various signal preprocessing techniques. In this section the
particular strengths of the WT, adaptive Savitzky–Golay algorithm, and EMD-FCR algorithm will be
introduced for their applications in TDLAS noise deduction. In addition to white noise removing,
these methods can theoretically solve other interferences to some extent. In some studies, WT [56] is
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introduced into TDLAS sign analytical process, which has been widely used in other signal processing
fields [16]. Wavelet analysis is a signal time-frequency analysis method for processing local or transient
signals. It originates from Fourier algorithm transformation, combines the concepts of signal stretching
and translation, and involves dual locality in the time and frequency domains. This variable resolution
analysis method focuses on both the low-frequency trends and high-frequency details of signals.

3.1.1. Wavelet Transform (W-T)

The wavelet-based scenarios can be an effective approach to modeling the absorption and work out
complicated signal situations because of the special characteristics of the time-frequency relationship.
The amplitude of the absorption signal peak is small and contains both high-frequency white noise
and low-frequency fluctuations which are usually caused by temperature drift and interference fringes.
WT offers a window that varies with signal frequency band, allowing different scales of noise to
be resolved into different sub-bands. As a result, time resolution improves at high frequency and
frequency resolution improves at low frequency [57–59]. Thus, wavelet denoising is a powerful tool to
extract desired signals from multiple noise pollution. However, one of the drawbacks of WT is it’s the
strong subjectivity of the choice of parameters. Human errors will greatly affect the decomposition
performance of the algorithm. In this part, we mainly introduce the studies of WT to deal with the
noise of low-SNR situation, in which the experimental process and data show significant reference
for further research, and the background removal application will be introduced later in this article.
In this paper, only the key concepts of WT are presented. Detailed mathematical treatment can be
found in the cited references. Compared with e Fourier transform (FT), WT uses a finite-length,
attenuating wavelet basis as a decomposition basis function, instead of an infinite-length trigonometric
function. By selecting different scale functions and wavelet basis, it is possible to synthesize signals
with time-domain scale discrepancy. Similarly, when decomposing a signal by wavelet basis and
decomposition scale, its localization characteristics can be mapped into different frequencies. Thus,
this method can be used to analyze non-stationary signals. Furthermore, by choosing an appropriate
threshold to filter the decomposition result and reconstruct this signal, undesired noise can be removed,
which is referred to as wavelet denoising (WD). The flow chart of the WT is shown in Figure 2.
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Figure 2. Flow chart of WT. This figure was obtained from reference [39].

Xia et al. [39] introduced WT to deal with low-SNR signal in TDLAS systems. In their experiments,
wavelet basis symlet 6 (a kind of symmetric basis function) and decomposition scale six was used,
and an approximation coefficient of a term of absorption signal was reserved and reconstructed only
at a certain frequency. After signal reconstruction, the signal without and with WD was compared.
Figure 3 shows that wavelet denoising can strikingly optimize the signal.
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Zheng et al. [40] also studied the application of wavelet-denoising-assisted wavelength
modulation technique in a TDLAS-based near-infrared CH4 detection device. Furthermore, detailed
experimental data are provided to confirm the improvement of WD for polluted signals. A comparison
between the sensing performances under the cases with and without WD use is shown in Table 1.
Moreover, the sample gas was set up in two groups, a low-concentration group (scale of 0–1 kppm)
and a high-concentration group (scale of 0–50 kppm). Experimental results demonstrated that the
wavelet denoising method has great practical significance, and especially in low-concentration gas
detection, the quality of the signal is enhanced significantly.

Table 1. Comparison between the sensing performances under the cases of with and without WD use.
Accu: accuracy; MDL: minimum detection limit; RT: response time; AD: Allan deviation. This table
was obtained from reference [40].

MDL
(ppm)

Non-Averaged Detection Range
on 4 ppm Gas Sample (ppm) Accu (%) AD (ppm)

Using WD 1 3–5 <3.8%
(C > 4 ppm)

0.08 (τ = 500 s)
0.35 (τ = 30 s)

Without
using WD 4 2.6–5.5 <6.2%

(C > 4 ppm)
0.13 (τ = 500 s)
0.46 (τ = 30 s)

3.1.2. Adaptive Savitzky–Golay (S–G) Algorithm

S–G filter is a classic smoothing denoising method [60,61] and is one of the most common
pretreatment methods in spectrum analysis [62]. Li et al. proposed a simple but robust modified
adaptive S–G algorithm for TDLAS signal processing [41], which shows unique superiority when
temporal resolution and low system cost are priorities. This approach is developed from the S–G
smoothing filter. The S–G filter using the least squares fitting coefficient as a filter response function is
a smoothing filtering method for high frequency noises. As for the basic S–G filter, its effectiveness
is strongly dependent on window size. As explained above, one of the difficulties in TDLAS signal
processing is that the noise can originate from multi-frequency components. With a fixed window
it is hard to match each of these signal segments. This new method presents a variable window and
provides two additional criteria for TDLAS signal processing to determine the optimal window size.
Compared with many preset parameters of WT, this adaptive algorithm reduces the subjective error.

The basic method of the S–G algorithm involves the following steps: (i) selecting window size
(ii) selecting a polynomial function for the data point in window (iii) correcting the data point at the
center of the selected interval by the polynomial coefficients as shown in Figure 4 and shifting the
analysis window to the right by one data point.
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Figure 4. Illustration of least-squares smoothing by locally fitting a low-order polynomial (solid line) to
five input samples: dot denotes the raw input samples, circle denotes the least-squares smoothed
samples, and x denotes the effective impulse response samples. The dotted line denotes the polynomial
approximation to centered unit impulse. This figure was taken from [41].
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The above process is repeated. In this modified approach, two criteria are introduced to work out
the optimal window size, namely, “PolyFit” and a threshold “Th”. “PolyFit” is a signal segment in a
polynomial function, which we regarded as noiseless. In a process of a segment of data, correlation
coefficient R between the “PolyFit” and the same segment in the S–G-filter-smoothed data is utilized to
assess the optimal filtering parameters instead of SNR. This condition is valid for noise reduction
but is not credible for signal preservation. The threshold “Th”, which is defined as the difference of
peak heights between “PolyFit” and the S–G filtering smoothed data, is used to ensure filtering
parameters without excessive signal distortion. Thus, each data interval can be modified under an
optimal window size, and potential signal distortion can be alleviated in signal processing. The flow
chart of the modified algorithm is shown in Figure 5.
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A series of experiments was performed to investigate the effectiveness of the algorithm and its
applicability in various situations, for example, suitability evaluation for absorption spectra with
different line shapes under the different pressures (between a few mbar and 1 bar). These experimental
results indicated that the developed algorithm is reliable for practical application, and this method
could also be used to construct an optimal calibration model for TDLAS spectra with different
background structural characteristics (linear or nonlinear baseline drift). However, when applying the
method to the simulated signals with different sampling points, one has to compromise between noise
reduction and temporal resolution.

At a concentration of 1.5% of CO2, the filter results of S–G algorithm compared with WT-based
filter are shown in Figure 6a,b. The WT-based filter shows a strong noise reduction ability, the SNR
enhancement factor is 5.5, and the S–G filter is 4.7. However, the WT-based filter requires more
parameters and costs more time.
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3.1.3. EMD-FCR Algorithm

EMD algorithm is a time domain decomposition method based on the time scale features of the
processed data [63]. EMD has been widely applied in many fields due to its excellent performance in
processing non-stationary and non-linear signals [64–67]. In theory, the EMD algorithm can decompose
any complicated signal into finite IMFs, and preset basis functions are not required. The signal
decomposition depends only on the characteristics of signal itself, which is the essential difference
from WT. Meng et al. [42] introduced the EMD algorithm into TDLAS signal processing, and proposed
an improved algorithm that combines EMD, S–G filter, cross-correlation, and signal reconstruction
(FCR), which is referred to as the EMD-FCR algorithm. This new method shows better applicability
for second harmonic signal processing.

The essence of EMD is using the thought of stationary time series (STS) to decompose a frequency
irregular wave into multiple regular waves and residual waves (original waveform = Σ IMFs + residual
wave). Each IMF must meet two conditions: (1) in the whole data set, the number of extrema and
the number of zero crossings must either equal or differ at most by one; (2) at any point, the mean
value of the envelope defined by the local maxima and the envelope defined by the local minima are
zero. In the EMD-FCR algorithm, each IMF requires being filtered by S–G filter (Figure 7b) and then
cross-correlation calculations to obtain the cross-correlation coefficients between the original signal
and each filtered IMFs.
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Finally, each filtered IMF is weighed by its corresponding correlation coefficient and then added
up to reconstruct a new signal. A portion of noise in original signal is removed by S–G filter.
The remaining noise shows a low correlation with second harmonic signal so that it accounts for
a small proportion of the reconstructed signal. Thus, the majority of the noise is suppressed.

The algorithm is assessed by simulation and experiment. In the two tests, EMD-FCR was
compared with the Wiener filter, Kalman filter, and Wavelet filter. The results indicated that EMD-FCR
performed best in both tests (Table 2 and Figure 8a). By this method, the SNR significantly improved
from 7.32 dB to 14.31 dB, and the MDL decreased from 18 ppm to 2 ppm with SNR = 3 dB.
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Table 2. SNR and residual sum of squares (SSR) of different filters. This table was obtained from
reference [42].

Filter Wiener Kalman Wavelet EMD-FCR

SNR1 (dB) 14.17 11.21 13.26 14.82
SSR1

(
V2

)
0.0287 0.3010 0.0027 0.0014

SNR2 (dB) 14.02 11.81 13.96 14.31
SSR2

(
V2

)
0.9859 0.7523 0.5943 0.2538

In further research, demodulation error experiments verified its reliability for extended
(hour lomg) work. The errors of the second harmonic intensity after 50 min was only 2.113 × 10−5 V.
Varying-concentration experiments indicated that the linear correlation coefficient of second
harmonic intensity and gas concentration was improved from 0.93290 to 0.99297 by using the
EMD-FCR algorithm.

3.1.4. Summary of Denoise Algorithm

For signal denoising, WT is a powerful tool, which can achieve a high SNR. However, the WT
algorithm relies on many parameters, such as setting the wavelet base and degree of decomposition,
which are prone to introducing subjective errors. Adaptive S–G filter is an improved version of the
SG filter whose window size and polynomial order vary with the local features of signals with high
precision. Given that most commercial software libraries include a function for the S–G filter, this
algorithm is easy to implement. However, due to its nature as a smoothing filter and its specialization
in Gaussian noise, some S–G filter experiments shows that the method may not work well if the
signal contains large fluctuations. The EMD-FCR algorithm is an improved algorithm based on
empirical mode decomposition. The filtering principle of EMD-FCR is signal decomposition and
reconstruction, which can deal with non-stationary signals well. The algorithm is also self-adaptive
because this decomposition depends on the characteristic of the signal itself. However, this algorithm
is not ideal. When dealing with scale-mutative signal, the EMD algorithm may suffer mode-mixing
problems [68–70].
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3.2. Interference Fringe

In some practical case [71,72], white noise removal algorithms cannot effectively solve the
interference fringe problem, especially when the signal is severely affected. Ensuring the accuracy of
signal extraction is hard. Therefore, after the noise reduction, the following algorithms can be
used to remove the interference fringes. The Levenberg-Marquardt (L-M) nonlinear fitting and
the semi-parametric interference-immune algorithm can perform this task, respectively, from the
perspective of the time and frequency domains.

3.2.1. L-M Nonlinear Fitting

L-M algorithm [73] is the most widely used nonlinear least-square algorithm, which uses gradient
and iteration to find the largest or smallest value and then obtains the optimal solution of the requested
parameters. Yan et al. [47] and Wagner et al. [74] used this algorithm for TDLAS curve-fitting.
This algorithm converges fast and shows both the advantages of gradient method and Newton
method [75–77]. However, one obvious drawback of L-M is that this iterative fitting requires a large
amount of computation. Given the second-harmonic signal 2f, which is not a particularly complex
function, has not too much parameter to be estimated, this method is usable for TDLAS signal
processing. However, Yan et al. [47] mentioned that the L-M algorithm requires approximately 60,000
operations in a single iteration. Thus, adequate hardware support is indispensable to guarantee this
algorithm will run well.

The specific mathematical principles of the L-M algorithm are not elaborated here because of its
extensive use. However, we simply introduce the general iteration steps:

(a) Select initial value x0 and termination condition ε, and calculate e0 =||Y− f(x0)|| and let step
length λ0 = 10−3;

(b) Compute the Jacobian matrix Jk
x, and construct the incremental equations;

(c) Solve the incremental equation, and obtain ∆k+1;
(d) If ||Y− f(x0)|| less than or equal to ek, forward to e; else let λk−1 = 10λk and go back to a;
(e) If ||∆k|| less than ε, stop iteration and output the result; else let λk−1 = 10λk and go back to b;

The baseline noise is measured first. As shown in Figure 9a, at a concentration of zero,
the measured signal still shows pronounced fluctuation after smoothing filtration, which filtered
out most of the high-frequency electronic noise.
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In non-zero concentration experiments, the fitted and actual peak amplitudes show a 15%
concentration error, which was the result of reducing the computational complexity of the L-M
algorithm. After error correction, the measured nonlinearity between the gas concentration and
the calculated concentration was 1.08%. This figure is 0.103% in the EMD algorithm experiment.
However, because of the different measurement equipment and the different functional areas of the
two algorithms, comparing these two values does not make much sense, that is, the two measurements
may not use the same smoothing algorithm.

3.2.2. Semi-Parametric Interference-Immune Algorithm

Michelucci and Venturini proposed a novel semi-parametric algorithm to eliminate the signal
distortion and background fluctuation caused by interference [36]. This algorithm shows a significant
effect for dealing with strong interference signals. Compared with some of the above time-domain
algorithms, this method starts from the frequency domain to solve the problem that the time domain
algorithm is not good at. For severely polluted signals, even though the signal amplitude is ten times
smaller than the fringes, the time-domain waveform has been severely disturbed, and the conventional
time-domain fitting makes it difficult to restore the signal itself. However, these disturbances are
easily distinguished in frequency, independently of the amplitude of the interferences. In general,
the desired signal in TDLAS system, like absorption peak and second-harmonic waveform, can be
modeled using known linear type. Calculating the DFT of model function is easy. Therefore, the DFT of
the measurement signal can be fitted to obtain the line type parameters, and entering the parameter
is not needed in this algorithm. However, for general spectrum fitting algorithms, when the signal
interference is too weak, the contribution of the undesired factors on the frequency spectrum is not
obvious and this method is hard to be applied.

This algorithm involves calculating the parameters by fitting the DFTs of model function and
measured signal using the parameters to reconstruct the corresponding line shape. The steps of
the algorithm are summarized in the figure. First, in order to improve the accuracy and reduce the
window effect when measuring the signal DFT, the author chooses Tukey window (Figure 10a) is
the compensation window [78,79] so that the signal decreases rapidly to zero on the sides. The next
step is to determinate the optimal cut-off point i0 to maximize the coefficient of determination R2

obtained by fitting the DFT for i > i0 to the functional form of the Fourier transform of the line shape.
At every measurement, the i0 is recalculated to guarantee that the algorithm will not be influenced
by fringe changes in time, solving long-time stability problems arising from changes over time of the
background, like thermal drift. Finally, DFT is fitted by using the DFT of model function to fit the
DFT of the measured signal to obtain the parameters to determine the target signal. The algorithm
flowchart is shown in Figure 10c.

In the simulation, the author simulates three background interferences to test the algorithm:
periodic disturbance, weak disturbances of large FSR, and a complex disturbance with summing of
100 cosine functions. The result of simulation shows the discrepancy between the results obtained
with the algorithm, and the expected values for the line parameters is less than 0.3%. As long as the
background interference shows no fitting obstacle in the spectrum, the algorithm can perform signal
extraction well, and this process is slightly affected by the interference amplitude.

Deliberately made interference fringes are utilized to test the practicality of the algorithm, and the
measured signal is shown in Figure 10b. Two different windows interfere with two different intensity
fringes. Despite the strong fluctuation, the extracted line shows a remarkable agreement with the
expected curves from the HITRAN database [80], with deviation of the area of 0.1%. The experimental
result is shown in Figure 10d,e.
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These experiments show that the algorithm can effectively improve the system accuracy in the
case of strong interference and solve the background fluctuation of the signal in a targeted manner.
On the other hand, additional experiments remain to be performed to test the performance of this
algorithm under the interference of other features.

3.2.3. Summary of Interference Fringe Processing Algorithm

For interference fringe problem, L-M nonlinear fitting and semi-parametric interference-immune
algorithm are two solutions discussed in this paper. The L-M algorithm fits the signal in the
time domain and is a widely utilized nonlinear least-squares method. This algorithm offers the
advantages of both the Newton method and gradient method and fast convergence. Nevertheless,
this iterative fitting requires the device to possess a high computational power. The semi-parametric
interference-immune algorithm is a spectral fitting algorithm that can cope with the difficult situation of
many time-domain analysis and presents strong immunity to strong optical interference signals.
The signal extraction is independent from the amplitude of the interference. This method requires
that the interference fringes of the measurement signal can be easily resolved in the spectrum,
if the interference fringes are small, time-domain fitting can be performed directly and does not
require spectrum analysis.

3.3. Baseline Drift

Background correction is required before signal fitting, otherwise the background will produce a
large error for some fitting algorithms. In the following sections, two background correction strategies
are introduced. These strategies adopt an iterative method to maximize the real baseline position.
These strategies may be based on some algorithmic improvements with high reference value.

3.3.1. Advanced Integrative (AI) Algorithm

The AI algorithm proposed by Skrotzki et al. [51] is a modified fitting algorithm for the
drawback of the integrative evaluation method, which calculates the molecular concentration by
the integral area of the absorption line. Thus, the baseline error is made close to zero by fitting
the no-absorption area and multiple iterations to improve the accuracy of the calculation results.
An important feature is that the AI fitting algorithm is restricted to the evaluation of single absorption
lines with precomputed line width. This feature suffers from limitations but exhibits a very fast
reaction rate, and the fitting process does not dependent on appropriately chosen start values for the
initialization, indicating its advantages in terms of robustness.

In particular, the authors compared it with the L-M algorithm and proved that the algorithm
achieves similar accuracy as the L-M algorithm under proper application conditions, and the speed
is 3–4 times faster than the L-M algorithm compared with the huge computational load of the latter.
The AI method can be applied to embedded systems with limited computing power. In conclusion,
this algorithm is an alternative for dealing with single absorption peak fitting in TDLAS systems.

Before introducing the principle, emphasizing the three assumptions and prerequisites for
applying this algorithm is necessary: (1) the incident intensity I0 (a parameter in Beer-Lambert law) is
sufficiently known; (2) measurement signal is directly given in wavenumber domain; (3) only a single
line absorption spectrum is considered.

Each iteration involves four steps (Figure 11). In Step 1, a polynomial fit is applied to the
flanks of the absorption line signal to correct the background. In Step 2, the absorption line position
m0 is determined to retrieve the full absorption line profile. In Step 3, the line area obtained by
integrate is corrected for the area within the flanks of the absorption line that are not covered by [v3]

(shown in the figure). In Step 4, Voigt fit is used to obtain a good line shape that is approximate to the
actual background.
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In the second and subsequent iterations, Step 1 aims to fit the previous iteration by the same
method, and the other steps are performed in the same manner discussed in the procedure described
above. After multiple iterations, the precision of line area and line position continues to increase.

In this experiment, six iterations were necessary to fulfill the terminating conditions the author
has chosen, yielding a fit precision of the line area A6 of at least 10−3 and of the line position v6 of at
least 10−4, respectively. Each iteration’s results are shown in Table 3.

Table 3. Evolution of the relative deviation of absorption line area Ai and position mi from the
prescribed ‘true’ values together with the signal-to-noise ratio S/N3σ,i for each iteration of the AI fit.
This table is from [41].

Iteration i Rel. Dev. Line Area Rel. Dev. Line Position S/N3σ,i

1 0.118 4 × 10−4 12
2 0.038 3 × 10−4 38
3 0.012 3 × 10−4 119
4 0.004 2 × 10−4 339
5 0.001 2 × 10−4 726
6 <0.001 1 × 10−4 1060

The AI and L-M algorithms were used to compare the water vapor measurement experiments.
The average relative deviation of the two algorithms was 0.1 ± 0.2%, and the peak relative deviation
was maintained within the range of ±0.7%. Figure 12 shows the dynamic response of the relative
deviation and SNR with the dynamic variation of H2O concentration. Moreover, typical computational
times obtained for the AI algorithm were 100–200 µs for the full evaluation of an absorption line profile.
On the other hand, if the absorption line profile in the measurement signal was very unsatisfactory,
it may not ideally converge. In the article, the authors summarize the characteristics of the two
algorithms in terms of stability, speed, and flexibility, as shown in the figure, which can be a reference
in practical applications.
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3.3.2. Wavelet-Based Method for Baseline Drift

An AI algorithm calculates the background line by fitting the no absorption flanks. However, for
poor-quality spectra, distinguishing the no absorption area using direct visual inspection (DVI) is hard.
A new strategy was proposed by Li et al. [52], using wavelet decomposition and iteration to remove
drift background. The application of WT for TDLAS signal denoising has been introduced, but the
above studies tend to solve high-frequency noise, such as white Gaussian noise. This method uses WT
based on the optimal wavelet pairs to find baseline and uses iteration to determine the precise location.
In addition to the solution to the baseline drift, the strategy of separating the process of denoising and
removing background is also meaningful. Unlike the block threshold strategy [81], this method uses
different wavelet and decomposition levels to deal with noise and baseline. The characteristics of the
two types of interference are considered and which of the two types shows a strong sense of reference
is discussed.

In this method, denoising is separate from baseline removal regardless of their order. To remove
the background, it is found that the wavelets bior2.2 or bior3.3 are good candidates for denoising
TDLAS signals. A higher decomposition level than the optimal decomposition level for denoising
was performed first. All detail coefficients were set to zero, and the approximation coefficients were
used to reconstruct the signal. In this manner, a main background is obtained. The raw signal from
the main background is subtracted, decomposed, and reconstructed. The iteration is repeated until
the background reaches a precision calculated by root mean square error. Typically, this procedure
is finished within 10 iterations. After removing the background, wavelet Daubechies7 is used for
denoising. Conversely, an optimal decomposition level than the high decomposition level for denoising
was first performed, and the best decomposition level between 5–7 was selected. The noise was then
removed by decomposition and reconstruction. Figure 13 shows that the simulation results of the
algorithm were very successful, the background was effectively corrected while preserving primary
useful information, and the SNR was significantly improved.
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Figure 13. Nonlinear baseline correction and denoising using DWT. (a) Noisy signal with apparent
baseline drift; (b) baseline drift removed signal from (a) and noise-free signal; (c) raw noise and
wavelet-removed noise; (d) denoised signal from (a); (e) baseline drift removed signal from (d) and
noise-free signal; (f) raw baseline and wavelet-removed baseline. This figure was obtained from [52].

The CO2 absorption experiment, which is shown in Figure 14, demonstrates the effectiveness of
this algorithm for solving baseline drift problems. The calculated SNR in DVI and DWT are 131.3 and
781.8, respectively.
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Figure 14. (a) Experimental spectrum of CO2 (pressure = 140 mbar; path length = 4800 cm;
mixing ratio = 1.0%; temperature = 292.95 K) and wavelet–denoised signal; (b) Baseline drift removed
transmittance signals using DVI and DWT, as well as the Voigt fit; (c) DWT removed noise; (d) DWT
removed baseline with noise and DVI removed baseline. Parts of the “baselines” are expanded for
clarity and statistical noises are also provided in the inset. This figure was obtained from [52].
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3.3.3. Summary of Background Removal Algorithms

In background correction, both the AI algorithm and the wavelet-based schemes improve the
accuracy by introducing an iteration process. The AI algorithm corrects the background iteration
through the absorption line area. The algorithm is very lightweight and suitable for solving the
simple case of a single absorption peak, which poses the advantages of small calculation and fast
speed. The latter uses decomposed wavelet background correction and iteration. In this strategy,
the authors separate the background correction from denoising and use different wavelet and
decomposition levels to process the background and the noise, respectively, which demonstrates
flexible utilization of WT.

4. Conclusions

When dealing with TDLAS signals, optical factors, electronic factors, and the nature of the
semiconductor lasers can cause disturbances. These common problems are summarized in three
models: signal denoising, interference fringes, and background correction. In the above article, we have
reviewed and compared some effective algorithms based on resent research works. Representative
experiments were presented to evaluate the performance both qualitatively and quantitatively.

In essence, these signal problems are interferences superimposed on the original signal.
These interferences are classified into three noise models for reduction due to the differences in
spectral characteristic. Electrical white noise is a multiple frequency signal with a small amplitude,
whereas interference fringes show concentrated frequency and large amplitude, and baseline drift
is a ramp signal close to DC. Therefore, different strategies must be selected to deal with different
signal models. For example, the adaptive S–G algorithm, which utilizes shift windows, can eliminate
high-frequency/low-frequency well. By contrast, low-frequency and high-amplitude interference
noise is difficult to remove with smoothing algorithms, but interference fringes are easy to process
in the frequency domain by using a semi-parametric interference-immune algorithm. Nevertheless,
the strategy involved in the algorithm must not be limited to the algorithm itself, like the schemes of
correlation coefficient weight method, iteration, adaptive improvement, and problem decomposition,
which can offer a foothold to solve any problem.

In comparison, signal decomposition and reconstruction-based algorithms, such as WT and
EMD-FCR, can partly deal with all the three noise models because of their properties, such as
multiscalability. When using WT, the selected parameters show remarkable effects. Therefore,
when comparing algorithms, the details of experiments should be given particular importance.
In future research, we expect that additional flexible strategies of signal decomposition and
reconstruction algorithms will be developed to broaden their application for a wider variety of
noise models.
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