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Abstract: Significance analysis of microarrays (SAM) provides researchers with a non-parametric
score for each gene based on repeated measurements. However, it may lose certain power in general
statistical tests to correctly detect differentially expressed genes (DEGs) which violate homogeneity.
Monte Carlo simulation shows that the “half SAM score” can maintain type I error rates of about
0.05 based on assumptions of normal and non-normal distributions. The author found 265 DEGs
using the half SAM scoring, more than the 119 DEGs detected by SAM, with the false discovery rate
controlled at 0.05. In conclusion, the author recommends the half SAM scoring method to detect
DEGs in data that show heterogeneity.

Keywords: gene expression; heterogeneous data; significance analysis of microarrays

1. Background

Microarray experiments are conducted for the detection of differentially expressed
genes (DEGs), identification of genes with a specific function, and clarification of genetic in-
teraction networks using series of data points. Microarray data are produced via replicates
through two different scenarios [1]. One of these scenarios consists in comparative experi-
ments that show gene expression levels in two different groups (“control” vs. “treatment”).
Carefully constructed comparative experiments can precisely detect DEGs between the
two different groups. Another scenario could be that uncertainties in microarray data
may arise from various sources, including measurement and data preprocessing [2] (i.e.,
non-biological variation during experimentation). For example, fold change is a rough
method that is often used to distinguish changes in the expression levels of individual genes
in a microarray [3]. Next-generation sequencing (NGS) has become a widely used tool,
fueling a revolution in biomedical sciences by addressing the need to generate inexpensive,
reproducible, and high-throughput nucleic acid sequence data [4,5]. The pattern of gene
expression in a cell/tissue can broadly reflect its functional state. NGS-based expression
profiling by sequencing of RNA (i.e., RNA-Seq) encompasses quantitative gene expression
profiling and the discovery of novel transcribed sequences [6]. In addition, differential
expression (DE) analysis is commonly used to compare the transcriptomes of two or more
groups of samples. Fortunately, statistical analysis can be used to distinguish true changes
from random variation by the calculation of significance values (i.e., p-values).

Various statistical approaches can be used to determine whether the null hypothesis is
acceptable if the population or distribution is the only sampling source for two samples.
In the last 15 years, innovative alternatives that rely upon either parametric or nonpara-
metric approaches have been developed by many researchers. For example, the Wilcoxon
rank-sum test or rank products for non-parametric tests have been applied extensively to
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microarray data [7–9]. Student’s t-test is one of the parametric tests used to analyze microar-
ray data after verifying certain assumptions (“normality” and “homogeneity”). Repeated
experiments were limited due to the great expense of experiments in the early period, so
alternative approaches relying upon Bayesianism were developed, using small samples to
calculate p-values by an empirical Bayes method [10,11]. The count data generated from
digital gene expression experimentation, such as serial analysis of gene expression and
RNA-seq, demonstrate more variance than is expected from a Poisson distribution model
(overdispersion) [12], leading to an increase in type I error (false positives) in DE analysis.
This observed overdispersion should be compensated prior to DE analysis because tradi-
tional DE algorithms, such as Student’s t-test and analysis of variance, assume normally
distributed data. Several software packages can perform this task by utilizing different
methodologies; these include DESeq [13], edgeR [14], Cuffdiff2 [15], and linear models for
microarray analysis (LIMMA) [11]. After evaluating various methods, I also settled on
LIMMA for DE analysis. The flexibility in the LIMMA package [16] allows us to model
many different experimental factor configurations, minimize type I errors, and permit the
correction of experimental batch factors. The final steps in DE analysis are to filter the
data for fold change and determine the statistical significance. I initially set thresholds to
twofold or greater change and a false discovery rate (FDR) of less than 5%. Furthermore,
state-of-the-art algorithms like edgeR, DESeq2 [17], Sleuth [18], and so on. In particular,
Sleuth is a method which is capable of including the technical errors of newer aligning
algorithms into the model. However, violation of the homogeneity assumption may reduce
the power of general statistical tests in detecting DEGs in heterogeneous diseases [19]. The
definition of a heterogeneous disease is various morphological features and clinical behav-
iors exhibited due to a multitude of etiological entities. Heterogeneous diseases include
acute lymphoblastic leukemia [20], primary thyroid lymphoma [21], otosclerosis [22], and
colorectal cancer [23]. Heterogeneous diseases may cause a gene to be overexpressed in
some cases, but expressed normally or underexpressed in the remaining cases. The case
group exhibits higher variance than the control group due to multimodality. The traditional
Student’s t-test could not be used to detect the gene in such a scenario. However, the “half
Student’s t-test” may have greater power under conditions of heterogeneity.

Significance analysis of microarrays (SAM) prepares scores for each gene depending
on changes in gene expression connected to the standard deviation derived from repeated
measurements [3]. To identify DEGs from heterogeneous data, the “half SAM” is proposed.
The half SAM is adapted to adjust the moderated t statistic for heterogeneous data from the
population distribution. The proposed approach is derived from components of the SAM
and half Student’s t-test [24]. The null compliance hypothesis asserts that gene expression
data from the case and control groups have equal distribution (i.e., the means, variances, or
both are equal). To my knowledge, the null compliance hypothesis means no meaningful
clinical difference between the two groups in terms of distribution compliance with the
source population. The alternative hypothesis asserts that the means, variances, or both
differ between the two groups. In this study, it was assumed that the mean response in the
case group shows an increase in variability, accordingly.

I performed a Monte Carlo simulation to determine the statistical features for various
methods, including Student’s t-test [25], half Student’s t-test [24], SAM [3], and half SAM,
and a gene expression dataset of colon cancer was analyzed to provide a demonstration [26].
The implicit assumptions, structure of the proposed method, complexity of the computation,
and usability for microarray data [27] are discussed in this study.

2. Materials and Methods

For a gene expression dataset, the terms n1, X1, and s1 for the case group denote the
sample size, sample mean, and sample standard deviation, respectively. The terms n0, X0,
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and s0 denote the same for the control group. The conventional Student’s t-test, denoted ts
and used to detect DEGs, is as follows:

ts =
X1 − X0

sp

√
1

n1
+ 1

n0

where sp =
√

(n1−1)s1
2+(n0−1)s0

2

n1+n0−2 defines the pooled standard deviation. The ts statistic
obeys a Student’s t distribution encompassing n1 + n0−2 degrees of freedom (df) under
assumption of normality.

SAM is a popular method for modification of the conventional t-statistic. The modified
statistic is defined as

dSAM =
X1 − X0

sp

√
1

n1
+ 1

n0
+ c0

where c0 is used to guarantee the difference in the coefficient of variation of dSAM to be
minimized within classes of genes under approximately equivalent variance.

Recently, the half Student’s t-test, using the standard deviation of the control group,
was used to solve the heterogeneity issue. The half Student’s t-test statistic is defined as th
as follows:

th =
X1 − X0

s0

√
1

n1
+ 1

n0

The normality assumption for th obeys a Student’s t distribution encompassing n0 − 1
df when the null hypothesis is correct.

I modified the scoring for the SAM and the half SAM as follows:

dh =
X1 − X0

s0

√
1

n1
+ 1

n0
+ c0

where dh involves s0 only. For the stable adjusted term c0, the score dh does not follow a
Student’s t distribution. (For more details on the calculation of c0, refer to the Appendix A)
Figure 1 illustrates the workflow of the half SAM calculation in this study.

2.1. Monte Carlo Simulation

The free statistical software R [28] was used for testing and analysis in this study. One
thousand genes with small sample sizes of 20 (n0 = n1 = 10) were simulated. The term md
denotes the difference in the means between the two groups and was set to 0, 10, and 15.
Notation r denotes the standard deviation ratio of the case to the control and was set to 1,
1.5, and 2. Moreover, s0 was set to 15. Gene expression levels were assumed to follow a
normal distribution. The normality assumption is usually applicable for empirical gene
expression data [24]. Three scenarios following a non-normal distribution were considered:
(1) a symmetric and non-normal distribution; (2) a right-skewed distribution; and (3) a
left-skewed distribution. The uniform distribution was used as the symmetric and non-
normal distribution. The Gamma distribution was used as the right-skewed distribution.
The Gamma distribution multiplied by −1 and added with double the expected value of
the initial Gamma distribution was used as the left-skewed distribution.

In general, “heterogeneous data” usually refers to the situation where the data con-
sist of multiple subgroups of patients with different characteristics. I also considered a
simulation scenario where the gene expression for the case group is generated from a
mixed distribution, with different mixture components representing the heterogeneity of
individuals’ expressions in the case group.

For each setting, Student’s t-test, SAM scoring, and half SAM scoring were performed
under 1,000,000 simulations. Details on the simulation procedure are provided in previous
publications [8,19].
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Figure 1. Workflow to identify differentially expressed genes in this study.

2.2. An Example for Demonstration

Alon et al. provided a colon cancer dataset [26] which I analyzed to provide a demon-
stration in this study. The colon cancer dataset (downloadable at http://genomics-pubs.
princeton.edu/oncology/) is a set including measurements of the expression of 2000 genes
from 62 samples. In addition, the data comprise 40 colon cancer tissue case samples and
22 healthy tissue control samples. Details on the arrays of oligonucleotides providing colon
cancer data are provided in my previous publication [8].

http://genomics-pubs.princeton.edu/oncology/
http://genomics-pubs.princeton.edu/oncology/
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3. Results
3.1. Simulation Results

Type I error and power as a percentage calculated at a significance level of 0.05 are
presented in Table 1. Student’s t-test, half Student’s t-test, half SAM, and SAM maintained
type I error rates of about 0.05 for all settings of distributions and at each significance level
with small sample sizes (n0 = n1 = 10) for the two groups. However, the type I error rates
of the ts, dSAM, and dh statistics were much lower than the significance levels for small
sample sizes under a left-skewed distribution.

Table 1. Type I error rates and statistical power for Student’s t-test, significance analysis of microarrays (SAM), and half
SAM in normal and non-normal distributions.

Power %
(Type I
Error)

n0 = n1 = 10 & md = 0 n0 = n1 = 10 & md = 10 n0 = n1 = 10 & md = 15

t-Test Half
t-Test SAM Half

SAM t-Test Half
t-Test SAM Half

SAM t-Test Half
t-Test SAM Half

SAM

Normal distribution

r = 1 (0.02) (0.05) (0.04) (0.05) 28 30 31 36 60 62 63 65
r = 1.5 4 5 6 12 14 36 35 39 39 60 60 64
r = 2 7 9 10 15 8 39 42 44 28 46 48 52

Non-normal distribution

r = 1 (0.05) (0.05) (0.04) (0.04) 28 36 37 38 55 60 64 66
r = 1.5 8 9 9 10 19 34 33 38 38 51 52 55
r = 2 7 14 15 19 14 41 44 46 19 44 53 57

Skew-to-right distribution

r = 1 (0.03) (0.05) (0.03) (0.04) 28 30 31 35 46 47 48 52
r = 1.5 7 11 12 13 17 40 38 42 37 61 60 62
r = 2 4 13 13 15 9 39 39 43 24 54 55 57

Skew-to-left distribution

r = 1 (0.03) (0.04) (0.03) (0.03) 21 31 31 40 55 55 55 61
r = 1.5 6 10 9 11 20 35 34 38 39 62 61 65
r = 2 5 13 14 15 12 43 42 44 30 61 60 63

In Figure 2, it can be seen that the power performance of half SAM and SAM was
similar under non-normal distribution scenarios, especially for r ≤ 1.5. Besides this, half
SAM was more powerful than SAM overall when r ≥ 1.5 and md > 0. The maximal
difference in power between half SAM and SAM was about 9% under skew-to-left dis-
tribution scenarios with md = 15 and r = 1. Note that both score tests (dh and dSAM)
had some power for identifying differences between variances when md = 0, with power
increasing as r increased. However, when r increased for md = 15, both score tests’ power
marginally decreased.

Since 1000 genes in total with small sample sizes (n0 = n1 = 10) were simulated,
I constructed a comparison of control of the FDR based on different statistics (ts, ds, and
dh) to declare the statistical power performance in a Monte Carlo simulation (Figure 3).
After controlling the FDR at 0.05, half SAM was still more powerful than the other statistics
under a non-normal distribution when md = 1 and r = 1.

Table 2 presents the respective numbers (percentages) of DEGs identified by Stu-
dent’s t, SAM score, half Student’s t, and half SAM score. Four significance levels—0.05,
0.01, 0.005, and 0.001—were examined. It should be remembered that the scorings of dSAM
and dh did not follow a Student’s t distribution. For a fair comparison, I adopted bootstrap-
ping to evaluate the empirical performance of permutation testing through statistics [29]
(ts, dSAM, th, and dh). I found that the SAM scoring method detected a similar number of
DEGs to Student’s t-test, for all significance levels. However, the half SAM score detected
more DEGs than Student’s t at each significance level.
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Figure 2. The difference in power (%) between half SAM and SAM (or half Student’s t-test and Student’s t-test) under small
sample sizes for n0 = n1 = 10 with s0 set to 15.
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Figure 3. The difference in power (%) between half SAM and SAM (or half Student’s t-test and Student’s t-test) after
controlling the FDR at 0.05.
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Table 2. Number (percentage) of differentially expressed genes detected by the various test methods in colon cancer data.

Test Methods

Student’s t-Test SAM Score Half Student’s t-Test Half SAM Score

Level of significance
0.05 470(23.50%) 470(23.50%) 554(27.70%) 576(28.80%)
0.01 239(11.95%) 240(12.00%) 300(15.00%) 334(16.70%)

0.005 179(8.95%) 177(8.85%) 250(12.50%) 280(14.00%)
0.001 74(3.70%) 85(4.25%) 141(7.05%) 178(8.90%)
FDR
0.05 107(5.35%) 119(5.95%) 216(10.3%) 265(13.25%)

Moreover, I also considered a simulation of the gene expressions generated from a
mixed distribution (details not shown). I found that half SAM was still more powerful than
the other statistics (Supplementary Materials Table S1).

3.2. Main Results for Colon Cancer Data

A total of 2000 genes from these datasets were considered for multiple comparison
testing. The FDR [30] was controlled at 0.05. It was found that the half SAM score could
detect 265 DEGs when the FDR was controlled at 0.05—more than the 119 DEGs detected
by the SAM score.

3.3. Main Results for RNA-Seq Data

Because RNA-Seq experiments are a more common approach for transcriptome profil-
ing, I performed a comparison of the proposed half SAM and SAM scores in DE using the
RNA-Seq data from Himes et al. [31]. A total of 33,469 treated genes from airway datasets,
extracted if assay of the genes was greater than 0 for summation of the count of eight
sequence segments (SRR1039508, SRR1039509, SRR1039512, SRR1039513, SRR1039516,
SRR1039517, SRR1039520, and SRR1039521) for comparison, with the FDR controlled at
0.05. The analysis results (refer to Figure 4) show that the half SAM score is more powerful
than the SAM score when utilized with RNA-Seq airway data [31]. We may attribute this
to the heterogeneity of airway data. These results indicate a greater impact due to the
improved performance of the “half SAM” method when analyzing any publicly available
RNA-Seq dataset.

Figure 4. A comparison in terms of power (%) between half SAM and SAM using RNA-Seq data for analysis. (Black: SAM;
Green: Half SAM)
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4. Discussion

There are two main methods for generating a whole transcriptome gene expression
profile of tissues or cultures, namely, expression microarrays and next-generation RNA-Seq.
The prevalence of microarrays has been steadily declining since its heyday, after it was
developed in 1995. RNA-Seq has been widely used in the past decade, and it continues to
be popular. Considering the role and advantages of RNA-Seq, such as detection of novel,
unannotated genes, this is not surprising. A mixed model [32] approach which follows
empirical Bayes approaches [33] and SAM can be used in practice for real data. Specifically,
an empirical Bayes approach is adopted in LIMMA [11] to estimate a hyperparameter of
the denominator. Theoretically, LIMMA [11] uses an empirical Bayes moderated t-test,
computed for each probe, which is similar to a t-test, except that the standard errors are
shrunk towards a common value. To my information, SAM handled RNA-Seq data [34] was
competitive to popular parametric methods (i.e., edgeR and DESeq). It is worth mentioning
that machine learning methods have also been widely applied to microarray data and
RNA-Seq data [35]. For example, InfoGain [36] feature selection may be more powerful
and robust in the detectability of DEGs.

This study found that the half SAM score test fairly maintains the nominal α level for
use on data with a normal or skewed distribution when the standard deviation ratio is large
enough (i.e., r > 1), and that the half SAM score is more powerful than the SAM score. This
indicates that the half SAM score test is applicable for studying arrays of oligonucleotide
data of heterogeneous diseases. In fact, more than one entity is present in a heterogeneous
disease, causing various clinical presentations or etiologies which may lead to the standard
deviation ratio being larger than 1 (i.e., when the standard deviation of case samples is
greater than that of the control samples). Moreover, the percentage of DEGs seems to rise
considerably with both the half Student’s t-test and half SAM score (Table 2). Both the
half Student’s t-test [24] and half SAM score were proposed as modifications of traditional
approaches (i.e., Student’s t-test and SAM score) for heterogeneous diseases. In addition,
I provided Venn diagram (Figure 5) of DEGs under four test methods (at significance level of
0.05) in colon cancer data. Proposed half SAM detected at least 97% (i.e., 453/470 = 0.9702)
overlap in DEGs match the baseline (set as the Student’s t-test marked yellow in Figure 5).
The half SAM detected the highest number of novel DEGS (i.e., 16) compared to other
methods. For sensitive examination, I constructed similar Monte Carlo simulations, but
with unequal sample sizes (i.e., n0 6= n1). I found that the SAM score and other tests can
still maintain quite low type I error rates under all situations with unequal sample sizes.
The half SAM score also has more power than other tests under situations with unequal
sample sizes.

Figure 5. Venn diagram of differentially expressed genes detected by the various test methods in colon cancer data at a
significance level of 0.05.
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SAM can be used to detect genes that show significantly different expression between
sets of samples (“control” and “treatment”). In this study, SAM was implemented for two-
class unpaired analysis (“control” vs. “treatment”). For each gene, I computed score values
(dSAM or dh, analogous to Student’s t). Using a permutation test procedure, I calculated
the number (percentage) of DEGs identified by each of the investigated test methods. The
rationale behind the use of SAM is that any genes designated as significant based on the
randomized data are being identified purely by chance.

Note that the microarray data in the original scale are right-skewed. Based on simula-
tion results, researchers may analyze microarray data in the original scale (corresponding to
a non-normal distribution or mixed scenario) or log-transformed scale data (corresponding
to a normal distribution scenario) under the proposed DEG method with greater statistical
power. Therefore, I clarified the half SAM method applied on the original-scale data or
log-transformed data.

SAM uses the principle of permutation to use a given sample to derive the theoretical
sampling distribution of the test statistic. In practical problems, the test statistic’s exact
sampling distribution is often not available, and the approximate sampling distribution can
be estimated by a random number (or combination) of a large number of repetitions based
on the sample. In practice, it is difficult for researchers to determine an appropriate test
statistic to detect DEGs. For example, I found 389 DEGs under the LIMMA package [16]
installed by R software with colon cancer data. The number of DEGs varied with different
design matrix settings. If researchers are not familiar with design matrix settings [37] of
LIMMA [11] for gene expression analysis, they may receive overestimated results (i.e.,
almost all genes, about 1,898 DEGs, showing as significantly differentially expressed).
Returning to practice in this study, the author suggests that researchers use both the SAM
and the half SAM to compare results when gene expression data show heterogeneity.
Moreover, when the heterogeneity of the gene expression data is undetermined, the author
suggests that researchers should not use both score tests simultaneously in the beginning.

There are some limitations in this study. First, anyone can claim superiority only by
improving sensitivity, but advice on limited experiments was not modified in the statistical
approach. Conclusion may be logically inferred from Figure 4 of Alon’s [26] research. The
devices used in Alon’s study [26] for data acquisition were not used during the heyday
of microarrays. Regarding the device (the Affymetrix GeneChip), various preprocessing
methods such as robust multi-array averaging [38] and the multiplicative model-based
expression index [39] have been proposed to obtain a gene expression matrix from probe-
level data (i.e., CEL files which created by Affymetrix DNA microarray image analysis
software). The result varies considerably depending on which preprocessing method is
used [40]. Second, the author focused on a comparison of t statistic-like approaches (i.e.,
Student’s t, SAM score, half Student’s t, and half SAM score) for fairness. Finally, the author
acknowledges that functional annotation of these 146 DEGs (i.e., 265 − 119 = 146 under
the FDR in Table 2) would show whether half SAM is able to detect genes implicated in
different biological pathways or if they are associated with the same pathways identified
by the other methods (i.e., SAM or half Student’s t).

5. Conclusions

Microarray experiments are conducted for the detection of different gene expression
levels to target pathogenic genes for diseases. However, they may lose certain power when
used with general statistical tests to adjustably detect DEGs which violate homogeneity. The
half SAM score could identify 265 DEGs, more than the 119 DEGs detected by SAM, when
the FDR was controlled at 0.05. The half SAM scoring method could be applicable for the
identification of DEGs in heterogeneous diseases. In conclusion, the author recommends
the half SAM scoring method to detect DEGs in data that show heterogeneity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-442
6/11/2/62/s1. Table S1: Type I error rates and statistical power for Student’s t-test, SAM, and half
SAM in mixed normal and mixed non-normal distributions.

https://www.mdpi.com/2075-4426/11/2/62/s1
https://www.mdpi.com/2075-4426/11/2/62/s1


J. Pers. Med. 2021, 11, 62 10 of 12

Funding: This research was funded by Taipei Tzu Chi Hospital; grant number TCRD-TPE-109-
39 (1/2).

Institutional Review Board Statement: Ethical review and approval were waived by the Institu-
tional Review Board (IRB) of Taipei Tzu Chi Hospital for this study on 31 October 2019, due to
secondary data analysis for this study.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available at
http://genomics-pubs.princeton.edu/oncology/, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE52778.

Ethics Approval and Consent to Participate: This study was approved by the research ethics com-
mittee of Taipei Tzu Chi Hospital (approval no. 08-W-114).

Conflicts of Interest: The author declares no competing interests with any organization with a direct
or indirect financial interest in the subject matter discussed in the manuscript.

Appendix A

Computation of c0.
Tusher et al., (2001) proposed SAM for finding significant genes in a set of microarray

experiments. SAM produces a statistic, dSAM,i = ri
Si+c0

, for each gene i, which mea-
sures the strength of the association between gene expression and the response vari-
able. For two groups and unpaired data, ri is defined as the difference in means, and
Si is calculated by the pooled standard deviation, SP. For each gene i, Si equals to

sp

√
1

n1
+ 1

n0
, sp =

√
(n1−1)s1

2+(n0−1)s0
2

n1+n0−2 , S1, is the standard deviation for the case group
with sample size n1, S0 is the standard deviation for the control group with sample size n0,
and c0 is a fudging factor. The modified SAM statistic is presented as dh,i =

ri

s0,i

√
1

n1
+ 1

n0
+c0

of gene i using the sample standard deviation of the control group only.

1. Let da
h,i =

ri

s0

√
1

n1
+ 1

n0
+ca

and let ca be the αth percentile of the s0

√
1

n1
+ 1

n0
values.

2. Compute ca for α ∈ (0, 0.01, 0.02, . . . , 1.0) for the 100 quantiles, in turn, of the

s0

√
1

n1
+ 1

n0
values denoted by q1 < q2 < . . . < q100.

3. Consider α′ ∈ (0, 0.05, 0.10, . . . , 1.0) for the 20 quantiles in turn.

(1) Let vj = mad(dd
h,i|s0,i

√
1

n1
+ 1

n0
∈ [qj, qj+1)) divided by 0.64, j = 1, 2, . . . , n

where mad is defined as the median absolute deviation from the median.
(2) Let the coefficient of variation of the vj values be denoted as cv(α′).

4. Determine ĉ0 according to certain cα̂ via the criterion α̂ = argmin [cv(α′)]. The fudging
factor c0 is determined by the value ĉ0 in the end.
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