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Abstract

Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding
affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-
stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity
by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of
somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were
computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state
design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and
CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by
computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with
a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to
bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural
antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important
aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of
mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework
that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of
binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.
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Introduction

Antibodies are the primary effector molecules in the humoral

immune system, inhibiting pathogenicity of microbes by binding to

surface-exposed elements on foreign particles [1]. Antibodies are

encoded by the rearrangement of variable (V), diversity (D), and

joining (J) gene segments into recombined genes that encode a

large but ultimately finite number of unmutated antibody

structures, known as the germline repertoire [2]. There are

approximately 104 combinations of the V, D, and J heavy chain

gene segments and an estimated 1011 possible combinations when

junctional diversity is considered [3]. This number of potential

antibodies is far less than the number of epitopes on foreign

antigens to which one could be exposed. The germline gene

repertoire therefore encodes a finite number of starting structures

in the germline repertoire that must be capable of recognizing a

large and diverse array of antigens [3–5]. The immense breadth of

binding of the antibody repertoire is achieved by structural

diversity in the antigen-binding site.

The lock-and-key model of binding between two rigid proteins,

dominated the antibody field for many years [6,7]. Somatic

mutations acquired during affinity maturation refine the pre-

bound structure of a specific antibody to bind optimally to a single

particular antigen. In contrast, the conformational flexibility

hypothesis suggests that germline gene-coded antibodies retain a

degree of structural plasticity in their backbone in order to bind a

number of different unrelated antigens, a capacity referred to here

as polyspecificity. Although polyspecificity has been demonstrated

in a variety of biochemical and structural studies, the molecular

mechanism that antibodies use to achieve polyspecificity remains

poorly understood [4,8–10]. For antibodies, a large body of work

has attributed polyspecificity to the nature of their germline gene

sequences. It has been reported that polyspecific antibodies often

retain a larger proportion of germline gene sequences than more

specific antibodies [6,11–13].

The conformational flexibility concept in protein binding

suggests that an unbound protein assumes a variety of conforma-

tions, a subset of which is recognized by the interacting partner.

The induced-fit model hypothesizes that upon binding conforma-

tional changes are induced to accommodate the interacting

structure (reviewed in [6,9]). Originally introduced as an extension

to the lock-and-key model to explain conformational changes in
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presumably rigid structures upon interaction, the induced fit

model can also be combined with the conformational flexibility

concept to allow for additional small conformational changes in

the interacting subset of structures [14,15]. Conformational

flexibility is emerging as an important hypothesis to explain

polyspecificity and changes in affinity between germline and

mature antibody sequences [3,6–10,16–28]. Kinetic experiments

with antibodies show a triphasic distribution that, in some cases,

appears to reflect the existence of multiple conformations of the

unbound antibody in solution [9]. More recently, structural studies

along with computational tools have corroborated these findings

by showing that antibodies encoded by germline gene sequences

retain flexibility in their CDR3 loops [24,29]. For example, Babor

et al. redesigned germline or mature CDR3 loops in antibodies that

had been crystallized in free or antigen-bound states [29]. These

investigators found that germline gene-encoded CDR3 sequences

are nearly optimal for conformational flexibility. The study, while

exceptional in its concept, was limited as the dataset contained

many antibody/hapten complexes, which may not reflect the

biology of interactions with larger protein targets that are more

typical in foreign pathogens. Some antibodies classified as

‘‘germline’’ in the study were not from antigen-naı̈ve cells.

Further, that study exclusively analyzed the CDR3 loop, not the

entire variable region.

Schmidt et al. have recently used molecular dynamics simula-

tions and structural analysis to determine how mutations in the

antibody variable domain enhance antigen binding to influenza

HA [30]. In the study, they found two broadly neutralizing

antibodies that have branched in lineage from a common

intermediate, and an unmutated common ancestor (UCA) in

which they obtained high-resolution crystal structures. They found

that even though the UCA and mature antibodies have nearly

identical binding configurations, the affinity for influenza for the

mature antibodies was 40-fold greater than the UCA. Molecular

dynamics simulations predicted that the paratope in unbound

UCA was not in an optimal conformation for binding, while the

mature antibodies had a higher probability of being pre-

configured for the influenza HA epitope.

The present study complements the work of Babor et al. and

addresses some of the limitations by focusing on a limited set of

germline VH-genes that are commonly used in antibodies that

bind diverse antigens. The VH-gene encodes the CDR1 and

CDR2 loops and much of the immunoglobulin framework regions

but not the CDR3 loop. We hypothesized that the conformational

flexibility mediating the polyspecificity of germline gene-encoded

antibodies is determined at least in part by the heavy chain

variable region encoded by the VH gene. The focus of the current

study was to test this hypothesis using computational design.

Specifically, we analyzed the somatic mutations in sets of mature

antibodies that derived from the same VH gene and for which co-

crystal structures with biologically relevant target proteins were

available.

Sets of mature antibody-antigen complexes incorporating

antibodies that derived from a common germline VH gene were

input into the Rosetta ‘multi-state’ design algorithm that recovers

the optimal single sequence for an antibody to bind all antigens

simultaneously [29,31,32]. The sequences recovered were consid-

ered inherently flexible, since they were predicted to accommodate

binding to diverse antigens using a structurally diverse set of

antibody conformational states. Remarkably, the derived sequenc-

es matched the germline VH gene sequence to an unexpectedly

high degree. Further, we found that even residues within the

antibody framework distal from the antigen-antibody interface

were critical for polyspecificity.

In contrast, when each antibody was designed for binding to a

single antigen, using a ‘single-state’ design approach, the mature

sequences of antibodies were recovered, suggesting that mature

antibody sequences are optimal for binding to a selected antigen

and preferred over the germline gene-encoded sequence. The

changes in recovered sequences between the multi-state design

protocol that considered polyspecificty and the single-state design

that considered monospecificity appeared to recapitulate in silico

the in vivo process of somatic hypermutation and selection.

Fundamentally, our approach compares germline and mature

antibody sequences optimized in nature through evolution and

maturation with sequences predicted to be optimal based on

Rosetta’s energy function applied to a set of co-crystallized

antibody/antigen complexes. The power of the present approach

is that we predicted germline and mature sequences in silico

without any prior knowledge of either, which is an important step

towards rational antibody design. We discuss several important

assumptions and limitations, including the assumption that the

Rosetta design protocol determines the optimal sequence for any

given design challenge, that the conformational space of the

germline gene-encoded antibody is described by a finite set of co-

crystal structures (finite ensemble bias), that the germline

antibodies were able to adopt the conformations of each of the

mature antibodies derived from it, and that the germline and

mature sequences observed in nature are optimal for polyspeci-

ficity and high affinity (evolutionary sequence bias), respectively.

Summarizing these considerations we expect imperfect agreement

of in silico predicted and natively observed mature and germline

antibody sequences. Nevertheless, we found statistically significant

trends that were derived from a large number of example cases

that supported the ‘conformational selection’ paradigm inherent to

the conformational flexibility hypothesis for germline gene-

encoded antibody interactions with target antigens, i.e., these

antibodies exist in a large number of conformations in the antigen-

unbound state. We expect that results of this type of analysis will

continue to improve as the size of the collection of conformational

Author Summary

Human antibodies are critical for eradication of viral and
bacterial infections, while providing the basis for immu-
nological memory. Antibody protein molecules are encod-
ed by several recombined germline gene segments prior
to antigen exposure. The initial set of antibodies that are
generated by recombination in the bone marrow is the
antigen-naı̈ve antibody repertoire. It is of great interest to
know how a finite set of such germline gene-encoded
antibodies can recognize the large number of possible
foreign antigens. A current hypothesis in the field suggests
that antibodies encoded by germline gene segments are
structurally flexible and able to accommodate binding to
many antigens, much like one glove fitting the shape of
many hands. The phenomenon of one structure binding to
many targets is known as polyspecificity. Here we further
support this hypothesis by showing that entire antibody
protein variable regions encoded by germline gene
segments are close to ideal for polyspecificity. We used
computational design algorithms to explore antibody
sequence space rapidly and predict optimal sequences
to achieve polyspecificity. The resulting designed sequenc-
es recapitulated the germline gene segment sequences
and highlighted residues critical for achieving polyspeci-
ficity. These results suggest how a finite set of antibody
germline gene segments can encode antibodies that can
engage a large number of antigens.

Germline Genes Are Responsible for Polyspecificity
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ensembles available in the Protein Data Bank (PDB) increases and

as the accuracy of the Rosetta energy function continues to

improve.

Results

Multi- and Single-State Design of Antigen-Antibody
Complexes

We compiled panels of antigen-antibody complexes from the

Protein Data Bank (PDB) in which the antibody heavy chain

variable region was encoded by germline VH genes, designated

VH3-23, VH1-69, or VH5-51 [33,34]. Antigen-antibody complexes

were selected if and only if they contained Homo sapiens or

humanized antibodies and the binding partner was a protein

antigen. No further selection criteria were introduced as the exact

nature of the antigen and antibody isotype where not considered.

The exhaustive search of the PDB returns 10, 8 or 3 candidate

complexes for VH1-69, VH3-23, or VH5-51 respectively (Table 1).

For each panel we compared the mature (somatically mutated)

sequence to the inferred germline gene sequence via a multiple

sequence alignment (Figure 1A, S1). The number of mutations

with respect to the germline sequence range from 4 to 23

mutations with an average of 12.2. All CDR1, CDR2, and

framework positions that differed from the germline sequence of

the common VH gene sequence in at least one position in the

multiple sequence alignment were included in the computational

design simulations as ‘‘variable positions’’. Note that the present

study explicitly excluded positions that remained unchanged as no

claims can be made with respect to the relevance of these positions

for conformational flexibility or polyspecificity. Our analysis is

limited to antibody regions encoded by the V-gene as only this

region can be unambiguously aligned within each set of

antibodies. Therefore, we excluded D-gene and J-gene that

encode CDRH3, and antibody light chain from the present

analysis.

The fixed-backbone design algorithm of Rosetta [35] simulta-

neously samples amino acid identity and conformation in all

variable positions to identify the sequence and conformation that

return minimal energy for the given protein backbone of the

antibody/antigen complex. In the present experiment, we used

multi-state design [32] to find a single sequence that minimized

energy with all antigens within each VH gene-encoded group

(Figure 1B). To reduce noise in the outcome of the computations,

100 simulations were executed, and results are displayed using

WebLogo representation [36] (Figure 1C). For instance, position

31 (PDB numbering, boxed in Figure 1C) in the sequence

alignment of antibodies encoded by VH5-51 diverged from a

germline serine residue in the sequence for all three complexes.

Complexes 2B1A and 2XWT (PDB code) possess an aspartate

residue in this position acquired by somatic mutation, while

3HMX has a threonine in the same position. The multi-state

design protocol selected the germline residue serine as the

energetically most favorable residue out of all 20 possible

genetically encoded amino acids when interaction with all three

structurally diverse antigens is required (Figures 1C and S2-C).

The experiment was repeated as three separate ‘single-state design’

experiments (Figure 1B) to predict the sequences and conforma-

tions that minimized interaction energy for each antigen

individually. The resulting sequences were compared to both the

inferred germline and the mature sequence (Figure 1C). In this

experiment position 31 is predicted as an aspartate for complexes

2B1A (Figure 1C) and 2XWT, and as a threonine for 3HMX, the

mature amino acid sequence (data not shown).

For quantitative analysis, the bit-score was used to designate

each position as either being reverted towards germline

sequence, recovered as the mature sequence, or neither. Each

design outcome is compared to the mature or germline

sequence, respectively, by computing a bit-score ‘recovery’

measure. Schneider and colleagues, who extended the work of

Claude Shannon, showed that bit-scores contain information

about the sequence position if each amino acid at that position

is not equi-probable [37,38]. The advantage of the bit-score

measure in comparison to a more simplistic percentage-

recovery is that it analyzes the relative probabilities of all

twenty amino acids in a particular sequence position, not just

the probability of the correct one. It thereby arrives at an

accurate measure of ‘surprise’ of seeing a certain outcome, a

normalized measure in information theory that can be readily

compared between different experiments. In our experiment

high bit-score for the germline sequence indicated that among

the 100 designed sequences, germline gene-encoded residues

were chosen in a large number of instances (Figure 1D). To

facilitate comparison across complexes, we determined the sum

bit-scores over all designed positions and normalized the score

to fall between 0 and 1 by division with the maximum bit-

score that could be achieved, i.e., every amino acid position

designed towards a germline or mature sequence. For a more

detailed explanation of the bit-score metric and protocol, see

Methods.

Table 1. Antibody-antigen test set complexes.

PDB ID
VH

*

Germline Antibody Ligand
VH

*

Mutations

2CMR 1-69*01 D5 gp41 6

3FKU 1-69*01 F10 HA 13

3GBM 1-69*01 CR6261 HA 15

3MA9 1-69*01 8066 gp41 4

3MAC 1-69*01 8062 gp120 7

3P30 1-69*01 1281 gp41 20

1G9M 1-69*02 17b gp120 21

2DD8 1-69*05 M396 SARS-RBD 5

2XRA 1-69*05 HK20 gp41 14

2XTJ 1-69*10 1D05 PCSK9 4

2QQN 3-23*01 anti-Nrps-1 Nrps-1 10

2R56 3-23*01 IgE BLG 23

2VYR 3-23*01 VH9 MDM4 10

3KR3 3-23*01 DX-2647 IGF-II 8

1S78 3-23*04 Pertiuzimab ErbB2 22

2FJG 3-23*04 G6 VEGF 15

3DVN 3-23*04 Apu2.16 Ubiquitin 18

3BN9 3-23*04 E2 MT-SP1 5

2B1A 5-51*01 2219 UG1033 17

2XWT 5-51*01 K1-70 TSHR 8

3HMX 5-51*01 Ustekinumab IL-12 12

Details of the 10, 8, and 3 complexes for VH1-69, VH3-23, and VH 5-51
respectively. The antibodies bind a diverse set of antigens but each share a
common germline across a test set. The VH mutation count of amino acid
mutations away from their inferred germline gene.
*Inferred germline sequence and mutations predicted from IMGT/3Dstructure-
DB [45].
doi:10.1371/journal.pcbi.1003045.t001

Germline Genes Are Responsible for Polyspecificity
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Figure 1. Multi-state and single-state design methodology. For a simplified view of the methodology, only the complexes from inferred
germline VH5-51 are presented. (A) The heavy chain variable segment amino acid sequences taken from the PDB were aligned. Position candidates
were chosen for design if the position differed from the germline sequence in at least one mature complex. (B) Co-crystal structures for each VH5-51
derived complex are shown with heavy chain in black, light chain in grey, antigen in magenta, and designed positions highlighted in gold. Single-
and multi-state design schemes are shown where each complex was designed alone (single-state) where the designed positions were optimized to
minimize the energy for a single antigen target, or a minimized energy for all complexes considered together (multi-state) where the sequence
returned was an energetic consensus among each complex considered. (C) Sequence logos were generated to show 100 design models. Each
position in the sequence logo corresponds to a position conserved for design. The sequence logos then were compared to the mature or germline
sequence for each antibody. (D) Bit-scores were determined quantitatively by measuring the frequency of a letter at each position. The bit-score
measures the designed residues compared to either the germline sequence or the mature sequence. The normalization factor was the [total bit-
score]/[perfect design score](see Methods).
doi:10.1371/journal.pcbi.1003045.g001

Germline Genes Are Responsible for Polyspecificity
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Specificity Inferred by Sequence Design
The results of the multi-state design simulations returned

sequences that resembled germline gene-encoded sequences more

often than mature sequences. This finding was remarkable as no

information about germline sequences was input into the

simulation. We found that the designed sequences gave normal-

ized bit-scores of 0.54, 0.60, and 0.43 for germline genes VH1-69,

VH3-23, or VH5-51 respectively. In contrast, statistically signifi-

cant reduced bit-scores of 0.48, 0.45, or 0.26 (p,0.0001) were

observed when comparing the designed sequences with the mature

genes (Figures 2A, S2 and S3).

The single-state redesign of mature antibodies for binding to

their associated antigen gave normalized bit-scores of 0.47, 0.43,

or 0.28 for comparison with germline gene-encoded sequences and

0.57, 0.54, or 0.53 for comparison with mature sequences of VH1-

69, VH3-23 or VH5-51, respectively. In this design experiment a

proclivity to recover the somatically mutated mature sequences

was observed (Figures 2A and S3). Given that a normalized bit-

score is the preference for each design experiment to match a

certain sequence profile, a high bit-score to germline sequence

indicates the output matching the germline profile, while a high

bit-score to the mature sequence indicates a preference for the

mature profile, each design experiment outcome can be measured

as a difference in bit-scores (mature - germline). With this

definition, a preference for mature sequence gave a positive

Dbit-score, while a preference for germline residues gave a

negative Dbit-score for a given complex – i.e., the Dbit-score

provided an in silico predicted metric for antibody optimization for

affinity to a specific antigen versus polyspecificty. We observed

positive values for single-state design and negative values for multi-

state design, indicating a preference for the mature or germline

sequences, respectively (Figure 2B, p,0.0001).

In Vivo Affinity Maturation correlates with In Silico
Predicted Optimization for Affinity versus Polyspecificity

The number of somatic mutations can be used as a measure of

the maturity of an antibody [39]. Hence, we asked the question if

the Dbit-score, the change in proclivity for a germline or mature

sequence, correlated with affinity, i.e., if tendency to recover

mature versus germline sequences increased as antibody matura-

tion progressed. Such a correlation would indicate that as

antibodies mature, features of the germline sequence critical for

polyspecificity are replaced with features critical to recognize one

target antigen. Figure 2C shows the somatic mutation percentage

of antibodies in each complex as a metric for ‘‘in vivo maturation’’

correlated with the Dbit-score as a metric for ‘‘in silico predicted

optimization for affinity versus polyspecificty’’. For positive Dbit-

scores, the mature sequence was preferred, indicating a preference

for specificity. For negative values, the germline sequence, and

hence polyspecificity was preferred. The correlation coefficient for

the ‘‘in vivo affinity maturation’’ and ‘‘in silico predicted optimization for

affinity vs. polyspecificity’’ was 0.83.

The correlation coefficient increased to 0.89 when considering

only antibodies with more than 12 somatic mutations from their

inferred germline gene sequence. The change in proclivity for

germline sequence in multi-state design and mature sequence in

single-state design became more pronounced (Figure S4).

Backbone Conformational Space was Increased at
Positions that Reverted to the Germline Sequence in
Multi-state Design

Torsional phi-psi angles in the protein backbone were

compared across the sets of experimental structures for positions

Figure 2. Multi-state designs toward the germline sequence,
single-state to mature sequences. Antibodies encoded by the same
inferred germline VH gene preferred germline sequences when
considered in the multi-state design, inferring a more flexible
combining site. (A) The bar graph shows the bit-score for each of the
three different inferred germline groups and then the sum of the scores
in a grouped bar. A perfect design would have a normalized bit-score of

Germline Genes Are Responsible for Polyspecificity

PLOS Computational Biology | www.ploscompbiol.org 5 April 2013 | Volume 9 | Issue 4 | e1003045



that recovered to germline sequence for multi-state design and

those positions that recovered to a non-germline sequence. We

found that positions that converted back to germline in multi-state

design, i.e., positions critical for conformational flexibility accord-

ing to the simulation, had a deviation of 19.6u62.0u across beta-

sheet phi-psi torsion angles. Sequence positions that did not

recover to a germline gene-encoded amino acid had a statistically

significant (p = 0.099) reduced deviation of 15.5u61.5u for beta-

sheet backbone torsion angles (Figure 3). Considering the limited

range for beta-sheet backbone torsion angles, we don’t expect

large deviations. For reference, all framework residue beta-sheets

in antibody-antigen complexes across our dataset have an average

phi-psi deviation of 18.7u60.9u (see methods).

Impact of Residue Interface Location and Burial on
Optimization for Affinity Versus Polyspecificity

Figure 4 maps each amino acid position encoded by the VH

gene segment onto the immunoglobulin fold using a custom

Collier de Perles representation, as described by Ruiz and Lefranc

[40]. We modified the output to distinguish positions by location in

the interface with the antigen and the degree of burial. We

correlated these metrics to the bit-score at a per-residue level. Each

residue given is in IMGT numbering.

For multi-state design (Figure 4A–C), 33 out of a possible 46

of the designed interface residues (72%) contributed to

polyspecificity, i.e., recovered to germline sequence with a

normalized bit-score.0. Remarkably, also 41 out of 77 residues

outside the interface (53%) recovered to germline. Residues 25,

40 and 105, far removed from the interface, recovered perfectly

(normalized bit-score = 1) in at least two of the three germline

gene test sets. These residues are highly buried, with a neighbor

count score of 13.360.5. The intermediately packed residues

17, 51, 70, and 71, with an average neighbor score of 8.662.2

neighbors, were predicted to contribute to polyspecificity, even

though they lie in distal positions from the antigen-binding site.

The interface residues 35, 63, 64, and 82 were found to

contribute to polyspecificity in two out of the three germline

gene test sets. A conserved serine, which was found in all three

germline sequences at position 36 in the CDR1, was the only

residue identified as critical for polyspecificity in all three

germline genes.

In contrast, for single-state design, it is more difficult to deduce

overall trends for any specific position as the paratope is altered in

each antibody and the recognized epitopes cover diverse structural

space. Generally, when each complex was considered individually,

214 designed interface residues recovered to their mature

sequence out of a possible 340 designed amino acids, indicating

their importance for recognition of, and affinity for binding to, the

specific antigen (63%, Figure 4D–F). When non-interface residues

1.0, and summated score of 3.0 for three germline groups. Multi-state
design preferred germline sequences for all complexes, while in
contrast single-state design preferred mature sequences (p,0.0001).
(B) The change in bit-score is determined to be the proclivity to either
the mature (positive score) or the germline (negative score) sequence.
Each complex was assigned a change in bit-score. The change in
proclivity between design protocols was significant (p,0.0001). (C)
Each complex was scored against mature and germline sequences and
a difference was calculated (Dbit-score). Positive numbers returned
showed a proclivity towards mature sequences, while a negative score
suggested a design toward germline. A tight correlation was observed
(r2 = 0.8263) for the in silico predicted optimization for specificity versus
polyspecificity (Dbit-score) and the in vivo maturation process (plotted
as the mutation percentage away from VH gene sequence).
doi:10.1371/journal.pcbi.1003045.g002

Figure 3. Phi-psi variances for framework residues. The degree
of structural variation of the framework residues were measured as the
standard deviation of the phi and psi angles over each residue position.
(A) Side view of immunoglobulin fold for VH5-51 complexes aligned by
framework residues. Beta-sheets included in the analysis are shown as a
cartoon representation, while loop regions are in a transparent ribbon
representation. Framework 1 is shown in brown, CDR 1 in green,
framework 2 in black, CDR 2 in magenta, and framework 3 in cyan. (B)
Top down view. (C) The standard deviations of the phi-psi angles of
each framework position were binned into either a residue that was
found to be critical for polyspecificity (recovered to germline) or a
residue that was not recovered to germline in multi-state design. For
each position, the phi-psi angles were averaged, and the standard error
of the mean was calculated. An average of 19.6u62.0u for germline
recovered residues and 15.47u61.5u for non-germline recovered
residues supporting our hypothesis that residues which enable

Germline Genes Are Responsible for Polyspecificity
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were considered, 411 out of a possible 699 designed residues

recovered to their mature sequence (59%).

We also examined 255 designed residues that were found to be

somatically mutated away from residues encoded by their inferred

germline gene. Of these mutations, 68 out of 110 interface residues

recovered to the mature sequence (62%) in single-state design,

while 72 out of 145 non-interface residues recovered to the mature

sequence (49%).

Residues that were found to be critical for polyspecificity, i.e.,

reverted to germline in multi-state design, differed substantially for

each germline gene test set considered. For the VH1-69 gene

derived antibodies, all of the residues in the HCDR2 loop

contributed to binding interactions in the single-state but not the

multi-state design. In contrast only G63 and T64 residues

contributed in the multi-state case but not in single-state designs.

Residue L50 was recovered in all single-state complexes but was

not critical for multi-state design. For the VH3-23 gene, residues

A55 and Y66 were not recovered in multi-state design but were

found to be important for high affinity in single-state design. For

the VH5-51 complexes, non-interface residues P15, M53 and A80

were not recovered in multi-state design but were found to be

critical in single-state design. HCDR2 was found to be critical in

single-state design for all VH5-51 complexes.

Mature Sequence Bias Introduced by Finite Ensemble
Size

To understand some of the trends described above more

quantitatively, we determined for each residue in each

antibody/antigen complex if it was part of the interface, i.e.,

directly engaging the antigen. For this purpose the change in

neighbor count between unbound antibody and bound anti-

body/antigen complex score was measured, and positions with a

change larger than 1.0 were classified as ‘‘interacting residues.’’

Next, we counted how often a residue position appeared in the

interface within each set of antibody/antigen complexes.

Positions were binned as occurring in the ensemble interface

never, once, two-four times, or more than four times and

average bit-scores were compared (Figure 5). We found a

general trend for interface ensemble size correlating with

interface ensembles sampled. For the set of structures derived

from VH3-23, which contained a total of 8 complexes, we found

that residue positions that are never found in the interface gave

an average bit-score of 2.360.4. If a residue position was found

only in one interface, the average bit-score dropped to 1.261.1.

As residues were found more frequently at the interface between

2–4 complexes, and 5–8 complexes, the average bit-score

increased to 2.560.8 and 3.660.7 respectively. For the 10

VH1-69 complexes, an average bit-score of 2.360.3 was

observed for residues that were never found in the interface. If

a residue was only found in the interface once, the average bit-

score dropped to 1.961.0. For interface occurrences between 2–

4 and 5–8, we found the average bit-score to increase to

2.660.7 and drop to 0.860.4 respectively. Due to the limited

number of residues occurring in multiple interfaces, a significant

change in bit-score between each grouping was not observed for

VH1-69 (p = 0.1844) and VH3-23 residue positions (p = 0.2007).

We report these findings as an observable trend in ensemble bias

as no claims of significance can be made due to the small sample

size.

Only the sets of VH3-23 and VH1-69 gene-encoded antibody/

antigen complexes were evaluated, as the set derived from VH5-51

had only three structures.

Evolutionary Sequence Bias Explains in Part Deviations
from Germline Sequence for Antibodies Optimal for
Polyspecificity

We expected the result of multi-state design to deviate from

germline in cases where alternate amino acids are compatible with

the conformational space and binding modes observed in the

ensemble of structures. Alternative amino acids might be tolerated

but are not observed in evolution – ‘evolutionary sequence bias’.

To test this hypothesis, we reverted each position back to germline

and compared the energetic change with the favored residue

returned by multi-state design. Using reference energies, Rosetta

facilitates the direct comparison for energies between different

residue types [41]. For complexes derived from VH5-51, all

positions in which the germline residue was not chosen in at least

10% of the 100 simulated models were forced into the germline

identity (Figure 6A, x-axis). The difference in average energy of the

germline sequence at that position from the average energy of the

residue returned by multi-state design was calculated (y-axis). For

each position, if positive values were returned for all three

complexes, Rosetta design would most likely place a non-germline

amino acid at that position. If negative values were returned for all

three complexes, Rosetta would most likely place a germline

amino acid at that position. We found that, in most cases, the

energetic contribution of the designed amino acid is not

significantly more stabilizing than the germline amino acid, i.e.

the germline sequence is tolerated as well. Only positions 52, 76,

88, and 98 gave a significant energy increase for the germline

sequence in at least one complex. Changes in energy were

classified as significant if larger than 0.7 Rosetta energy units

(REU, horizontal dashed line). This threshold was derived from

the average difference in energy between the germline and mature

residue (0.760.2 REU, Figure S5). For Figure 6B, a multiple

sequence alignment is given as a reference, where each position

that was considered in multi-state design is highlighted in bold

while each position that recovered well to the germline sequence is

highlighted in green.

Discussion

Germline gene-encoded sequences for commonly used VH

segments are hypothesized to possess high conformational

flexibility making them ideal for binding diverse antigens, i.e.,

being polyspecific. During antibody maturation, somatic muta-

tions are introduced that increase affinity for a specific target in

part by adding attractive interaction to the antigen (increasing

enthalpic gain) and in part by locking the conformation critical for

interaction with the specific antigen (reducing entropic cost). Here

we tested this hypothesis by analyzing three sets of antibodies, each

derived from a commonly used VH gene and each co-crystallized

with a protein target in its antigen-specific binding conformation.

We chose to not directly compare conformational flexibility for

germline and mature antibodies. While this approach may be

feasible in general through predicting the accessible conforma-

tional space using molecular dynamics [24], it is challenging to

achieve complete sampling of large conformational spaces that

include the entire immunoglobulin framework. To circumvent this

problem, we chose to solve the inversely related protein design

problem, which was to study amino acid sequences that are

consistent with the conformational space seen in antibody/antigen

co-crystal structures. This approach is complementary and

polyspecificity alter beta-sheet packing to a greater degree than
residues that do not. The axis is normalized to 18.7u60.9u, the average
deviation for all beta-sheet framework positions.
doi:10.1371/journal.pcbi.1003045.g003
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potentially superior as it replaces sampling of the large conforma-

tional space in antibody backbone regions with solving the better

understood ranking of amino acid sequences, given a certain

antibody/antigen complex conformation.

Specifically, we employed multi-state design to find single amino

acid sequences that were compatible with the multiple conforma-

tions of antigen combining sites. Computational tools to design

multi-specific proteins were first described by pioneering work in

the Kortemme laboratory [29,31]. In parallel, Leaver-Fay and

colleagues developed a general algorithm for multi-state design in

the Rosetta framework, in which they designed one protein to

interact with non-native targets [32]. We used the latter tool to

design antibody sequences that are optimal for facilitating

interactions to 1) multiple and diverse antigens, or 2) a single

specific antigen.

In the absence of a priori knowledge of the germline or mature

sequences or the mechanism of antibody maturation through

somatic mutations, multi-state design of one antibody to recognize

several target proteins recovered sequences similar to those

encoded by the inferred germline gene segment. When designing

the same antibody to recognize one specific target, the sequence

recapitulated the mature antibody sequence. This trend correlated

tightly with the divergence of the mature sequence from the

inferred germline sequence, i.e., the more somatic mutations an

antibody contained, the more reversions to germline needed in

order to facilitate interactions to multiple antigens.

Use of a computational tool to approach questions regarding

polyspecificity as a function of protein sequence is advantageous,

as the Rosetta design algorithm is able to rapidly enumerate the

effect of multiple simultaneous mutations in sequence space for the

entire heavy chain variable region. This task is quite difficult if not

impossible to complete experimentally at this scale. In this

manner, conformational flexibility in the framework regions,

CDR1, and CDR2 can be tested in a holistic model. All mutated

positions in the VH gene segment were considered simultaneously,

including the effect of interactions between different domains in

the antibody, thus revealing the role of interface and non-interface

residues in both poly- and monospecificity. Because this approach

considers multiple antibodies of variable conformation at once,

each with a distinct binding mode, the multi-state design algorithm

predicts sequences that are inherently flexible and capable of

adopting the diverse set of conformations needed to bind to

multiple antigens.

Harindranath and colleagues demonstrated that polyspecific

antibodies were encoded largely by germline gene sequences [13].

Romesberg and Spiller presented structural evidence for flexibility

in germline gene-encoded sequences [16]. In addition, Schmidt et

al. correlated mature sequence to rigidity of the paratope [30].

Taken together, these data suggest conformational flexibility

coupled with pre-sampled conformations of the target binding

site as the underlying mechanism for polyspecificity [27]. Here, we

used a multi-state design algorithm to assess the contribution of the

VH gene segment to specifying an antibody with conformational

flexibility, preorganization, and polyspecificity. We found that this

property is largely attributed to antibody sequences in the germline

gene repertoire, since designing antibodies for polyspecificity,

sequences recovered germline gene-encoded sequences, while

designing antibodies for monospecificity to a single target,

returned sequences similar to the mature antibody. This trend

increased in strength the higher the number of somatic mutations

that had accumulated, i.e., the further optimized the antibody had

become.

Figure 4. Modified Colliers de Perles representation of VH gene segments. The 98 amino acids present in VH 1-69, VH3-23, or VH5-51 are
shown in a Collier de Perles two-dimensional representation and numbered according to the IMGT numbering scheme [40]. Hatched circles are
missing residues according to the IMGT numbering scheme and are shown to make graphs consistent. Square boxes represent the boundary
between framework and CDR loops. The anti-parallel beta-sheets are represented A–F. A dashed line is shown that divides interface residues with
residues that were found to be outside of the interface in a majority of the cases. Interface residues are colored with a blue-pink gradient indicating a
numerical antigen contact score defined by a change in neighbors between the free and bound complex (see Methods). Non-interface residues are
colored with a green-orange gradient according to their degree of burial defined through a neighbor count. Residues that are transparent were not
considered for redesign as they were conserved across all complexes considered. (A, B, C) show the germline sequence represented in the
immunoglobulin fold with the thickness of each line representing the design bit-score for that position relative to the germline sequence for multi-
state design protocols for VH1-69, VH3-23, or VH5-51, respectively. (D, E, F) show the germline sequence represented, but the thickness of the line
corresponds to the mature sequence bit-score averaged over each complex for the single-state design protocol for VH1-69, VH3-23, or VH5-51,
respectively.
doi:10.1371/journal.pcbi.1003045.g004

Figure 5. Interface occurrences affect germline sequence
recovery. For VH3-23 (A) and VH1-69 complexes (B), we binned each
residue position into how many times it occurred in an interface
(interface ensembles). Most designed positions never occurred in an
interface. As their occurrences became more frequent, we observed a
trend for increasing the recovered germline residue. This trend fell off
for VH1-69 complexes (B) for positional occurrences between 5–8
interfaces.
doi:10.1371/journal.pcbi.1003045.g005
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Importantly, this effect is not limited to the HCDR3, which

often contributes much to antibody specificity. We obtained the

same finding to be clearly measurable throughout HCDRs 1 and 2

as well as the immunoglobulin frameworks. We found each

germline VH gene to encode a set of amino acids that enabled

polyspecificity in a distinct manner. These positions were present

not only in the paratope, but also in the buried or semi-buried

positions of the immunoglobulin frameworks (Figure 4). Antibody

maturation is mediated by a collection of mutations in these

positions that refine specificity to the target antigen. The size of the

current dataset is limited by the number of antibody-antigen

complexes available in the PDB as discussed above (Table 1). We

expect, that with an increasing number of antibody-antigen

complexes in the PDB it will become easier to discern general

trends. However, selected germline sequence positions important

for poly-specificity in at least 2 out of the 3 germline test sets were

identified: For instance, framework 1 residues 17 and 25,

framework 2 residues 40 and 51, and framework 3 residues 70,

71 and 82, all numbered according to IMGT, where found to

contribute to polyspecificity. In addition CDR1 residue 35 and

CDR2 residues 63 and 64, and CDR3 base residue 105, where

also found to be critical for polyspecificity. For all three datasets we

found a conserved serine 36 in CDR1 important. These

generalities present a possible common molecular mechanism for

polyspecificty across germline gene sets. Considering that different

framework/interface residues were recovered to their mature

sequence for monospecificity, i.e. single state design, we can

hypothesize from these observations that each antibody develops

its own mechanism of monospecificity as a function of the antigen.

We conclude that conformational flexibility in the beta-sheet

framework is critical for changing critical regulators of the

conformation of the paratope – i.e., the takeoff and landing angles

of CDR loops, thereby enabling the paratope of germline

antibodies to assume multiple conformations. Accordingly, we

find that residues that contribute the most to polyspecificity

contain larger deviations of their phi-psi torsion angles (Figure 3).

During antibody maturation, mutations in these positions likely

lock in the target-specific framework conformation, reducing the

entropic cost of target binding. Somatic mutations in the paratope,

for example within HCDR1 and HCDR2, can directly increase

affinity to a target (enthalpic contribution to free energy), or lock in

a conformation that recognizes the target (entropic contribution to

free energy). We found that on average 62% of residues in the

paratope and 42% of residues in the framework were important

for changing the binding pattern of the antibody from poly-

specificity to recognition of one specific target (Figure 4).

We recognize several important limitations of our study:

(1) We assumed that the Rosetta design protocol determined the

optimal sequence for any given design challenge. While it has

been demonstrated that Rosetta design typically recovers

close-to-optimal sequences [35], inaccuracies in the scoring

Figure 6. Rosetta multi-state design solutions for non-germline amino acids represent incomplete sampling for VH5-51 complexes.
We evaluated a complete germline reversion of VH5-51 sequence versus the sequences output by multi-state design. (A) Consideration of positions in
which the multi-state design algorithm chose a non-germline amino acid for at least 10% of the models where evaluated. The difference in energy of
the germline sequence and the multi-state design solution sequence is shown for each position. Bars above 0 represent the multi-state design
sequence preferred while bars below the line represent the germline amino acid preference. The horizontal dashed line at 0.7 Rosetta energy units
(REU) shows the average energy difference between the germline and mature sequence and is represented as a marker for sequence tolerance. (B)
The multiple sequence alignment for each VH5-51 complex is shown and compared with the germline sequence. Sequences highlighted in bold were
considered for design. Sequences highlighted in green are positions in which the multi-state design algorithm chose the germline amino acid as the
design solution. The numbers in the bottom row are the alignment-numbering scheme of each position and correspond to the position numbers in
(A).
doi:10.1371/journal.pcbi.1003045.g006
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function and limitations in the sampling algorithm will

introduce errors. In the future, this limitation could be

reduced by improvements applied to the energy function and

comparing the results obtained with complementary energy

functions.

(2) We assumed that the finite and small set of antibody

conformations observed in the set of co-crystallized mature

antibodies completely describes the conformational flexibility

of the germline gene-encoded antibody (finite ensemble bias).

While we used the largest ensembles available (10, 8, and 3

antigen-antibody complexes), this assumption must be wrong,

introducing a bias. For example, assume there is a sequence

position that is part of the paratope in only one of the n

complexes. In this antibody, a somatic mutation occurred at

this position greatly increasing affinity to the antigen. The

somatically mutated amino acid is however compatible with

all other n-1 complex structures. In such a scenario the multi-

state design algorithm will recover the somatically mutated

instead of the germline amino acid. Here, we found that as a

residue was more often part of the paratope, it became more

likely to be recovered to the germline sequence. This finding

might be due to the fact that a critical conformation that the

germline antibody needs to adopt was not represented in the

ensemble (for framework residues) or the epitope needed for

recognition by a critical germline amino acid represented in

the ensemble.

(3) We assumed that the germline gene-encoded antibodies were

able to adopt the conformations of each of the mature

antibodies derived from it. This assumption is important, as

crystal structures of the ‘‘true’’ germline antibody in complex

with the antigen are generally not available. While this

assumption is expected to be correct for the majority of cases,

notable exceptions are discussed in the literature [8,21,27,42].

(4) It is not guaranteed that only the germline amino acid is

compatible with all conformations adopted by mature

antibodies. Rather, it is likely that for some positions

alternative amino acids are plausible or even better in

realizing the conformational flexibility needed. The germline

sequence observed in nature is optimized in evolution and

clearly works, but does not need to be perfect in all positions.

In such a scenario, multi-state design could return amino acids

that deviate from germline (evolutionary sequence bias).

Conversely, the mature sequences observed in the co-crystal

structures are not guaranteed to be the perfect sequence for

high affinity. In some positions a somatic mutation might have

introduced a better amino acid but is not the ‘‘true’’ best

option. Some somatic mutations might have occurred by

chance and do not contribute to affinity maturation. Some

positions might not have experienced somatic mutations but

still favorable mutations exist. In all these cases we expect the

single-state design to deviate from the mature sequence

observed in the co-crystal structure (evolutionary sequence

bias).

(5) The imperfect nature of the Rosetta scoring function will not

yield 100% agreement with natural phenomenon [35].

Importantly, water coordination can often be important in

antibody-antigen binding sites [43]. However, Rosetta is

currently being developed to include tools with explicit solvent

models [44].

It is important to understand these biases and limitations to

arrive at an accurate interpretation of the results. Given these

known limitations, we expected imperfect agreement of in silico

predicted and natively observed mature and germline gene-

encoded antibody sequences. Nevertheless, we found a remarkably

high correspondence of residues designed for polyspecificity in a

blinded fashion and the amino acids encoded by germline genes.

We identified at least four specific scenarios in which current

datasets are limiting for informing design efforts. The first scenario

involves a framework position that does not interact with the

epitope in any of our tested complexes. For this position, the

germline residue, and only the germline residue, is capable of

adopting the phi-psi angles in order to accommodate the flexibility

needed for the binding site. Multi-state design likely design in the

germline residue for each simulation. We then observe agreement

between in silico design and natively observed sequence for a

majority of the designed positions (Figure 2).

The next scenario involves a framework position that also lies

distal from the epitope. In this scenario, the germline residue but

also other amino acids are compatible with the observed

conformations since they both contain properties to adopt the

phi-psi angles necessary to accommodate the flexible binding site.

For this scenario, we expect Rosetta’s multi-state design algorithm

to pick one of the compatible amino acids, not necessarily the

germline gene-encoded one. This outcome can occur either

because the conformational ensemble is incomplete or because of

the evolutionary sequence bias. We find that both biases

contribute to ambiguity. Residues that are never found in the

interface give modest recovery to germline sequences being either

‘‘hit-or-miss’’ (finite ensemble bias, Figure 5), and residues that are

reverted to an amino acid different from that encoded in the

germline are not significantly better in energy score than the

germline encoded amino acid (evolutionary sequence bias,

Figure 6).

The third scenario concerns residues that are at part of the

paratope in only one instance. If the mature residue forms critical

interactions that minimize the free energy of binding in this one

complex, while in all other complexes the residue is not part of the

paratope and the mature amino acid seen for the one complex is

compatible with the backbone confirmation, Rosetta will choose

the mature residues from the first complex also in multi-state

design mode. We observed this trend, especially for VH3-23

complexes. If a residue was found in only one interface (Figure 5),

that position tended to have a low recovery to the germline

sequence.

The fourth scenario deals with positions that are part of the

paratope multiple times and that experience frequent somatic

mutations. As positions are found to be more frequently in

interface ensembles, the germline recovery increases as these

positions become more important to facilitating direct interactions

with their antigen (Figure 5). These residues contribute to

polyspecificity by being the preferred residue in interaction with

multiple antigens, rather than facilitating binding by altering beta-

sheet packing.

These results suggest that the naturally occurring antibody

maturation process can be recapitulated or reversed at least

partially in silico, opening exciting new avenues for antibody

engineering work. Further, our results suggest the applicability of

multi-state design to engineer polyspecific antibodies, exploring

another important strategy for designing broadly neutralizing

antibody therapeutics. Traditional antibody engineering ap-

proaches emphasize isolating monoclonal antibodies that are

highly specific for a given antigen, relying on display techniques in

which emphasis typically is placed only on CDR loop design. The

method described here considers the entire antibody variable

region during design, including critical framework residues that

allow for conformational flexibility and contribute to polyspecifi-
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city. Considering that we found that up to 64% of framework and

CDR residues may contribute to binding and specificity,

computational design will be invaluable to rapidly enumerate

the large sequence and structural space of residues that can

contribute to breadth of binding diverse targets.

Materials and Methods

Selection of Antigen-Antibody Complexes
Diverse antigen-antibody complexes were collected from the

Protein Data Bank (PDB; www.pdb.org) in which antibodies in

different complexes were derived from the same predicted heavy

chain variable gene segment. Candidate complexes were

queried from the protein databank using the IMGT-3D

structural query [45] editor for immune system receptors.

PDB structures were used as design candidates if they met the

following criteria: 1) the antibody was encoded by a VH1-69,

VH3-23, or VH5-51 gene segment, 2) the structure contained a

human immunoglobulin, and 3) the ligand type was a protein

complex. The search yielded 10, 8, or 3 antibody-antigen

complexes encoded by the heavy chain variable gene segments

VH1-69, VH3-23, or VH5-51, respectively. Nature of the antigen

and antibody isotype where not considered in the selection as

the 21 complexes represent an exhaustive search of the PDB for

these gene-segments. The gene segments were aligned using the

ClustalW2 multiple sequence alignment algorithm [46]. Each

input structure was energetically minimized using the Rosetta

scoring function but constrained to PDB input backbone

coordinates [47].

Multi-state Design of Antigen-Antibody Complexes
Three design experiments were performed, one for each of the

three germline segments (VH1-69, VH3-23, or VH5-51) using the

multi-state design mode of the Rosetta algorithm and scoring

functions. We adapted a generalized multi-state design protocol

that was described in detail previously to perform design on

multiple antibody-antigen complexes at once (Figure 1) [32].

Briefly, each computational design experiment computed an

optimal sequence predicted to define a low-energy structure. In

the multi-state design experiments, an energetic consensus

sequence for all of the states was predicted, rather than treating

each state as a separate entity. The energy for a given sequence

was computed and designated the ‘design fitness’ for all states. The

corresponding amino acids were derived from the alignment (e.g.,

heavy chain amino acid 5 on complex A corresponded to heavy

chain amino acid 5 on complex B). The details of the multi-state

algorithm is described elsewhere [32].

Single-State Design of Antigen-Antibody Complexes
Single-state design was performed using the Rosetta multi-state

application where the algorithm was altered so that only one

complex was considered for each of the 10, 8, or 3 design

experiments with VH1-69, VH3-23, or VH-69 complexes, respec-

tively.

Design Analysis of Multiple- or Single-State Design
For each design experiment, 100 independent design trajec-

tories were calculated. Sequence logos then were generated

using the Berkley web-logo server (http://weblogo.berkeley.

edu/) [36]. Information for each sequence logo can be

extrapolated as follows extending the work of Schneider et al.

[38]. For each variable position, the probability of seeing each

of the 20 naturally encoded amino acids pi was computed and

compared with the background probability pb = 1/20 = 5%. To

quantify the deviation of the observed probability from the

background probability we compute the self-information for

each of the 20 amino acids as Ii = pi x log2(20 x pi) in ‘bit’. If the

amino acid occurs as often as expected from the background

probability, Ii is zero. Ii becomes larger if the amino acid is over-

represented and approaches 4.32 if pi = 100%. A total bit-score

for the sequence design was obtained by summing all individual

bit-scores for each amino acid (Figures 1D,S3). The bit-scores

for the target sequence then were analyzed, and statistics were

computed using Prism software version 5.0 (GraphPad Soft-

ware). For comparisons between germline sequence and mature

sequence within the same design experiment, a Wilcoxon

matched pairs test (non-normal, paired t-test) was used to

compute the p-value at 99% confidence level. For comparison

between design experiments, a student’s paired t-test was used to

compute the p-value at 99% confidence level.

Amino Acid Environment
The neighbor vector algorithm quantitatively determines the

surface-exposure of a given residue and is described by Durham

and colleagues elsewhere [48]. Briefly, each Cb is computed to a

vector and each vector is given a score based on the number and

orientation of each Cb in the proximity. The weight of each

neighbor falls of as a function of distance.

For interface scores, the change in neighbor vector was used,

where the neighbor vector score of the amino acids in the

unbound antibody is subtracted from the neighbor vector scores of

the complex. Interface residues would have a large change in

neighbors and proportional to the change in neighbor vector

score.

Phi-psi Angle Calculations
All VH framework residues were grouped by complex. For each

residue, phi-psi angles and secondary structure classification were

determined using dssp2 [49]. For each residue position across all

complexes considered in design, the standard deviation of the phi-

psi angles was calculated if they were included in the beta-sheet

framework. A student’s t-test was performed between the standard

deviations between residue positions that recovered to germline

(bit-score.1), or did not recover to germline (bit-score,1). For a

reference, a deviation for all framework beta-sheet positions was

also calculated for all residues even if they were not included in the

design protocol.

Protocol Capture
A workable example for VH5-51 complexes using multi-state

design including analysis scripts can be found at ww.meilerla-

b.org/index.php/jobs/resources under the protocol capture tag.

The Rosetta Modeling Suite can be obtained at www.

rosettacommons.org

Supporting Information

Figure S1 Sequence alignments of test set sequences
to their inferred germline. Multiple sequence alignments of

each of the antibodies mature VH genes to the germline

sequence. Designed positions that differ in at lease one complex

from the germline are shown in black, while conserved residues

are grayed out. The locations of the frameworks (FR1, 2, or 3)

and complementarity determining regions are annotated. (A)

IGVH1-69 derived complexes with the germline sequences for

the allelic variants labeled as 6901, 6902, 6905, and 6910. (B)

IGVH3-23 derived complexes with allelic variants labeled 2301
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and 2304. (C) IGVH5-51 complexes with only one variant

labeled 5–51.

(PDF)

Figure S2 Comparison of designed residues with se-
quence logos for multi-state design. Each of the designed

residues propensities is shown as a sequence logo. The germline

sequence and the mature sequence of each of the complexes are

shown below each logo. Amino acid sequences that match the

logo are shown in black while sequences that did not match the

logo are shown in grey. For multi-state design, more residues of

the sequence logo match the germline sequence for (A) IGVH1-

69 complexes, (B) IGVH3-23 complexes and (C) IGVH5-51

complexes.

(PDF)

Figure S3 Total and individual bit scores for each
multi- and single-state design. (A) The average bit score

for each complex as a function of how well it matched the

germline or mature sequence. The change in bit score is the

difference for the proclivity for multiple complexes in multi-state

design to design for either the mature or germline sequence,

positive and negative numbers respectively. (B) Individual complex

scores decomposed from the sums of (A).

(PDF)

Figure S4 Proclivity to mature or germline sequences is
a function of design protocol and degree of maturation.
(A) The change in bit score is determined to be the proclivity to

either the mature (positive score) or the germline (negative score)

sequence. For these calculations only complexes with greater than

12 somatic mutations in the variable gene are considered and

assigned a change in bit score. The change in bit score is plotted as

a function of mutations either from the germline sequence (single-

state) or from the mature sequence (multi-state). This in silico

maturation (single-state) or reversion (multi-state) correlates with

the number of mutations with r2 = 0.8964. (B) Only highly

mutated antibody-antigen complexes (.12 mutations away from

germline) are summed for single- and multi-state design with a

more significant change in bit score.

(PDF)

Figure S5 Recovered germline sequences are not an
energetic consensus. We reverted somatically mutated amino

acids back to their inferred germline gene-encoded sequence and

compared each individual per-amino-acid energy to that of the

mature sequence per-amino acid energy. (A) Mutations are binned

into three categories: (1) amino acids that had somatically mutated

away from germline in which the multi-state design algorithm

recovered the germline encoded residue as the preferred residue to

enable polyspecificity, (2) amino acids somatically mutated away

from germline in which multi-state design chose an amino acid

other than the germline or mature sequence as the preferred

residue to enable polyspecifity, and (3) as a control group, amino

acids that remained germline in the mature complex. The energies

for each germline encoded amino acid were subtracted from the

energy of the somatically mutated amino acid. We found that the

mutations reverted back to germline by multi-state design lost an

average energy of 0.961.2 Rosetta energy units (REU). We also

examined mutations where the germline amino acid was not

chosen in multi-state design and looked at the change in energy if a

germline amino acid sequence was forced at that position. As

expected, if the multi-state design protocol would have chosen a

germline amino acid at that position, the average energy each

mutation would lose is 0.761.4 REU, which was not a statistically

significant change from recovered germline mutations (p = 0.5).

This observation suggests that a mutation from the germline gene-

encoded amino acid was judged equally beneficial in these cases by

the computational protocol but another amino acid was identified

that was equally compatible with the conformations observed in

the ensemble. For a control experiment, we examined the energies

of sequences that did not mutate. We found that the energy

difference for non-mutated amino acids between the germline

structure and the mature structure was close to zero (0.060.1).

The energies examined for changes from germline to mature

differed significantly from non-mutations (p = 0.0041). We also

noted that the proclivities for germline or mature sequences were

spread across the entire immunoglobulin fold. (B) Surface display

maps each change in energy between the germline and mature

sequence as a heat map onto the antibody complex.

(PDF)
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