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immunosuppressive
microenvironment

Jin-kun Xia1,2†, Ning Tang1†, Xing-yu Wu1*

and Hao-zhen Ren1,2*

1Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University
Medical School, Nanjing, China, 2Institute of Hepatobiliary Surgery, Nanjing University,
Nanjing, China
Bile acids (BAs) are physiological detergents that can not only promote the

digestion and absorption of lipids, but also may be a potential carcinogen. The

accumulation of BAs in the body can lead to cholestatic liver cirrhosis and even

liver cancer. Recently, studies demonstrated that BAs are highly accumulated in

metastatic lymph nodes, but not in normal healthy lymph nodes or primary

tumors. Lymph node metastasis is second only to hematogenous metastasis in

liver cancer metastasis, and the survival and prognosis of hepatocellular

carcinoma (HCC) patients with lymph node metastasis are significantly worse

than those without lymph node metastasis. Meanwhile, component of BAs was

found to significantly enhance the invasive potential of HCC cells. However, it is

still poorly understood how deregulated BAs fuel the metastasis process of

liver cancer. The tumor microenvironment is a complex cellular ecosystem

that evolves with and supports tumor cells during their malignant

transformation and metastasis progression. Aberrant BAs metabolism were

found to modulate tumor immune microenvironment by preventing natural

killer T (NKT) cells recruitment and increasing M2-like tumor-associated

macrophages (TAMs) polarization, thus facilitate tumor immune escape and

HCC development. Based on these available evidence, we hypothesize that a

combination of genetic and epigenetic factors in cancerous liver tissue inhibits

the uptake and stimulates the synthesis of BAs by the liver, and excess BAs

further promote liver carcinogenesis and HCC metastasis by inducing

immunosuppressive microenvironment.
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Introduction

Liver cancer is one of the common digestive system

malignant tumors, and its incidence is increasing year by year

(1). The most common histologic type of liver cancer is

hepatocellular carcinoma (HCC), which is usually diagnosed

with a poor prognosis, especially at advanced stages owing to the

high rate of recurrence and metastasis (2). Although

considerable progress and advances in the treatments in recent

decades, including interventional therapy, curative resection,

liver transplantation, targeted therapy, and immunotherapy,

prognosis of HCC remains far from satisfying (3). The 5-year

survival rate of advanced HCC patients remains poor generally

because of the propensity for metastasis (4). Therefore, it is

urgent to further elucidate the molecular pathogenesis of HCC

metastasis in order to develop novel therapeutic treatments and

improve the survival rate of this malignancy.

Bile acids (BAs) are a general term for a class of amphiphilic

molecules produced by cholesterol metabolism, and their functions

involve lipid digestion, absorption and hormone synthesis (5). In

the human liver, cholesterol is metabolized to primary BAs,

including cholic acid (CA) and chenodeoxycholic acid (CDCA),

and then enters the gut for further conversion to the corresponding

secondary BAs (6). CA and CDCA undergo biotransformation such

as dissociation, epimerization, oxidation and 7a dehydroxylation

activity by intestinal bacteria in the colorectum and hydrolases to

generate secondary BAs such as deoxycholic acid (DCA) and

lithocholic acid (LCA) (7). The secondary BAs can also be

conjugated to taurine or glycine to form conjugated BAs.

Secondary BAs are highly “aggressive” and toxic, thereby changes

in BAs composition are the main cause of dysregulated BAs-related

liver disease (8). About 95% of the secondary BAs are reabsorbed by

the intestine, return to the liver through the portal vein, and then

pass through the biliary tract together with the newly synthesized

conjugated BAs, which is called the hepatoenteral circulation of BAs

(9). In the physiological state, the above process is subject to a

sophisticated regulation of a series of positive and negative feedback

mechanisms. For example, the nuclear farnesoid X receptor (FXR)

and membrane Takeda G protein-coupled receptor 5 (TGR5) have

high affinity for BAs, and these receptors coordinate with each other

to maintain BAs homeostasis (10). The expression level of FXR is

down-regulated, and the methylation level of TGR5 promoter is up-

regulated in HCC, revealing the complex role of the genetic and

epigenetic alterations in HCC environment caused by bile acid

metabolism disorder. The liver has a high-efficiency scavenging

effect to maintain the concentration of BAs at a low level, so the

content of BAs in peripheral blood plasma is very small. The

determination of BAs in plasma can reflect the synthesis, uptake

and secretion functions of hepatocytes. Therefore, alterations in BAs

composition and distribution can be biomarkers and prognostic

indicators for liver disease (11).
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The tumor immune microenvironment (TIME) refers to the

microenvironment related to immunological components such

as T cells, tumor-associated macrophages (TAMs), myeloid-

derived suppressor (MDSCs), and NK cells within tumors.

TIME can be divided into three types, namely the infiltrated-

excluded (I-E) TIMEs, infiltrated-inflamed (I-I) TIMEs, and

tertiary lymphoid structures (TLSs) TIMEs according to recent

human and mouse data. For detailed classification and

explanation, please refer to (12). TIME is an important part of

the tumor microenvironment. Cancer development and

progression is influenced by the immune cell composition in

TIME and controlled by the host immune system. Most tumors

undergo a transition from a controllable inflammatory response

to an uncontrollable inflammatory response, thereby generating

a microenvironment suitable for their growth to promote tumor

proliferation and invasion, metastasis, angiogenesis and immune

escape (13). The proportion of different immune cells in TIME

and certain immune system-related biomarkers can be used for

cancer detection, prognosis and evaluation of treatment

response (14). In addition, TIME also contains a variety of

potential cancer therapeutic targets, such as CTLA-4 and PD-1/

PD-L1, and other immune checkpoint blockade-related targets

are the current hot spots for tumor targeted therapy (15).

Meanwhile, crosstalk between cancer cells and immune cells in

TIME creates an environment that promotes tumor growth and

metastasis, which is important for tumor initiation and

progression (16). For example, in TIME, the interaction

between the ligand PDL1 on the surface of tumor cells and the

PD-1 receptor on the surface of T cells enables tumor cell

immunosuppressive signals to be transmitted to the interior of

T cells, inhibiting the immune function of T cells, thereby

preventing the immune system attacks tumor cells, resulting in

immune escape (17). Exploring the regulatory mechanisms of

the TIME not only deepens our understanding of tumor cells

behavior, but also has the potential to provide new insights into

drugs that promote immune checkpoint inhibitors-related anti-

tumor therapy.

The disruption of local immune homeostasis is an important

reason for the development of many cancers, including HCC

(18). It’s reported that a variety of immune cells express BAs

receptors, and the disorder of BAs balance affects the

differentiation and function of various immune cells, thereby

affecting the occurrence and development of HCC (19).

Recently, researchers observed an interesting phenomenon:

BAs are highly accumulated in metastatic lymph nodes, but

not normal healthy lymph nodes or primary tumors, which

brought us with some new questions: (1) What drives BAs

accumulation in metastatic lymph nodes? Are the BAs

produced by the lymph node metastases themselves, or from

circulating sources? (2) Does high accumulation of BAs in

metastatic lymph nodes accelerate liver cancer metastasis, and
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if so, what is its mechanism? (3) Do accumulated BAs exert some

kind of ‘signal’ to regulate the TIME, thereby evading immune

surveillance and promoting HCC metastasis?
Our hypothesis

We proposed that a combination of genetic and epigenetic

factors, including gut microbiota, epigenetic regulation,

hepatocyte function, metabolic reprogramming, and more, in

cancerous liver tissue inhibits the uptake and stimulates the

synthesis of BAs by the liver, and excess BAs further promote

liver carcinogenesis and HCC metastasis by inducing

immunosuppressive microenvironment (Figure 1).
Justification of hypothesis

BAs are highly accumulated in HCC

BAs produced in the liver are metabolized by enzymes from

gut bacteria and are essential for maintaining a healthy gut

microbiota, balanced lipid, carbohydrate metabolism, and innate

immunity (20). The production, transport, metabolism and

excretion of BAs are carefully regulated by the body. The

determination of BAs in plasma can reflect the synthesis,

uptake and secretion functions of hepatocytes (21). Studies

found that BAs homeostasis was disrupted during the

occurrence and development of HCC (22). Serum BAs
Frontiers in Oncology 03
concentrations were significantly elevated in patients with

HCC compared with normal subjects, thus persistence of

elevated serum total BAs is considered an independent risk

factor of some HCC patients (23). Elevated serum BAs may be

mainly caused by leakage of damaged hepatocytes or changes in

the activity of BAs transfer proteins, not necessarily by up-

regulation of BAs synthesis. Elevated levels of BAs in the blood

may further aggravate liver damage due to their cytotoxicity, and

at the same time act as signaling molecules to promote the

formation of liver tumors (24). Genetic environment and other

factors cause bile outflow disorder, which can lead to cholestasis,

resulting in a severe increase in serum and intrahepatic BAs

levels, especially chenodeoxycholic acid levels, and these patients

have a higher risk of developing liver cancer in childhood (25).

During cholestasis, high concentrations of BAs can generate

reactive oxygen species, damage cell membranes, damage

mitochondria, and lead to DNA mutations (26). Therefore, the

repair response of liver inflammation and damage caused by

toxic BAs may promote tumorigenesis.
Regulations of BAs in HCC

BAs receptors play an important role in regulating BAs

synthesis, metabolism and transport. There is a high intracellular

BAs load during cholestasis, and the main detoxification

pathway is to activate BAs receptors to protect liver cells and

attenuate BAs toxicity (27). Disorders of nuclear receptor

regulation and genetic variation may promote the occurrence
FIGURE 1

The graphical hypothesis of our study produced by FigDraw. Aberrant BAs metabolism in hepatocellular carcinoma (HCC) modulate tumor
immune microenvironment by preventing natural killer T (NKT) cells recruitment and increasing M2-like tumor-associated macrophages (TAMs)
polarization, thus facilitate liver carcinogenesis and HCC metastasis by inducing immunosuppressive microenvironment.
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and development of liver diseases, including HCC (28). BAs

regulate the physiological functions of cholangiocytes and

hepatocytes by binding to the nuclear receptor FXR or the cell

membrane receptor TGR5. They have high affinity with BAs and

can regulate various physiological functions of cells. The primary

BAs CDCA and CA were the most potent endogenous ligands of

FXR, while the secondary BAs LCA and DCA were the most

potent endogenous agonists of TGR5, respectively (10). FXR has

shown its protective effect on hepatocytes in many aspects (27):

(1) It can reduce the accumulation of BAs in the liver, and can

also inhibit the metabolic disorder in the liver, preventing BAs

from becoming a potential activator of liver cancer.

Mechanistically, after FXR is activated by BAs in the intestine,

it promotes the expression and release of fibroblast growth factor

19 (FGF19), and FGF19 circulates back to the liver and binds to

FGF receptor 4 (FGFR4) on the surface of hepatocytes,

inhibiting the rate-limiting rate of BAs synthesis expression of

the enzyme cholesterol 7a-hydroxylase to maintain the balance

of BAs in the body. (2) It is a negative regulator of liver

inflammation and plays a key role in protecting the liver and

inhibiting the occurrence of HCC. (3) By inhibiting hepatic

stellate cell (HSC) aggregation, promoting extracellular matrix

(ECM) degradation, preventing the occurrence and

development of liver fibrosis and tumors. Indeed, FXR

expression in human HCC was down-regulated compared

with normal liver tissues, and FXR(-/-) mice provide a unique

animal model for HCC study (29). TGR5 indirectly prevents the

development of liver cancer by mainly improving metabolic

syndrome; of course, TGR5 can also negatively regulate the

transcriptional activity of NFkB factor, preventing chronic

hepatitis disease (30). Interestingly, hypermethylation of the

TGR5 promoter occurred significantly more frequent in HCC,

and TGR5-/- mice have higher expression of interstitial

metalloproteinases (MMPs), which may promote the

development and metastasis of HCC (31, 32). This makes BAs

receptors a target for the treatment of liver diseases such as

cholestasis, viral hepatitis, liver fibrosis and liver cancer. At

present, the FXR agonist obeticholic acid phase III clinical trial

results have significant efficacy, and other FXR agonists such as

GSK2324 and WAY-362450 have also entered clinical trials and

achieved good clinical results (33). Targets for TGR5 are also

expected to enter clinical trials in the near future.

BAs are critical components of the gastrointestinal tract that

link the gut microbiota to hepatic and intestinal metabolism, and

thus influence gastrointestinal motility, intestinal permeability,

and carcinogenesis (34). Studies have found that intestinal flora

can affect the size and composition of BAs pools. For example,

Clostridium can affect the metabolism of primary BAs into

secondary BAs (35). Primary BAs can increase the expression

of CXCL16 in hepatic sinusoidal endothelial cells and promote

natural killing in the liver. The accumulation of NKT cells

enhances the anti-tumor effect of the liver; while secondary

BAs have the opposite effect (36). In addition, altering the gut
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microbiota increased deoxycholic acid (DCA) levels; however

blocking DCA production and reducing gut microbiota

effectively prevented the development of liver cancer in mice

(37). Apcmin/+ mice treated with deoxycholic acid (DCA) could

increase the F/B value of the intestinal flora and change the

composition of the intestinal flora (38), suggesting that BAs can

alter the composition of the gut microbiota. BAs can also chelate

with important ions such as calcium ions and ferrous ions of

bacteria, which can affect bacterial gene expression and inhibit

bacterial movement, reproduction and chemotaxis (39). Taken

together, the distribution of BAs and gut microbiota interact

with each other; BAs can modulate microbiota composition and,

in turn, regulates the size and composition of BAs pools.

Disrupt ion of BAs-microbiota cross ta lk promotes

inflammation and many gastrointestinal disease phenotypes,

which may contribute to the development of gastrointestinal

cancers, including colorectal cancer and HCC.

Epigenetics refers to a group of genetic mechanisms and

phenomena that do not change the genotype but can determine

the phenotype of cells (40). Those heritable alterations are

another way of transcriptional regulation of gene expression.

Epigenetic regulation regulates posttranslational modifications

(PTMs) of histones and chromatin remodeling, and thus

regulates gene transcription and maintains BAs balance (41–

43). Specifically, FXR acetylation is normally dynamically

regulated by p300 (a histone acetyltransferase) and SIRT1 but

is constitutively elevated in metabolic disease states (41).

Similarly, aberrant DNA methylation of TGR5 is increased in

HCC, and it can be used as a potential biomarker for hepatitis B

Virus associated HCC (32). In turn, BAs can also influence

epigenetic regulation and thus interfere with disease progression

(44). Inhibition of histone-modified transcriptional cofactors,

such as histone acetylases and methylases, has emerged as a

promising and effective option for the treatment of HCC (45).

Research has been devoted to identifying natural and synthetic

compounds that modulate the activity of nuclear and membrane

BAs receptors to alter quantity and composition of BAs (46).

Therefore, an interesting future research direction is to use these

compounds in combination to modulate multiple BAs signaling

pathways, together with epigenetic targeting of post-

translational modifications of histones or chromatin

remodeling of BAs target genes to develop more effective

preventive and therapeutic treatments with HCC associated

with imbalances in BAs metabolism.
BAs contribute to HCC metastasis

There are a large number of blood vessels and lymphatic

vessels in the liver that can transport cancer cells to distant

organs, and subsequently the metastatic tumor cells implant in

sites with suitable environment to form new tumors (the ‘seed

and soil’ hypothesis proposed by Stephen Paget), which limit the
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curative effect and prognosis of HCC patients (47). Cancer foci

releases tumor cells into the bloodstream, which can be

transferred to different parts inside and outside the liver with

the bloodstream. The common organ of distant metastasis is the

lung, and it can also be transferred to the bone, adrenal gland

and brain (48).

BAs play an increasingly prominent role in cancers invasion

and metastasis, although the mechanism of action seems

unclear. In this regard, BAs are the most widely studied in

gastrointestinal cancer and have been shown to drive multiple

signaling pathways to enhance the invasiveness and metastatic

ability of tumor cells (49). Several studies have shown that more

hydrophobic BAs as LCA, DCA and CDCA, are the main

promoters of liver cancer and promotes the motility of HCC

cells by inducing EMT phenotypes (50, 51). Unlike the direct

e ff ec t on cancer ce l l s , Lu Gao et a l . found that

Glycochenodeoxycholate (GCDC), an important component of

BAs, promotes HCC invasion and migration by AMPK/mTOR

dependent autophagy activation (52). This phenomenon could

be reversed by inhibition of autophagy. Meanwhile, DCA

induced HSCs to secrete senescence-associated secretory

phenotype (SASP) factors, thereby indirectly promoting the

invasion/migration of liver cancer cells (53). Moreover, there is

increasing evidence that high levels of BAs are highly clinically

relevant in patients with highly aggressive HCC (52). In

addition, several chemical drugs (such as The FXR Agonist

Obeticholic Acid and Bushen Jianpi) can inhibit liver tumor

metastasis in orthotopic mouse xenograft model and reduce the

recurrence and metastasis rate of HCC patients by interfering

with BAs levels (Table 1) (56, 57). Although information is

limited, BAs also play a role in promoting HCC angiogenesis to a

certain extent, that provides good conditions for tumor

metastasis (59). In summary, BAs drive the progression of

liver tumor metastasis in an indirect way, and antagonizing

excessive BAs may provide an effective means of treating liver

cancer. It should be pointed out that BAs with different

concentrations and components may lead to different liver

cancer progression and outcomes (60), which requires further

proof in follow-up experiments (Table 2).
BAs induce suppressive TIME

Inflammation is an immune defense response gradually formed

by the body to resist foreign pathogens and respond to tissue
Frontiers in Oncology 05
damage in the long evolutionary process, mainly manifested in

vascular response, immune cell recruitment and cytokine release,

and has long been associated with cancer (61). Inflammation

enables the cancer hallmark-promoting programs through the

tumor microenvironment (TME), and diverse cells of the TME

can deliver a series of cytokines to maintain the inflammatory

environment in which cancer cells survive and impair antitumor

immune responses (62). Since BAs can stimulate the secretion of

various cytokines and chemokines, its dysregulation has been

shown to be involved in the regulation of inflammation and

immunity (63). Especially in digestive system tumors, BAs-

involved inflammatory regulation is associated with

carcinogenesis through so-called bridging factors, including

signaling pathways NFkB, COX-2, STAT3, and inflammatory

factors such as IL-6, IL-1b, and TNF-a etc (49). Secondary BAs,

as metabolites of intestinal flora, regulate the function of immune

cells, thereby achieving host immune tolerance to commensal

bacteria (64). In addition, it was found that primary BAs instead

of secondary BAs can also control the recruitment of natural killer T

(NKT) cells in the liver by promoting the expression of the

chemokine CXCL16, thereby exerting anti-tumor immune

function to inhibit the growth of liver cancer (36). Several studies

have also found that DCA initially induces HSCs to produce

senescence-associated secreted (SASP) factors, which in turn

stimulate the secretion of pro-inflammatory and tumor-

promoting factors, and ultimately lead to nonalcoholic

steatohepatitis (NASH) and subsequent development of HCC (37,

53). BAs also act as a signaling mediator to stimulate their nuclear

receptor and promote M2-like macrophage polarization, creating

an immunosuppressive TME that favors tumor-initiating cells

(TICs) (54). Accordingly, high serum levels of taurocholic acid

correlate with increased M2-like tumor-associated macrophages

(TAMs) in HCC patient samples. Generally, macrophages have the

property to be polarized to M1 or M2 macrophages, and TAMs

have been illustrated to more closely resemble the M2‐polarized

macrophages, which are activated by Th2 cytokines (IL‐10, IL‐13,

and IL‐4) (65). Intriguingly, an increasing body of evidence suggests

that M2 macrophages can facilitate the aggressiveness of HCC in

many ways (including M2 macrophage-derived exosomes,

plasminogen activator inhibitor−1 pathway, imbalance of TGF-

b1/BMP-7 pathways, etc.) (65–67). Recently, loss of SIRT5 (a

member of deacetylating enzymes) was reported to promote bile

acid-induced immunosuppressive microenvironment and

hepatocarcinogenesis (54), suggesting that epigenetics may be

involved. Furthermore, the performance of BAs-activated
TABLE 1 Drugs targeting dysregulated bile acids in HCC.

Drugs Mechanism of targeting bile acid Effects in hepatocellular carcinoma References

cholestyramine a bile acid sequestrant prevents HCC development (54, 55)

Bushen Jianpi increases expression of the bile acid receptor inhibits liver cancer recurrence and metastasis (56)

Obeticholic Acid, GW4064, PX20350 and PX20606 FXR agonists suppresses HCC proliferation and metastasis (57, 58)
fr
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receptors (BARs) and transporters in inflammation and immune

regulation has also been extensively reported. Studies found that

attenuation of FXR signaling can promote liver cancer development

by downregulating the function of BAs transporters, inducing BAs

retention and persistent inflammation in the liver (68). Conversely,

administration of cholestyramine, a BAs sequestrant, significantly

inhibited the development of NASH-HCC by promoting the

excret ion of hydrophobic BAs (55) . Although the

immunoregulatory role of TGR5 in HCC has not been reported,

the BAs-TGR5 signaling axis may balance the production of pro-

and anti-inflammatory cytokines by regulating the polarization

state of macrophages, thereby controlling subsequent

gastrointestinal carcinogenesis (69). Briefly, BAs on the one hand

stimulate/reduce the secretion of inflammatory factors such as IL-6

and TNF-a, thereby activating/inactivating signaling pathways

associated with cancer promotion to improve/inhibit cancer

growth or invasiveness. On the other hand, BAs promote the

tumor immunosuppressive environment by regulating the

recruitment of immune cells such as NKTs and the polarization

state of macrophages, thereby controlling cancer proliferation

and invasion.
Immune regulation of metastasis

External factors of the tumor, especially stromal and

immune cell populations, are equally important determinants

of metastatic spread. Tumors actually prepare a supportive and

receptive microenvironment for colonization for the arrival of

disseminated cancer cells by inducing many systemic molecular

and cellular changes, called a premetastatic niche (70). It is

characterized by increased angiogenesis and vascular

permeability, ECM remodeling, chronic inflammation and

immunosuppression (71). Chronic inflammation in the (pre)

metastatic niche is an important driver of metastasis by

promoting the recruitment of bone marrow-derived cells

(BMDCs) and tumor cells to distant organs (72). Finally, the

establishment of an immunosuppressive microenvironment is

an essential feature of (pre)metastatic niches. It allows cancer
Frontiers in Oncology 06
cells to evade immune recognition and develop large

metastases (73).
Enrichment analysis of BAs-
activated receptors

BAs receptors coordinate with each other to keep BAs levels

relatively stable, regulate BAs-mediated signal transduction

pathways, and form an effective defense mechanism to inhibit

the carcinogenicity of BAs. Although FXR antagonists have been

shown to inhibit HCC metastasis (58), the specific mechanism by

which BAs receptors regulate HCC metastasis remains unclear.

We note that FXR expression is down regulated in HCC and is

associated with poor prognosis of HCC (Figure 2). Although the

expression of TGR5 has no difference between normal liver tissues

and tumor tissues, its methylation level may be involved. To reveal

the potential regulatory mechanism of BAs receptors during HCC

metastasis, we downloaded the transcriptome data and

corresponding clinical information of FXR and TGR5 from the

TCGA database, respectively, and performed enrichment analysis

as described before (74). Interestingly, we found stronger evidence

for TGR5 in regulating immune cell activation and cells adhesion

than FXR (Figures 3A, B), albeit lacking experimental support.

The expression of TGR5 is closely related to the regulation of cell-

cell adhesion, T cell activation, leukocyte proliferation, etc. which

are involved in the immune regulation and cell migration. In

addition, TGR5 seems to regulate lymphocyte proliferation, which

may explain the phenomenon of bile acid enrichment in

metastatic lymph nodes. We further explored the correlation of

FXR and TGR5 expression levels with immune infiltration level of

immune cells in HCC using TIMER platform, respectively

(Figure 3C). We found that the expression level of FXR

correlated with the presence of CD4+T cells, macrophages,

neutrophils and dendritic cells; the expression level of TGR5

correlated with the infiltration level of B-cells, CD8+T cells,

CD4+T cells, macrophages, neutrophils and dendritic cells.

Those results highlighted the important immune regulation of

BARs in HCC.
TABLE 2 Tumor metastasis promoter effects of bile acids in hepatocellular carcinoma.

Cell lines Concentration of bile acids Effects References

HuH-7, Hep3B CDCA (100 µM) induces EMT process (50)

Hep3B LCA, CDCA (100 µM) promotes the motility of HCC cells by inducing EMT phenotypes (51)

SMMC7721, Huh7 GCDC (200 µM) promotes HCC invasion and migration by AMPK/mTOR signaling (52)

Huh7 DCA(80 µM) resulted in cellular senescence in LX2 and promoted HCC cells migration and invasion (53)
fr
CDCA, chenodeoxycholic acid; LCA, lithocholic acid; GCDCA, Glycochenodeoxycholic acid; DCA, Deoxycholic acid.
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Discussions

Tumor metastasis and recurrence are important reasons that

hinder the clinical benefit of HCC patients. Sorafenib is the first-

line clinical drug for the treatment of liver cancer, but recent

studies have pointed out that instead of hindering HCC

migration, it further promotes tumor metastasis (75).

Therefore, clarifying the mechanism of tumor metastasis has

important guiding significance for the search for effective

clinical drugs.

In recent years , immunotherapy, a lone and in

combination with conventional therapy, has achieved

relatively satisfactory results in clinical trials. However, we

still lack a scientific understanding of the immune-related

mechanisms that influence metastasis formation and

treatment response. The local and systemic immune

landscapes of different types of tumors, and even individual

tumors of the same type, vary widely (76). This not only

reduces the specificity of immunotherapy, but also has the
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potential to induce multiple adverse drug reactions. Therefore,

we reasoned that searching for the origin of the induced

immunosuppressive microenvironment during HCC

metastasis might provide an opportunity for this question.

Circulating pathways among different organs and circulating

components may be important reasons for the heterogeneity

of tumor metastasis in different organs. BAs link various

organs of the digestive tract through its enterohepatic

circulation, and exploring the mechanism of action of BAs

in HCC metastasis will advance the understanding of tumor

metastasis heterogeneity. Additionally, administration of BA

sequestrants or FXR agonists significantly prevented HCC

development, suggesting a potential strategy of targeting

dysregulated BAs levels for the treatment of patients with

HCC, especially those with abnormally high BAs (54, 55). BAs

metabolism has been shown to be highly correlated with

tumor metastasis and immune regulation, but evidence

linking them is still lacking. By combining literature

evidence and bioinformatics analysis, we infer that the
A B

DC

FIGURE 2

Survival curves according to the expression of bile acids- activated receptors. (A) Comparative analysis of mRNA expression of FXR between
HCC tissue and normal tissues. (B) Promoter methylation level of TGR5 in HCC. Kaplan-Meier curves for overall survival according to the
expression of FXR (C) and TGR5 (D). *P < 0.05 ;**** P < 0.0001.
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disturbance of BAs balance caused by BAs receptor

dysfunction may promote the progression of HCC

me t a s t a s i s b y i ndu c i n g an immuno s upp r e s s i v e

microenvironment. In this process, gut microbiota and

epigenetic regulation may play a key role. On the one hand,

gut microbiota imbalance leads to abnormal BAs metabolism,

which in turn affects its immune regulation, including the

recruitment of NKTs and the polarization of macrophages,

resulting in the formation of an immunosuppressive

microenvironment. On the other hand, epigenetic regulation
Frontiers in Oncology 08
promote s the occu r r ence o f immunosuppre s s i v e

microenvironment in a multi-level and multi-dimensional

way, including but not limited to: regulation of BARs,

cytokines, stromal cells and immune cells, metabolism

alteration and pre-metastatic niche. Our study revealed

cross-talk between BAs and infiltration of tumors by

immune cells, and their influences in HCC metastasis, which

may provide novel insight into immunotherapy of HCC.

Nevertheless, more animal experiments and clinical studies

are still needed to validate our hypothesis.
A B

C

FIGURE 3

Potential biological mechanisms and immune infiltration levels of bile acids- activated receptors. (A) Volcano map of DEGs, heatmap of DEGs,
and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses for high and low FXR expression group based on
the TCGA dataset. (B) Volcano map of DEGs, heatmap of DEGs, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses for high and low TGR5 expression group based on the TCGA dataset. (C) Correlations between FXR, TGR5 and immune
infiltration levels validated with the TIMER database, respectively.
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